roc/examples/ruby-interop/demo.c
2022-11-03 23:04:15 -04:00

231 lines
6.4 KiB
C

#include <errno.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <unistd.h>
#include <ruby.h>
#include "extconf.h"
void *roc_alloc(size_t size, unsigned int alignment) { return malloc(size); }
void *roc_realloc(void *ptr, size_t new_size, size_t old_size,
unsigned int alignment)
{
return realloc(ptr, new_size);
}
void roc_dealloc(void *ptr, unsigned int alignment) { free(ptr); }
__attribute__((noreturn)) void roc_panic(void *ptr, unsigned int alignment)
{
rb_raise(rb_eException, "%s", (char *)ptr);
}
void *roc_memcpy(void *dest, const void *src, size_t n)
{
return memcpy(dest, src, n);
}
void *roc_memset(void *str, int c, size_t n) { return memset(str, c, n); }
// Reference counting
// If the refcount is set to this, that means the allocation is
// stored in readonly memory in the binary, and we must not
// attempt to increment or decrement it; if we do, we'll segfault!
const ssize_t REFCOUNT_READONLY = 0;
const ssize_t REFCOUNT_ONE = (ssize_t)PTRDIFF_MIN;
const size_t MASK = (size_t)PTRDIFF_MIN;
// Increment reference count, given a pointer to the first element in a collection.
// We don't need to check for overflow because in order to overflow a usize worth of refcounts,
// you'd need to somehow have more pointers in memory than the OS's virtual address space can hold.
void incref(uint8_t* bytes, uint32_t alignment)
{
ssize_t *refcount_ptr = ((ssize_t *)bytes) - 1;
ssize_t refcount = *refcount_ptr;
if (refcount != REFCOUNT_READONLY) {
*refcount_ptr = refcount + 1;
}
}
// Decrement reference count, given a pointer to the first element in a collection.
// Then call roc_dealloc if nothing is referencing this collection anymore.
void decref(uint8_t* bytes, uint32_t alignment)
{
if (bytes == NULL) {
return;
}
size_t extra_bytes = (sizeof(size_t) >= (size_t)alignment) ? sizeof(size_t) : (size_t)alignment;
ssize_t *refcount_ptr = ((ssize_t *)bytes) - 1;
ssize_t refcount = *refcount_ptr;
if (refcount != REFCOUNT_READONLY) {
*refcount_ptr = refcount - 1;
if (refcount == REFCOUNT_ONE) {
void *original_allocation = (void *)(refcount_ptr - (extra_bytes - sizeof(size_t)));
roc_dealloc(original_allocation, alignment);
}
}
}
// RocBytes (List U8)
struct RocBytes
{
uint8_t *bytes;
size_t len;
size_t capacity;
};
struct RocBytes init_rocbytes(uint8_t *bytes, size_t len)
{
if (len == 0)
{
struct RocBytes ret = {
.len = 0,
.bytes = NULL,
.capacity = MASK,
};
return ret;
}
else
{
struct RocBytes ret;
size_t refcount_size = sizeof(size_t);
uint8_t *new_content = (uint8_t *)roc_alloc(len + refcount_size, alignof(size_t)) + refcount_size;
memcpy(new_content, bytes, len);
ret.bytes = new_content;
ret.len = len;
ret.capacity = len;
return ret;
}
}
// RocStr
struct RocStr
{
uint8_t *bytes;
size_t len;
size_t capacity;
};
struct RocStr init_rocstr(uint8_t *bytes, size_t len)
{
if (len == 0)
{
struct RocStr ret = {
.len = 0,
.bytes = NULL,
.capacity = MASK,
};
return ret;
}
else if (len < sizeof(struct RocStr))
{
// Start out with zeroed memory, so that
// if we end up comparing two small RocStr values
// for equality, we won't risk memory garbage resulting
// in two equal strings appearing unequal.
struct RocStr ret = {
.len = 0,
.bytes = NULL,
.capacity = MASK,
};
// Copy the bytes into the stack allocation
memcpy(&ret, bytes, len);
// Record the string's length in the last byte of the stack allocation
((uint8_t *)&ret)[sizeof(struct RocStr) - 1] = (uint8_t)len | 0b10000000;
return ret;
}
else
{
// A large RocStr is the same as a List U8 (aka RocBytes) in memory.
struct RocBytes roc_bytes = init_rocbytes(bytes, len);
struct RocStr ret = {
.len = roc_bytes.len,
.bytes = roc_bytes.bytes,
.capacity = roc_bytes.capacity,
};
return ret;
}
}
bool is_small_str(struct RocStr str) { return ((ssize_t)str.capacity) < 0; }
// Determine the length of the string, taking into
// account the small string optimization
size_t roc_str_len(struct RocStr str)
{
uint8_t *bytes = (uint8_t *)&str;
uint8_t last_byte = bytes[sizeof(str) - 1];
uint8_t last_byte_xored = last_byte ^ 0b10000000;
size_t small_len = (size_t)(last_byte_xored);
size_t big_len = str.len;
// Avoid branch misprediction costs by always
// determining both small_len and big_len,
// so this compiles to a cmov instruction.
if (is_small_str(str))
{
return small_len;
}
else
{
return big_len;
}
}
extern void roc__mainForHost_1_exposed_generic(struct RocBytes *ret, struct RocBytes *arg);
// Receive a value from Ruby, JSON serialized it and pass it to Roc as a List U8
// (at which point the Roc platform will decode it and crash if it's invalid,
// which roc_panic will translate into a Ruby exception), then get some JSON back from Roc
// - also as a List U8 - and have Ruby JSON.parse it into a plain Ruby value to return.
VALUE call_roc(VALUE self, VALUE rb_arg)
{
// This must be required before the to_json method will exist on String.
rb_require("json");
// Turn the given Ruby value into a JSON string.
// TODO should we defensively encode it as UTF-8 first?
VALUE json_arg = rb_funcall(rb_arg, rb_intern("to_json"), 0);
struct RocBytes arg = init_rocbytes((uint8_t *)RSTRING_PTR(json_arg), RSTRING_LEN(json_arg));
struct RocBytes ret;
// Call the Roc function to populate `ret`'s bytes.
roc__mainForHost_1_exposed_generic(&ret, &arg);
// Create a rb_utf8_str from the heap-allocated JSON bytes the Roc function returned.
VALUE returned_json = rb_utf8_str_new((char *)ret.bytes, ret.len);
// Now that we've created our Ruby JSON string, we're no longer referencing the RocBytes.
decref((void *)&ret, alignof(uint8_t *));
return rb_funcall(rb_define_module("JSON"), rb_intern("parse"), 1, returned_json);
}
void Init_demo()
{
VALUE roc_app = rb_define_module("RocApp");
rb_define_module_function(roc_app, "call_roc", &call_roc, 1);
}