modify files for packaging; thanks to universome

This commit is contained in:
Rico Sennrich 2018-05-16 12:22:01 +01:00
parent 2a4a44b5c0
commit 4a1d3a777b
11 changed files with 233 additions and 61 deletions

0
subword_nmt/__init__.py Executable file
View File

View File

@ -107,10 +107,16 @@ class BPE(object):
for out_segments in isolate_glossary(segment, gloss)]
return word_segments
def create_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
def create_parser(subparsers=None):
if subparsers:
parser = subparsers.add_parser('apply-bpe',
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
else:
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
parser.add_argument(
'--input', '-i', type=argparse.FileType('r'), default=sys.stdin,

0
subword_nmt/bpe_toy.py Normal file → Executable file
View File

88
subword_nmt/command_line.py Executable file
View File

@ -0,0 +1,88 @@
import io
import sys
import codecs
import argparse
from subword_nmt.learn_bpe import learn_bpe
from subword_nmt.apply_bpe import BPE, read_vocabulary
from subword_nmt.get_vocab import get_vocab
from subword_nmt.segment_char_ngrams import segment_char_ngrams
from subword_nmt.learn_joint_bpe_and_vocab import learn_joint_bpe_and_vocab
from subword_nmt.learn_bpe import create_parser as create_learn_bpe_parser
from subword_nmt.apply_bpe import create_parser as create_apply_bpe_parser
from subword_nmt.get_vocab import create_parser as create_get_vocab_parser
from subword_nmt.learn_joint_bpe_and_vocab import create_parser as create_learn_joint_bpe_and_vocab_parser
from subword_nmt.segment_char_ngrams import create_parser as create_segment_char_ngrams_parser
# hack for python2/3 compatibility
argparse.open = io.open
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="subword-nmt segmentation")
subparsers = parser.add_subparsers(dest='command', help='Command to run')
learn_bpe_parser = create_learn_bpe_parser(subparsers)
apply_bpe_parser = create_apply_bpe_parser(subparsers)
get_vocab_parser = create_get_vocab_parser(subparsers)
segment_char_ngrams_parser = create_segment_char_ngrams_parser(subparsers)
learn_joint_bpe_and_vocab_parser = create_learn_joint_bpe_and_vocab_parser(subparsers)
args = parser.parse_args()
if args.command == 'learn-bpe':
# read/write files as UTF-8
if args.input.name != '<stdin>':
args.input = codecs.open(args.input.name, encoding='utf-8')
if args.output.name != '<stdout>':
args.output = codecs.open(args.output.name, 'w', encoding='utf-8')
learn_bpe(args.input, args.output, args.symbols, args.min_frequency, args.verbose, is_dict=args.dict_input)
elif args.command == 'apply-bpe':
# read/write files as UTF-8
args.codes = codecs.open(args.codes.name, encoding='utf-8')
if args.input.name != '<stdin>':
args.input = codecs.open(args.input.name, encoding='utf-8')
if args.output.name != '<stdout>':
args.output = codecs.open(args.output.name, 'w', encoding='utf-8')
if args.vocabulary:
args.vocabulary = codecs.open(args.vocabulary.name, encoding='utf-8')
if args.vocabulary:
vocabulary = read_vocabulary(args.vocabulary, args.vocabulary_threshold)
else:
vocabulary = None
bpe = BPE(args.codes, args.merges, args.separator, vocabulary, args.glossaries)
for line in args.input:
args.output.write(bpe.process_line(line))
elif args.command == 'get-vocab':
if args.train_file.name != '<stdin>':
args.train_file = codecs.open(args.train_file.name, encoding='utf-8')
if args.vocab_file.name != '<stdout>':
args.vocab_file = codecs.open(args.vocab_file.name, 'w', encoding='utf-8')
get_vocab(args.train_file, args.vocab_file)
elif args.command == 'segment-char-ngrams':
segment_char_ngrams(args)
elif args.command == 'learn-joint-bpe-and-vocab':
learn_joint_bpe_and_vocab(args)
else:
raise Exception('Invalid command provided')
if __name__ == '__main__':
# python 2/3 compatibility
if sys.version_info < (3, 0):
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin)
else:
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr.buffer)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout.buffer)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin.buffer)
main()

