Revert "Use Task.loop in examples"

This commit is contained in:
hafiz 2022-01-23 11:56:13 -05:00 committed by GitHub
parent b42cc3d625
commit f6126cda69
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 32 additions and 58 deletions

View File

@ -21,22 +21,6 @@ main =
|> Task.map (\_ -> {})
nest : (I64, Expr -> IO Expr), I64, Expr -> IO Expr
nest = \f, n, e -> Task.loop { s: n, f, m: n, x: e } nestHelp
State : { s : I64, f : I64, Expr -> IO Expr, m : I64, x : Expr }
nestHelp : State -> IO [ Step State, Done Expr ]
nestHelp = \{ s, f, m, x } ->
when m is
0 ->
Task.succeed (Done x)
_ ->
w <- Task.after (f (s - m) x)
Task.succeed (Step { s, f, m: (m - 1), x: w })
Expr : [ Val I64, Var Str, Add Expr Expr, Mul Expr Expr, Pow Expr Expr, Ln Expr ]
divmod : I64, I64 -> Result { div : I64, mod : I64 } [ DivByZero ]*
@ -196,6 +180,18 @@ count = \expr ->
Ln f ->
count f
nest : (I64, Expr -> IO Expr), I64, Expr -> IO Expr
nest = \f, n, e -> nestHelp n f n e
nestHelp : I64, (I64, Expr -> IO Expr), I64, Expr -> IO Expr
nestHelp = \s, f, m, x ->
when m is
0 ->
Task.succeed x
_ ->
f (s - m) x |> Task.after \w -> nestHelp s f (m - 1) w
deriv : I64, Expr -> IO Expr
deriv = \i, f ->
fprime = d "x" f

