mirror of
https://github.com/rsennrich/subword-nmt.git
synced 2024-11-26 09:01:21 +03:00
modify files for packaging; thanks to universome
This commit is contained in:
parent
2a4a44b5c0
commit
4a1d3a777b
0
subword_nmt/__init__.py
Executable file
0
subword_nmt/__init__.py
Executable file
@ -107,7 +107,13 @@ class BPE(object):
|
||||
for out_segments in isolate_glossary(segment, gloss)]
|
||||
return word_segments
|
||||
|
||||
def create_parser():
|
||||
def create_parser(subparsers=None):
|
||||
|
||||
if subparsers:
|
||||
parser = subparsers.add_parser('apply-bpe',
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
description="learn BPE-based word segmentation")
|
||||
else:
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
description="learn BPE-based word segmentation")
|
||||
|
0
subword_nmt/bpe_toy.py
Normal file → Executable file
0
subword_nmt/bpe_toy.py
Normal file → Executable file
88
subword_nmt/command_line.py
Executable file
88
subword_nmt/command_line.py
Executable file
@ -0,0 +1,88 @@
|
||||
import io
|
||||
import sys
|
||||
import codecs
|
||||
import argparse
|
||||
|
||||
from subword_nmt.learn_bpe import learn_bpe
|
||||
from subword_nmt.apply_bpe import BPE, read_vocabulary
|
||||
from subword_nmt.get_vocab import get_vocab
|
||||
from subword_nmt.segment_char_ngrams import segment_char_ngrams
|
||||
from subword_nmt.learn_joint_bpe_and_vocab import learn_joint_bpe_and_vocab
|
||||
|
||||
from subword_nmt.learn_bpe import create_parser as create_learn_bpe_parser
|
||||
from subword_nmt.apply_bpe import create_parser as create_apply_bpe_parser
|
||||
from subword_nmt.get_vocab import create_parser as create_get_vocab_parser
|
||||
from subword_nmt.learn_joint_bpe_and_vocab import create_parser as create_learn_joint_bpe_and_vocab_parser
|
||||
from subword_nmt.segment_char_ngrams import create_parser as create_segment_char_ngrams_parser
|
||||
|
||||
# hack for python2/3 compatibility
|
||||
argparse.open = io.open
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
description="subword-nmt segmentation")
|
||||
subparsers = parser.add_subparsers(dest='command', help='Command to run')
|
||||
|
||||
learn_bpe_parser = create_learn_bpe_parser(subparsers)
|
||||
apply_bpe_parser = create_apply_bpe_parser(subparsers)
|
||||
get_vocab_parser = create_get_vocab_parser(subparsers)
|
||||
segment_char_ngrams_parser = create_segment_char_ngrams_parser(subparsers)
|
||||
learn_joint_bpe_and_vocab_parser = create_learn_joint_bpe_and_vocab_parser(subparsers)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.command == 'learn-bpe':
|
||||
# read/write files as UTF-8
|
||||
if args.input.name != '<stdin>':
|
||||
args.input = codecs.open(args.input.name, encoding='utf-8')
|
||||
if args.output.name != '<stdout>':
|
||||
args.output = codecs.open(args.output.name, 'w', encoding='utf-8')
|
||||
|
||||
learn_bpe(args.input, args.output, args.symbols, args.min_frequency, args.verbose, is_dict=args.dict_input)
|
||||
elif args.command == 'apply-bpe':
|
||||
# read/write files as UTF-8
|
||||
args.codes = codecs.open(args.codes.name, encoding='utf-8')
|
||||
if args.input.name != '<stdin>':
|
||||
args.input = codecs.open(args.input.name, encoding='utf-8')
|
||||
if args.output.name != '<stdout>':
|
||||
args.output = codecs.open(args.output.name, 'w', encoding='utf-8')
|
||||
if args.vocabulary:
|
||||
args.vocabulary = codecs.open(args.vocabulary.name, encoding='utf-8')
|
||||
|
||||
if args.vocabulary:
|
||||
vocabulary = read_vocabulary(args.vocabulary, args.vocabulary_threshold)
|
||||
else:
|
||||
vocabulary = None
|
||||
|
||||
bpe = BPE(args.codes, args.merges, args.separator, vocabulary, args.glossaries)
|
||||
|
||||
for line in args.input:
|
||||
args.output.write(bpe.process_line(line))
|
||||
|
||||
elif args.command == 'get-vocab':
|
||||
if args.train_file.name != '<stdin>':
|
||||
args.train_file = codecs.open(args.train_file.name, encoding='utf-8')
|
||||
if args.vocab_file.name != '<stdout>':
|
||||
args.vocab_file = codecs.open(args.vocab_file.name, 'w', encoding='utf-8')
|
