roc/examples/false-interpreter/False.roc

520 lines
22 KiB
Plaintext

app "false"
packages { pf: "platform" }
imports [pf.Task.{ Task }, pf.Stdout, pf.Stdin, Context.{ Context }, Variable.{ Variable }]
provides [main] to pf
# An interpreter for the False programming language: https://strlen.com/false-language/
# This is just a silly example to test this variety of program.
# In general think of this as a program that parses a number of files and prints some output.
# It has some extra constraints:
# 1) The input files are considered too large to just read in at once. Instead it is read via buffer or line.
# 2) The output is also considered too large to generate in memory. It must be printed as we go via buffer or line.
# I think one of the biggest issues with this implementation is that it doesn't return to the platform frequently enough.
# What I mean by that is we build a chain of all Tasks period and return that to the host.
# In something like the elm architecture you return a single step with one Task.
# The huge difference here is when it comes to things like stack overflows.
# In an imperative language, a few of these pieces would be in while loops and it would basically never overflow.
# This implementation is easy to overflow, either make the input long enough or make a false while loop run long enough.
# I assume all of the Task.awaits are the cause of this, but I am not 100% sure.
InterpreterErrors : [BadUtf8, DivByZero, EmptyStack, InvalidBooleanValue, InvalidChar Str, MaxInputNumber, NoLambdaOnStack, NoNumberOnStack, NoVariableOnStack, NoScope, OutOfBounds, UnexpectedEndOfData]
main : Str -> Task {} []
main = \filename ->
interpretFile filename
|> Task.onFail (\StringErr e -> Stdout.line "Ran into problem:\n\(e)\n")
interpretFile : Str -> Task {} [StringErr Str]
interpretFile = \filename ->
ctx <- Context.with filename
result <- Task.attempt (interpretCtx ctx)
when result is
Ok _ ->
Task.succeed {}
Err BadUtf8 ->
Task.fail (StringErr "Failed to convert string from Utf8 bytes")
Err DivByZero ->
Task.fail (StringErr "Division by zero")
Err EmptyStack ->
Task.fail (StringErr "Tried to pop a value off of the stack when it was empty")
Err InvalidBooleanValue ->
Task.fail (StringErr "Ran into an invalid boolean that was neither false (0) or true (-1)")
Err (InvalidChar char) ->
Task.fail (StringErr "Ran into an invalid character with ascii code: \(char)")
Err MaxInputNumber ->
Task.fail (StringErr "Like the original false compiler, the max input number is 320,000")
Err NoLambdaOnStack ->
Task.fail (StringErr "Tried to run a lambda when no lambda was on the stack")
Err NoNumberOnStack ->
Task.fail (StringErr "Tried to run a number when no number was on the stack")
Err NoVariableOnStack ->
Task.fail (StringErr "Tried to load a variable when no variable was on the stack")
Err NoScope ->
Task.fail (StringErr "Tried to run code when not in any scope")
Err OutOfBounds ->
Task.fail (StringErr "Tried to load from an offset that was outside of the stack")
Err UnexpectedEndOfData ->
Task.fail (StringErr "Hit end of data while still parsing something")
isDigit : U8 -> Bool
isDigit = \char ->
char
>= 0x30# `0`
&& char
<= 0x39# `0`
isWhitespace : U8 -> Bool
isWhitespace = \char ->
char
== 0xA# new line
|| char
== 0xB# carriage return
|| char
== 0x20# space
|| char
== 0x9# tab
interpretCtx : Context -> Task Context InterpreterErrors
interpretCtx = \ctx ->
Task.loop ctx interpretCtxLoop
interpretCtxLoop : Context -> Task [Step Context, Done Context] InterpreterErrors
interpretCtxLoop = \ctx ->
when ctx.state is
Executing if Context.inWhileScope ctx ->
# Deal with the current while loop potentially looping.
last = (List.len ctx.scopes - 1)
when List.get ctx.scopes last is
Ok scope ->
when scope.whileInfo is
Some { state: InCond, body, cond } ->
# Just ran condition. Check the top of stack to see if body should run.
when popNumber ctx is
Ok (T popCtx n) ->
if n == 0 then
newScope = { scope & whileInfo: None }
Task.succeed (Step { popCtx & scopes: List.set ctx.scopes last newScope })
else
newScope = { scope & whileInfo: Some { state: InBody, body, cond } }
Task.succeed (Step { popCtx & scopes: List.append (List.set ctx.scopes last newScope) { data: None, buf: body, index: 0, whileInfo: None } })
Err e ->
Task.fail e
Some { state: InBody, body, cond } ->
# Just rand the body. Run the condition again.
newScope = { scope & whileInfo: Some { state: InCond, body, cond } }
Task.succeed (Step { ctx & scopes: List.append (List.set ctx.scopes last newScope) { data: None, buf: cond, index: 0, whileInfo: None } })
None ->
Task.fail NoScope
Err OutOfBounds ->
Task.fail NoScope
Executing ->
# {} <- Task.await (Stdout.line (Context.toStr ctx))
result <- Task.attempt (Context.getChar ctx)
when result is
Ok (T val newCtx) ->
execCtx <- Task.await (stepExecCtx newCtx val)
Task.succeed (Step execCtx)