View File

@ -3,12 +3,63 @@ from __future__ import print_function
import sys
from collections import Counter
c = Counter()
# hack for python2/3 compatibility
from io import open
argparse.open = open
for line in sys.stdin:
for word in line.strip('\r\n ').split(' '):
if word:
c[word] += 1
def create_parser(subparsers=None):
for key,f in sorted(c.items(), key=lambda x: x[1], reverse=True):
print(key+" "+ str(f))
if subparsers:
parser = subparsers.add_parser('get-vocab',
formatter_class=argparse.RawDescriptionHelpFormatter,
description="Generates vocabulary")
else:
parser = subparsers.argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="Generates vocabulary")
parser.add_argument(
'--train_file', type=argparse.FileType('r'), default=sys.stdin,
metavar='PATH',
help="Input file (default: standard input).")
parser.add_argument(
'--vocab_file', type=argparse.FileType('w'), default=sys.stdout,
metavar='PATH',
help="Output file (default: standard output)")
return parser
def get_vocab(train_file, vocab_file):
c = Counter()
for line in train_file:
for word in line.strip('\r\n ').split(' '):
if word:
c[word] += 1
for key,f in sorted(c.items(), key=lambda x: x[1], reverse=True):
vocab_file.write(key+" "+ str(f) + "\n")
if __name__ == "__main__":
# python 2/3 compatibility
if sys.version_info < (3, 0):
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin)
else:
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr.buffer)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout.buffer)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin.buffer)
parser = create_parser()
args = parser.parse_args()
if args.train_file.name != '<stdin>':
args.train_file = codecs.open(args.train_file.name, encoding='utf-8')
if args.vocab_file.name != '<stdout>':
args.vocab_file = codecs.open(args.vocab_file.name, 'w', encoding='utf-8')
get_vocab(args.train_file, args.vocab_file)

View File

@ -24,10 +24,16 @@ from collections import defaultdict, Counter
from io import open
argparse.open = open
def create_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
def create_parser(subparsers=None):
if subparsers:
parser = subparsers.add_parser('learn-bpe',
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
else:
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
parser.add_argument(
'--input', '-i', type=argparse.FileType('r'), default=sys.stdin,
@ -188,7 +194,7 @@ def prune_stats(stats, big_stats, threshold):
big_stats[item] = freq
def main(infile, outfile, num_symbols, min_frequency=2, verbose=False, is_dict=False):
def learn_bpe(infile, outfile, num_symbols, min_frequency=2, verbose=False, is_dict=False):
"""Learn num_symbols BPE operations from vocabulary, and write to outfile.
"""
@ -252,4 +258,4 @@ if __name__ == '__main__':
if args.output.name != '<stdout>':
args.output = codecs.open(args.output.name, 'w', encoding='utf-8')
main(args.input, args.output, args.symbols, args.min_frequency, args.verbose, is_dict=args.dict_input)
learn_bpe(args.input, args.output, args.symbols, args.min_frequency, args.verbose, is_dict=args.dict_input)