||||
get_vocab(args.train_file, args.vocab_file)
|
||||
elif args.command == 'segment-char-ngrams':
|
||||
segment_char_ngrams(args)
|
||||
elif args.command == 'learn-joint-bpe-and-vocab':
|
||||
learn_joint_bpe_and_vocab(args)
|
||||
else:
|
||||
raise Exception('Invalid command provided')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# python 2/3 compatibility
|
||||
if sys.version_info < (3, 0):
|
||||
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
|
||||
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
|
||||
sys.stdin = codecs.getreader('UTF-8')(sys.stdin)
|
||||
else:
|
||||
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr.buffer)
|
||||
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout.buffer)
|
||||
sys.stdin = codecs.getreader('UTF-8')(sys.stdin.buffer)
|
||||
|
||||
main()
|
@ -3,12 +3,63 @@ from __future__ import print_function
|
||||
import sys
|
||||
from collections import Counter
|
||||
|
||||
c = Counter()
|
||||
# hack for python2/3 compatibility
|
||||
from io import open
|
||||
argparse.open = open
|
||||
|
||||
for line in sys.stdin:
|
||||
def create_parser(subparsers=None):
|
||||
|
||||
if subparsers:
|
||||
parser = subparsers.add_parser('get-vocab',
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
description="Generates vocabulary")
|
||||
else:
|
||||
parser = subparsers.argparse.ArgumentParser(
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
description="Generates vocabulary")
|
||||
|
||||
parser.add_argument(
|
||||
'--train_file', type=argparse.FileType('r'), default=sys.stdin,
|
||||
metavar='PATH',
|
||||
help="Input file (default: standard input).")
|
||||
|
||||
parser.add_argument(
|
||||
'--vocab_file', type=argparse.FileType('w'), default=sys.stdout,
|
||||
metavar='PATH',
|
||||
help="Output file (default: standard output)")
|
||||
|
||||
return parser
|
||||
|
||||
def get_vocab(train_file, vocab_file):
|
||||
|
||||
c = Counter()
|
||||
|
||||
for line in train_file:
|
||||
for word in line.strip('\r\n ').split(' '):
|
||||
if word:
|
||||
c[word] += 1
|
||||
|
||||
for key,f in sorted(c.items(), key=lambda x: x[1], reverse=True):
|
||||
print(key+" "+ str(f))
|
||||
for key,f in sorted(c.items(), key=lambda x: x[1], reverse=True):
|
||||
vocab_file.write(key+" "+ str(f) + "\n")
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# python 2/3 compatibility
|
||||
if sys.version_info < (3, 0):
|
||||
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
|
||||
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
|
||||
sys.stdin = codecs.getreader('UTF-8')(sys.stdin)
|
||||
else:
|
||||
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr.buffer)
|
||||
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout.buffer)
|
||||
sys.stdin = codecs.getreader('UTF-8')(sys.stdin.buffer)
|
||||
|
||||
parser = create_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.train_file.name != '<stdin>':
|
||||
args.train_file = codecs.open(args.train_file.name, encoding='utf-8')
|
||||
if args.vocab_file.name != '<stdout>':
|
||||
args.vocab_file = codecs.open(args.vocab_file.name, 'w', encoding='utf-8')
|
||||
|
||||
get_vocab(args.train_file, args.vocab_file)
|
@ -24,7 +24,13 @@ from collections import defaultdict, Counter
|
||||
from io import open
|
||||
argparse.open = open
|
||||
|
||||
def create_parser():
|
||||
def create_parser(subparsers=None):
|
||||
|
||||
if subparsers:
|
||||
parser = subparsers.add_parser('learn-bpe',
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
description="learn BPE-based word segmentation")
|
||||
else:
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
description="learn BPE-based word segmentation")
|
||||
@ -188,7 +194,7 @@ def prune_stats(stats, big_stats, threshold):
|
||||
big_stats[item] = freq
|
||||
|
||||
|
||||
def main(infile, outfile, num_symbols, min_frequency=2, verbose=False, is_dict=False):
|
||||
def learn_bpe(infile, outfile, num_symbols, min_frequency=2, verbose=False, is_dict=False):
|
||||
"""Learn num_symbols BPE operations from vocabulary, and write to outfile.