Err NoScope ->
Task.fail NoScope
Err EndOfData ->
# Computation complete for this scope.
# Drop a scope.
dropCtx = { ctx & scopes: List.dropAt ctx.scopes (List.len ctx.scopes - 1) }
# If no scopes left, all execution complete.
if List.isEmpty dropCtx.scopes then
Task.succeed (Done dropCtx)
else
Task.succeed (Step dropCtx)
InComment ->
result <- Task.attempt (Context.getChar ctx)
when result is
Ok (T val newCtx) ->
if val == 0x7D then
# `}` end of comment
Task.succeed (Step { newCtx & state: Executing })
else
Task.succeed (Step { newCtx & state: InComment })
Err NoScope ->
Task.fail NoScope
Err EndOfData ->
Task.fail UnexpectedEndOfData
InNumber accum ->
result <- Task.attempt (Context.getChar ctx)
when result is
Ok (T val newCtx) ->
if isDigit val then
# still in the number
# i32 multiplication is kinda broken because it implicitly seems to want to upcast to i64.
# so like should be (i32, i32) -> i32, but seems to be (i32, i32) -> i64
# so this is make i64 mul by 10 then convert back to i32.
nextAccum = (10 * Num.intCast accum) + Num.intCast (val - 0x30)
Task.succeed (Step { newCtx & state: InNumber (Num.intCast nextAccum) })
else
# outside of number now, this needs to be executed.
pushCtx = Context.pushStack newCtx (Number accum)
execCtx <- Task.await (stepExecCtx { pushCtx & state: Executing } val)
Task.succeed (Step execCtx)
Err NoScope ->
Task.fail NoScope
Err EndOfData ->
Task.fail UnexpectedEndOfData
InString bytes ->
result <- Task.attempt (Context.getChar ctx)
when result is
Ok (T val newCtx) ->
if val == 0x22 then
# `"` end of string
when Str.fromUtf8 bytes is
Ok str ->
{} <- Task.await (Stdout.raw str)
Task.succeed (Step { newCtx & state: Executing })
Err _ ->
Task.fail BadUtf8
else
Task.succeed (Step { newCtx & state: InString (List.append bytes val) })
Err NoScope ->
Task.fail NoScope
Err EndOfData ->
Task.fail UnexpectedEndOfData
InLambda depth bytes ->
result <- Task.attempt (Context.getChar ctx)
when result is
Ok (T val newCtx) ->
if val == 0x5B then
# start of a nested lambda `[`
Task.succeed (Step { newCtx & state: InLambda (depth + 1) (List.append bytes val) })
else if val == 0x5D then
# `]` end of current lambda
if depth == 0 then
# end of all lambdas
Task.succeed (Step (Context.pushStack { newCtx & state: Executing } (Lambda bytes)))
else
# end of nested lambda
Task.succeed (Step { newCtx & state: InLambda (depth - 1) (List.append bytes val) })
else
Task.succeed (Step { newCtx & state: InLambda depth (List.append bytes val) })
Err NoScope ->
Task.fail NoScope
Err EndOfData ->
Task.fail UnexpectedEndOfData
InSpecialChar ->
result <- Task.attempt (Context.getChar { ctx & state: Executing })
when result is
Ok (T 0xB8 newCtx) ->
result2 =
(T popCtx index) <- Result.after (popNumber newCtx)
# I think Num.abs is too restrictive, it should be able to produce a natural number, but it seem to be restricted to signed numbers.
size = List.len popCtx.stack - 1
offset = Num.intCast size - index
if offset >= 0 then
stackVal <- Result.after (List.get popCtx.stack (Num.intCast offset))
Ok (Context.pushStack popCtx stackVal)
else
Err OutOfBounds
when result2 is
Ok a ->
Task.succeed (Step a)
Err e ->
Task.fail e
Ok (T 0x9F newCtx) ->
# This is supposed to flush io buffers. We don't buffer, so it does nothing
Task.succeed (Step newCtx)
Ok (T x _) ->
data = Num.toStr (Num.intCast x)
Task.fail (InvalidChar data)
Err NoScope ->
Task.fail NoScope
Err EndOfData ->
Task.fail UnexpectedEndOfData
LoadChar ->
result <- Task.attempt (Context.getChar { ctx & state: Executing })
when result is
Ok (T x newCtx) ->
Task.succeed (Step (Context.pushStack newCtx (Number (Num.intCast x))))