View File

@ -28,10 +28,16 @@ import apply_bpe
from io import open
argparse.open = open
def create_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
def create_parser(subparsers=None):
if subparsers:
parser = subparsers.add_parser('learn-joint-bpe-and-vocab',
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
else:
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
parser.add_argument(
'--input', '-i', type=argparse.FileType('r'), required=True, nargs = '+',
@ -48,7 +54,7 @@ def create_parser():
'--separator', type=str, default='@@', metavar='STR',
help="Separator between non-final subword units (default: '%(default)s'))")
parser.add_argument(
'--write-vocabulary', type=argparse.FileType('w'), nargs = '+', default=None,
'--write-vocabulary', type=argparse.FileType('w'), required=True, nargs = '+', default=None,
metavar='PATH', dest='vocab',
help='Write to these vocabulary files after applying BPE. One per input text. Used for filtering in apply_bpe.py')
parser.add_argument(
@ -60,22 +66,7 @@ def create_parser():
return parser
if __name__ == '__main__':
# python 2/3 compatibility
if sys.version_info < (3, 0):
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin)
else:
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr.buffer)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout.buffer)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin.buffer)
parser = create_parser()
args = parser.parse_args()
def learn_joint_bpe_and_vocab(args):
if args.vocab and len(args.input) != len(args.vocab):
sys.stderr.write('Error: number of input files and vocabulary files must match\n')
@ -95,7 +86,7 @@ if __name__ == '__main__':
# learn BPE on combined vocabulary
with codecs.open(args.output.name, 'w', encoding='UTF-8') as output:
learn_bpe.main(vocab_list, output, args.symbols, args.min_frequency, args.verbose, is_dict=True)
learn_bpe.learn_bpe(vocab_list, output, args.symbols, args.min_frequency, args.verbose, is_dict=True)
with codecs.open(args.output.name, encoding='UTF-8') as codes:
bpe = apply_bpe.BPE(codes, separator=args.separator)
@ -123,3 +114,23 @@ if __name__ == '__main__':
for key, freq in sorted(vocab.items(), key=lambda x: x[1], reverse=True):
vocab_file.write("{0} {1}\n".format(key, freq))
vocab_file.close()
if __name__ == '__main__':
# python 2/3 compatibility
if sys.version_info < (3, 0):
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin)
else:
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr.buffer)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout.buffer)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin.buffer)
parser = create_parser()
args = parser.parse_args()
assert(len(args.input) == len(args.vocab))
learn_joint_bpe_and_vocab(args)

View File

@ -12,10 +12,16 @@ import argparse
from io import open
argparse.open = open
def create_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="segment rare words into character n-grams")
def create_parser(subparsers=None):
if subparsers:
parser = subparsers.add_parser('segment-char-ngrams',
formatter_class=argparse.RawDescriptionHelpFormatter,
description="segment rare words into character n-grams")
else:
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="segment rare words into character n-grams")
parser.add_argument(
'--input', '-i', type=argparse.FileType('r'), default=sys.stdin,
@ -41,6 +47,25 @@ def create_parser():
return parser
def segment_char_ngrams(args):
vocab = [line.split()[0] for line in args.vocab if len(line.split()) == 2]
vocab = dict((y,x) for (x,y) in enumerate(vocab))
for line in args.input:
for word in line.split():
if word not in vocab or vocab[word] > args.shortlist:
i = 0
while i*args.n < len(word):
args.output.write(word[i*args.n:i*args.n+args.n])
i += 1
if i*args.n < len(word):
args.output.write(args.separator)
args.output.write(' ')
else:
args.output.write(word + ' ')
args.output.write('\n')
if __name__ == '__main__':
@ -64,19 +89,4 @@ if __name__ == '__main__':
if args.output.name != '<stdout>':
args.output = codecs.open(args.output.name, 'w', encoding='utf-8')
vocab = [line.split()[0] for line in args.vocab if len(line.split()) == 2]
vocab = dict((y,x) for (x,y) in enumerate(vocab))
for line in args.input:
for word in line.split():
if word not in vocab or vocab[word] > args.shortlist:
i = 0
while i*args.n < len(word):
args.output.write(word[i*args.n:i*args.n+args.n])
i += 1
if i*args.n < len(word):
args.output.write(args.separator)
args.output.write(' ')
else:
args.output.write(word + ' ')
args.output.write('\n')
segment_char_ngrams(args)

0
subword_nmt/tests/__init__.py Executable file
View File

4
subword_nmt/tests/test_bpe.py Normal file → Executable file
View File

@ -10,7 +10,7 @@ currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentfram
parentdir = os.path.dirname(currentdir)
sys.path.insert(0,parentdir)
import learn_bpe
from learn_bpe import learn_bpe
from apply_bpe import BPE
@ -19,7 +19,7 @@ class TestBPELearnMethod(unittest.TestCase):
def test_learn_bpe(self):
infile = codecs.open(os.path.join(currentdir,'data','corpus.en'), encoding='utf-8')
outfile = codecs.open(os.path.join(currentdir,'data','bpe.out'), 'w', encoding='utf-8')
learn_bpe.main(infile, outfile, 1000)
learn_bpe(infile, outfile, 1000)
infile.close()
outfile.close()

0
subword_nmt/tests/test_glossaries.py Normal file → Executable file
View File