|
||||
"""
|
||||
|
||||
@ -252,4 +258,4 @@ if __name__ == '__main__':
|
||||
if args.output.name != '<stdout>':
|
||||
args.output = codecs.open(args.output.name, 'w', encoding='utf-8')
|
||||
|
||||
main(args.input, args.output, args.symbols, args.min_frequency, args.verbose, is_dict=args.dict_input)
|
||||
learn_bpe(args.input, args.output, args.symbols, args.min_frequency, args.verbose, is_dict=args.dict_input)
|
||||
|
@ -28,7 +28,13 @@ import apply_bpe
|
||||
from io import open
|
||||
argparse.open = open
|
||||
|
||||
def create_parser():
|
||||
def create_parser(subparsers=None):
|
||||
|
||||
if subparsers:
|
||||
parser = subparsers.add_parser('learn-joint-bpe-and-vocab',
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
description="learn BPE-based word segmentation")
|
||||
else:
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
description="learn BPE-based word segmentation")
|
||||
@ -48,7 +54,7 @@ def create_parser():
|
||||
'--separator', type=str, default='@@', metavar='STR',
|
||||
help="Separator between non-final subword units (default: '%(default)s'))")
|
||||
parser.add_argument(
|
||||
'--write-vocabulary', type=argparse.FileType('w'), nargs = '+', default=None,
|
||||
'--write-vocabulary', type=argparse.FileType('w'), required=True, nargs = '+', default=None,
|
||||
metavar='PATH', dest='vocab',
|
||||
help='Write to these vocabulary files after applying BPE. One per input text. Used for filtering in apply_bpe.py')
|
||||
parser.add_argument(
|
||||
@ -60,22 +66,7 @@ def create_parser():
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# python 2/3 compatibility
|
||||
if sys.version_info < (3, 0):
|
||||
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
|
||||
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
|
||||
sys.stdin = codecs.getreader('UTF-8')(sys.stdin)
|
||||
else:
|
||||
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr.buffer)
|
||||
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout.buffer)
|
||||
sys.stdin = codecs.getreader('UTF-8')(sys.stdin.buffer)
|
||||
|
||||
parser = create_parser()
|
||||
args = parser.parse_args()
|
||||
def learn_joint_bpe_and_vocab(args):
|
||||
|
||||
if args.vocab and len(args.input) != len(args.vocab):
|
||||
sys.stderr.write('Error: number of input files and vocabulary files must match\n')
|
||||
@ -95,7 +86,7 @@ if __name__ == '__main__':
|
||||
|
||||
# learn BPE on combined vocabulary
|
||||
with codecs.open(args.output.name, 'w', encoding='UTF-8') as output:
|
||||
learn_bpe.main(vocab_list, output, args.symbols, args.min_frequency, args.verbose, is_dict=True)
|
||||
learn_bpe.learn_bpe(vocab_list, output, args.symbols, args.min_frequency, args.verbose, is_dict=True)
|
||||
|
||||
with codecs.open(args.output.name, encoding='UTF-8') as codes:
|
||||
bpe = apply_bpe.BPE(codes, separator=args.separator)
|
||||
@ -123,3 +114,23 @@ if __name__ == '__main__':
|
||||
for key, freq in sorted(vocab.items(), key=lambda x: x[1], reverse=True):
|
||||
vocab_file.write("{0} {1}\n".format(key, freq))
|
||||
vocab_file.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# python 2/3 compatibility
|
||||
if sys.version_info < (3, 0):
|
||||
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
|
||||
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
|
||||
sys.stdin = codecs.getreader('UTF-8')(sys.stdin)
|
||||
else:
|
||||
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr.buffer)
|