Err NoScope ->
Task.fail NoScope
Err EndOfData ->
Task.fail UnexpectedEndOfData
# If it weren't for reading stdin or writing to stdout, this could return a result.
stepExecCtx : Context, U8 -> Task Context InterpreterErrors
stepExecCtx = \ctx, char ->
when char is
0x21 ->
# `!` execute lambda
Task.fromResult
(
(T popCtx bytes) <- Result.after (popLambda ctx)
Ok { popCtx & scopes: List.append popCtx.scopes { data: None, buf: bytes, index: 0, whileInfo: None } }
)
0x3F ->
# `?` if
Task.fromResult
(
(T popCtx1 bytes) <- Result.after (popLambda ctx)
(T popCtx2 n1) <- Result.after (popNumber popCtx1)
if n1 == 0 then
Ok popCtx2
else
Ok { popCtx2 & scopes: List.append popCtx2.scopes { data: None, buf: bytes, index: 0, whileInfo: None } }
)
0x23 ->
# `#` while
Task.fromResult
(
(T popCtx1 body) <- Result.after (popLambda ctx)
(T popCtx2 cond) <- Result.after (popLambda popCtx1)
last = (List.len popCtx2.scopes - 1)
when List.get popCtx2.scopes last is
Ok scope ->
# set the current scope to be in a while loop.
scopes = List.set popCtx2.scopes last { scope & whileInfo: Some { cond: cond, body: body, state: InCond } }
# push a scope to execute the condition.
Ok { popCtx2 & scopes: List.append scopes { data: None, buf: cond, index: 0, whileInfo: None } }
Err OutOfBounds ->
Err NoScope
)
0x24 ->
# `$` dup
# Switching this to List.last and changing the error to ListWasEmpty leads to a compiler bug.
# Complains about the types eq not matching.
when List.get ctx.stack (List.len ctx.stack - 1) is
Ok dupItem ->
Task.succeed (Context.pushStack ctx dupItem)
Err OutOfBounds ->
Task.fail EmptyStack
0x25 ->
# `%` drop
when Context.popStack ctx is
# Dropping with an empty stack, all results here are fine
Ok (T popCtx _) ->
Task.succeed popCtx
Err _ ->
Task.succeed ctx
0x5C ->
# `\` swap
result2 =
(T popCtx1 n1) <- Result.after (Context.popStack ctx)
(T popCtx2 n2) <- Result.after (Context.popStack popCtx1)
Ok (Context.pushStack (Context.pushStack popCtx2 n1) n2)
when result2 is
Ok a ->
Task.succeed a
# Being explicit with error type is required to stop the need to propogate the error parameters to Context.popStack
Err EmptyStack ->
Task.fail EmptyStack
0x40 ->
# `@` rot
result2 =
(T popCtx1 n1) <- Result.after (Context.popStack ctx)
(T popCtx2 n2) <- Result.after (Context.popStack popCtx1)
(T popCtx3 n3) <- Result.after (Context.popStack popCtx2)
Ok (Context.pushStack (Context.pushStack (Context.pushStack popCtx3 n2) n1) n3)
when result2 is
Ok a ->
Task.succeed a
# Being explicit with error type is required to stop the need to propogate the error parameters to Context.popStack
Err EmptyStack ->
Task.fail EmptyStack
0xC3 ->
# `ø` pick or `ß` flush
# these are actually 2 bytes, 0xC3 0xB8 or 0xC3 0x9F
# requires special parsing
Task.succeed { ctx & state: InSpecialChar }
0x4F ->
# `O` also treat this as pick for easier script writing
Task.fromResult
(
(T popCtx index) <- Result.after (popNumber ctx)
# I think Num.abs is too restrictive, it should be able to produce a natural number, but it seem to be restricted to signed numbers.
size = List.len popCtx.stack - 1
offset = Num.intCast size - index
if offset >= 0 then
stackVal <- Result.after (List.get popCtx.stack (Num.intCast offset))
Ok (Context.pushStack popCtx stackVal)
else
Err OutOfBounds
)
0x42 ->
# `B` also treat this as flush for easier script writing
# This is supposed to flush io buffers. We don't buffer, so it does nothing
Task.succeed ctx
0x27 ->
# `'` load next char
Task.succeed { ctx & state: LoadChar }
0x2B ->
# `+` add
Task.fromResult (binaryOp ctx Num.addWrap)
0x2D ->
# `-` sub
Task.fromResult (binaryOp ctx Num.subWrap)
0x2A ->
# `*` mul
Task.fromResult (binaryOp ctx Num.mulWrap)
