subword-nmt/learn_bpe.py

201 lines
6.9 KiB
Python
Raw Normal View History

2015-09-01 12:45:31 +03:00
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Author: Rico Sennrich
"""Use byte pair encoding (BPE) to learn a variable-length encoding of the vocabulary in a text.
Unlike the original BPE, it does not compress the plain text, but can be used to reduce the vocabulary
of a text to a configurable number of symbols, with only a small increase in the number of tokens.
Reference:
Rico Sennrich, Barry Haddow and Alexandra Birch (2015). Neural Machine Translation of Rare Words with Subword Units.
"""
from __future__ import unicode_literals
import sys
import codecs
import re
import copy
import argparse
from collections import defaultdict, Counter
# hack for python2/3 compatibility
from io import open
argparse.open = open
# python 2/3 compatibility
if sys.version_info < (3, 0):
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin)
def create_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
parser.add_argument(
'--input', '-i', type=argparse.FileType('r'), default=sys.stdin,
metavar='PATH',
help="Input text (default: standard input).")
parser.add_argument(
'--output', '-o', type=argparse.FileType('w'), default=sys.stdout,
metavar='PATH',
help="Output file for BPE codes (default: standard output)")
parser.add_argument(
'--symbols', '-s', type=int, default=10000,
help="Create this many new symbols (each representing a character n-gram) (default: %(default)s))")
return parser
def get_vocabulary(fobj):
"""Read text and return dictionary that encodes vocabulary
"""
vocab = Counter()
for line in fobj:
for word in line.split():
vocab[word] += 1
return vocab
def update_pair_statistics(pair, changed, stats, indices):
"""Minimally update the indices and frequency of symbol pairs
if we merge a pair of symbols, only pairs that overlap with occurrences
of this pair are affected, and need to be updated.
"""
stats[pair] = 0
indices[pair] = defaultdict(int)
first, second = pair
new_pair = first+second
for j, word, old_word, freq in changed:
# find all instances of pair, and update frequency/indices around it
i = 0
while True:
try:
i = old_word.index(first, i)
except ValueError:
break
if i < len(old_word)-1 and old_word[i+1] == second:
if i:
prev = old_word[i-1:i+1]
stats[prev] -= freq
indices[prev][j] -= 1
if i < len(old_word)-2:
# don't double-count consecutive pairs
if old_word[i+2] != first or i >= len(old_word)-3 or old_word[i+3] != second:
nex = old_word[i+1:i+3]
stats[nex] -= freq
indices[nex][j] -= 1
i += 2
else:
i += 1
i = 0
while True:
try:
i = word.index(new_pair, i)
except ValueError:
break
if i:
prev = word[i-1:i+1]
stats[prev] += freq
indices[prev][j] += 1
# don't double-count consecutive pairs
if i < len(word)-1 and word[i+1] != new_pair:
nex = word[i:i+2]
stats[nex] += freq
indices[nex][j] += 1
i += 1
def get_pair_statistics(vocab):
"""Count frequency of all symbol pairs, and create index"""
# data structure of pair frequencies
stats = defaultdict(int)
#index from pairs to words
indices = defaultdict(lambda: defaultdict(int))
for i, (word, freq) in enumerate(vocab):
prev_char = word[0]
for char in word[1:]:
stats[prev_char, char] += freq
indices[prev_char, char][i] += 1
prev_char = char
return stats, indices
def replace_pair(pair, vocab, indices):
"""Replace all occurrences of a symbol pair ('A', 'B') with a new symbol 'AB'"""
first, second = pair
pair_str = ''.join(pair)
changes = []
pattern = re.compile(r'(?<!\S)' + re.escape(first + ' ' + second) + r'(?!\S)')
for j, freq in indices[pair].items():
if freq < 1:
continue
word, freq = vocab[j]
new_word = ' '.join(word)
new_word = pattern.sub(pair_str, new_word)
new_word = tuple(new_word.split())
vocab[j] = (new_word, freq)
changes.append((j, new_word, word, freq))
return changes
def prune_stats(stats, big_stats, threshold):
"""Prune statistics dict for efficiency of max()
The frequency of a symbol pair never increases, so pruning is generally safe
(until we the most frequent pair is less frequent than a pair we previously pruned)
big_stats keeps full statistics for when we need to access pruned items
"""
for item,freq in list(stats.items()):
if freq < threshold:
del stats[item]
if freq < 0:
big_stats[item] += freq
else:
big_stats[item] = freq
if __name__ == '__main__':
parser = create_parser()
args = parser.parse_args()
vocab = get_vocabulary(args.input)
vocab = dict([(tuple(x)+('</w>',) ,y) for (x,y) in vocab.items()])
sorted_vocab = sorted(vocab.items(), key=lambda x: x[1], reverse=True)
stats, indices = get_pair_statistics(sorted_vocab)
big_stats = copy.deepcopy(stats)
# threshold is inspired by Zipfian assumption, but should only affect speed
threshold = max(stats.values()) / 10
for i in range(args.symbols):
most_frequent = max(stats, key=stats.get)
# we probably missed the best pair because of pruning; go back to full statistics
if i and stats[most_frequent] < threshold:
prune_stats(stats, big_stats, threshold)
stats = copy.deepcopy(big_stats)
most_frequent = max(stats, key=stats.get)
# threshold is inspired by Zipfian assumption, but should only affect speed
threshold = stats[most_frequent] * i/(i+10000.0)
prune_stats(stats, big_stats, threshold)
if stats[most_frequent] < 2:
sys.stderr.write('no pair has frequency > 1. Stopping\n')
break
sys.stderr.write('pair {0}: {1} {2} -> {1}{2} (frequency {3})\n'.format(i, most_frequent[0], most_frequent[1], stats[most_frequent]))
args.output.write('{0} {1}\n'.format(*most_frequent))
changes = replace_pair(most_frequent, sorted_vocab, indices)
update_pair_statistics(most_frequent, changes, stats, indices)
stats[most_frequent] = 0
if not i % 100:
prune_stats(stats, big_stats, threshold)