||||
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout.buffer)
|
||||
sys.stdin = codecs.getreader('UTF-8')(sys.stdin.buffer)
|
||||
|
||||
parser = create_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
assert(len(args.input) == len(args.vocab))
|
||||
|
||||
learn_joint_bpe_and_vocab(args)
|
@ -12,7 +12,13 @@ import argparse
|
||||
from io import open
|
||||
argparse.open = open
|
||||
|
||||
def create_parser():
|
||||
def create_parser(subparsers=None):
|
||||
|
||||
if subparsers:
|
||||
parser = subparsers.add_parser('segment-char-ngrams',
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
description="segment rare words into character n-grams")
|
||||
else:
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
description="segment rare words into character n-grams")
|
||||
@ -41,6 +47,25 @@ def create_parser():
|
||||
|
||||
return parser
|
||||
|
||||
def segment_char_ngrams(args):
|
||||
|
||||
vocab = [line.split()[0] for line in args.vocab if len(line.split()) == 2]
|
||||
vocab = dict((y,x) for (x,y) in enumerate(vocab))
|
||||
|
||||
for line in args.input:
|
||||
for word in line.split():
|
||||
if word not in vocab or vocab[word] > args.shortlist:
|
||||
i = 0
|
||||
while i*args.n < len(word):
|
||||
args.output.write(word[i*args.n:i*args.n+args.n])
|
||||
i += 1
|
||||
if i*args.n < len(word):
|
||||
args.output.write(args.separator)
|
||||
args.output.write(' ')
|
||||
else:
|
||||
args.output.write(word + ' ')
|
||||
args.output.write('\n')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
@ -64,19 +89,4 @@ if __name__ == '__main__':
|
||||
if args.output.name != '<stdout>':
|
||||
args.output = codecs.open(args.output.name, 'w', encoding='utf-8')
|
||||
|
||||
vocab = [line.split()[0] for line in args.vocab if len(line.split()) == 2]
|
||||
vocab = dict((y,x) for (x,y) in enumerate(vocab))
|
||||
|
||||
for line in args.input:
|
||||
for word in line.split():
|
||||
if word not in vocab or vocab[word] > args.shortlist:
|
||||
i = 0
|
||||
while i*args.n < len(word):
|
||||
args.output.write(word[i*args.n:i*args.n+args.n])
|
||||
i += 1
|
||||
if i*args.n < len(word):
|
||||
args.output.write(args.separator)
|
||||
args.output.write(' ')
|
||||
else:
|
||||
args.output.write(word + ' ')
|
||||
args.output.write('\n')
|
||||
segment_char_ngrams(args)
|
0
subword_nmt/tests/__init__.py
Executable file
0
subword_nmt/tests/__init__.py
Executable file
4
subword_nmt/tests/test_bpe.py
Normal file → Executable file
4
subword_nmt/tests/test_bpe.py
Normal file → Executable file
@ -10,7 +10,7 @@ currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentfram
|
||||
parentdir = os.path.dirname(currentdir)
|
||||
sys.path.insert(0,parentdir)
|
||||
|
||||
import learn_bpe
|
||||
from learn_bpe import learn_bpe
|
||||
from apply_bpe import BPE
|
||||
|
||||
|
||||
@ -19,7 +19,7 @@ class TestBPELearnMethod(unittest.TestCase):
|
||||
def test_learn_bpe(self):
|
||||
infile = codecs.open(os.path.join(currentdir,'data','corpus.en'), encoding='utf-8')
|
||||
outfile = codecs.open(os.path.join(currentdir,'data','bpe.out'), 'w', encoding='utf-8')
|
||||
learn_bpe.main(infile, outfile, 1000)
|
||||
learn_bpe(infile, outfile, 1000)
|
||||
infile.close()
|
||||
outfile.close()
|
||||
|
||||
|
0
subword_nmt/tests/test_glossaries.py
Normal file → Executable file
0
subword_nmt/tests/test_glossaries.py
Normal file → Executable file
Loading…
Reference in New Issue
Block a user