0x2F ->
# `/` div
# Due to possible division by zero error, this must be handled specially.
Task.fromResult
(
(T popCtx1 numR) <- Result.after (popNumber ctx)
(T popCtx2 numL) <- Result.after (popNumber popCtx1)
res <- Result.after (Num.divTruncChecked numL numR)
Ok (Context.pushStack popCtx2 (Number res))
)
0x26 ->
# `&` bitwise and
Task.fromResult (binaryOp ctx Num.bitwiseAnd)
0x7C ->
# `|` bitwise or
Task.fromResult (binaryOp ctx Num.bitwiseOr)
0x3D ->
# `=` equals
Task.fromResult
(a, b <- binaryOp ctx
if a == b then
-1
else
0
)
0x3E ->
# `>` greater than
Task.fromResult
(a, b <- binaryOp ctx
if a > b then
-1
else
0
)
0x5F ->
# `_` negate
Task.fromResult (unaryOp ctx Num.neg)
0x7E ->
# `~` bitwise not
Task.fromResult (unaryOp ctx (\x -> Num.bitwiseXor x -1))
# xor with -1 should be bitwise not
0x2C ->
# `,` write char
when popNumber ctx is
Ok (T popCtx num) ->
when Str.fromUtf8 [Num.intCast num] is
Ok str ->
{} <- Task.await (Stdout.raw str)
Task.succeed popCtx
Err _ ->
Task.fail BadUtf8
Err e ->
Task.fail e
0x2E ->
# `.` write int
when popNumber ctx is
Ok (T popCtx num) ->
{} <- Task.await (Stdout.raw (Num.toStr (Num.intCast num)))
Task.succeed popCtx
Err e ->
Task.fail e
0x5E ->
# `^` read char as int
in <- Task.await Stdin.char
if in == 255 then
# max char sent on EOF. Change to -1
Task.succeed (Context.pushStack ctx (Number -1))
else
Task.succeed (Context.pushStack ctx (Number (Num.intCast in)))
0x3A ->
# `:` store to variable
Task.fromResult
(
(T popCtx1 var) <- Result.after (popVariable ctx)
# The Result.mapErr on the next line maps from EmptyStack in Context.roc to the full InterpreterErrors union here.
(T popCtx2 n1) <- Result.after (Result.mapErr (Context.popStack popCtx1) (\EmptyStack -> EmptyStack))
Ok { popCtx2 & vars: List.set popCtx2.vars (Variable.toIndex var) n1 }
)
0x3B ->
# `;` load from variable
Task.fromResult
(
(T popCtx var) <- Result.after (popVariable ctx)
elem <- Result.after (List.get popCtx.vars (Variable.toIndex var))
Ok (Context.pushStack popCtx elem)
)
0x22 ->
# `"` string start
Task.succeed { ctx & state: InString [] }
0x5B ->
# `"` string start
Task.succeed { ctx & state: InLambda 0 [] }
0x7B ->
# `{` comment start
Task.succeed { ctx & state: InComment }
x if isDigit x ->
# number start
Task.succeed { ctx & state: InNumber (Num.intCast (x - 0x30)) }
x if isWhitespace x ->
Task.succeed ctx
x ->
when Variable.fromUtf8 x is
# letters are variable names
Ok var ->
Task.succeed (Context.pushStack ctx (Var var))
Err _ ->
data = Num.toStr (Num.intCast x)
Task.fail (InvalidChar data)
unaryOp : Context, (I32 -> I32) -> Result Context InterpreterErrors
unaryOp = \ctx, op ->
(T popCtx num) <- Result.after (popNumber ctx)
Ok (Context.pushStack popCtx (Number (op num)))
binaryOp : Context, (I32, I32 -> I32) -> Result Context InterpreterErrors
binaryOp = \ctx, op ->
(T popCtx1 numR) <- Result.after (popNumber ctx)
(T popCtx2 numL) <- Result.after (popNumber popCtx1)
Ok (Context.pushStack popCtx2 (Number (op numL numR)))
popNumber : Context -> Result [T Context I32] InterpreterErrors
popNumber = \ctx ->
when Context.popStack ctx is
Ok (T popCtx (Number num)) ->
Ok (T popCtx num)
Ok _ ->
Err (NoNumberOnStack)
Err EmptyStack ->
Err EmptyStack
popLambda : Context -> Result [T Context (List U8)] InterpreterErrors
popLambda = \ctx ->
when Context.popStack ctx is
Ok (T popCtx (Lambda bytes)) ->
Ok (T popCtx bytes)
Ok _ ->
Err NoLambdaOnStack
Err EmptyStack ->
Err EmptyStack
popVariable : Context -> Result [T Context Variable] InterpreterErrors
popVariable = \ctx ->
when Context.popStack ctx is
Ok (T popCtx (Var var)) ->
Ok (T popCtx var)
Ok _ ->
Err NoVariableOnStack
Err EmptyStack ->
Err EmptyStack