View File

@ -89,10 +89,6 @@ isWhitespace = \char ->
== 0x9# tab
interpretCtx : Context -> Task Context InterpreterErrors
interpretCtx = \ctx ->
Task.loop ctx interpretCtxLoop
interpretCtxLoop : Context -> Task [ Step Context, Done Context ] InterpreterErrors
interpretCtxLoop = \ctx ->
when ctx.state is
Executing if Context.inWhileScope ctx ->
# Deal with the current while loop potentially looping.
@ -108,11 +104,11 @@ interpretCtxLoop = \ctx ->
if n == 0 then
newScope = { scope & whileInfo: None }
Task.succeed (Step { popCtx & scopes: List.set ctx.scopes last newScope })
interpretCtx { popCtx & scopes: List.set ctx.scopes last newScope }
else
newScope = { scope & whileInfo: Some { state: InBody, body, cond } }
Task.succeed (Step { popCtx & scopes: List.append (List.set ctx.scopes last newScope) { data: None, buf: body, index: 0, whileInfo: None } })
interpretCtx { popCtx & scopes: List.append (List.set ctx.scopes last newScope) { data: None, buf: body, index: 0, whileInfo: None } }
Err e ->
Task.fail e
@ -121,7 +117,7 @@ interpretCtxLoop = \ctx ->
# Just rand the body. Run the condition again.
newScope = { scope & whileInfo: Some { state: InCond, body, cond } }
Task.succeed (Step { ctx & scopes: List.append (List.set ctx.scopes last newScope) { data: None, buf: cond, index: 0, whileInfo: None } })
interpretCtx { ctx & scopes: List.append (List.set ctx.scopes last newScope) { data: None, buf: cond, index: 0, whileInfo: None } }
None ->
Task.fail NoScope
@ -135,7 +131,7 @@ interpretCtxLoop = \ctx ->
when result is
Ok (T val newCtx) ->
execCtx <- Task.await (stepExecCtx newCtx val)
Task.succeed (Step execCtx)
interpretCtx execCtx
Err NoScope ->
Task.fail NoScope
@ -147,9 +143,9 @@ interpretCtxLoop = \ctx ->
# If no scopes left, all execution complete.
if List.isEmpty dropCtx.scopes then
Task.succeed (Done dropCtx)
Task.succeed dropCtx
else
Task.succeed (Step dropCtx)
interpretCtx dropCtx
InComment ->
result <- Task.attempt (Context.getChar ctx)
@ -157,9 +153,9 @@ interpretCtxLoop = \ctx ->
Ok (T val newCtx) ->
if val == 0x7D then
# `}` end of comment
Task.succeed (Step { newCtx & state: Executing })
interpretCtx { newCtx & state: Executing }
else
Task.succeed (Step { newCtx & state: InComment })
interpretCtx { newCtx & state: InComment }
Err NoScope ->
Task.fail NoScope
@ -178,13 +174,13 @@ interpretCtxLoop = \ctx ->
# so this is make i64 mul by 10 then convert back to i32.
nextAccum = (10 * Num.intCast accum) + Num.intCast (val - 0x30)
Task.succeed (Step { newCtx & state: InNumber (Num.intCast nextAccum) })
interpretCtx { newCtx & state: InNumber (Num.intCast nextAccum) }
else
# outside of number now, this needs to be executed.
pushCtx = Context.pushStack newCtx (Number accum)
execCtx <- Task.await (stepExecCtx { pushCtx & state: Executing } val)
Task.succeed (Step execCtx)
interpretCtx execCtx
Err NoScope ->
Task.fail NoScope
@ -201,12 +197,12 @@ interpretCtxLoop = \ctx ->
when Str.fromUtf8 bytes is
Ok str ->
{ } <- Task.await (Stdout.raw str)
Task.succeed (Step { newCtx & state: Executing })
interpretCtx { newCtx & state: Executing }
Err _ ->
Task.fail BadUtf8
else
Task.succeed (Step { newCtx & state: InString (List.append bytes val) })
interpretCtx { newCtx & state: InString (List.append bytes val) }
Err NoScope ->
Task.fail NoScope
@ -220,17 +216,17 @@ interpretCtxLoop = \ctx ->
Ok (T val newCtx) ->
if val == 0x5B then
# start of a nested lambda `[`
Task.succeed (Step { newCtx & state: InLambda (depth + 1) (List.append bytes val) })
interpretCtx { newCtx & state: InLambda (depth + 1) (List.append bytes val) }
else if val == 0x5D then
# `]` end of current lambda
if depth == 0 then
# end of all lambdas
Task.succeed (Step (Context.pushStack { newCtx & state: Executing } (Lambda bytes)))
interpretCtx (Context.pushStack { newCtx & state: Executing } (Lambda bytes))
else
# end of nested lambda
Task.succeed (Step { newCtx & state: InLambda (depth - 1) (List.append bytes val) })
interpretCtx { newCtx & state: InLambda (depth - 1) (List.append bytes val) }
else
Task.succeed (Step { newCtx & state: InLambda depth (List.append bytes val) })
interpretCtx { newCtx & state: InLambda depth (List.append bytes val) }
Err NoScope ->
Task.fail NoScope
@ -256,14 +252,14 @@ interpretCtxLoop = \ctx ->
when result2 is
Ok a ->
Task.succeed (Step a)
interpretCtx a
Err e ->
Task.fail e
Ok (T 0x9F newCtx) ->
# This is supposed to flush io buffers. We don't buffer, so it does nothing
Task.succeed (Step newCtx)
interpretCtx newCtx
Ok (T x _) ->
data = Num.toStr (Num.intCast x)
@ -280,7 +276,7 @@ interpretCtxLoop = \ctx ->
result <- Task.attempt (Context.getChar { ctx & state: Executing })
when result is
Ok (T x newCtx) ->
Task.succeed (Step (Context.pushStack newCtx (Number (Num.intCast x))))
interpretCtx (Context.pushStack newCtx (Number (Num.intCast x)))
Err NoScope ->
Task.fail NoScope

View File

@ -1,27 +1,9 @@
interface Task
exposes [ Task, succeed, fail, await, map, onFail, attempt, fromResult, loop ]
exposes [ Task, succeed, fail, await, map, onFail, attempt, fromResult ]
imports [ fx.Effect ]
Task ok err : Effect.Effect (Result ok err)
loop : state, (state -> Task [ Step state, Done done ] err) -> Task done err
loop = \state, step ->
looper = \current ->
step current
|> Effect.map
\res ->
when res is
Ok (Step newState) ->
Step newState
Ok (Done result) ->
Done (Ok result)
Err e ->
Done (Err e)
Effect.loop state looper
succeed : val -> Task val *
succeed = \val ->
Effect.always (Ok val)