#!/usr/bin/python # -*- coding: utf-8 -*- # Author: Rico Sennrich """Use operations learned with learn_bpe.py to encode a new text. The text will not be smaller, but use only a fixed vocabulary, with rare words encoded as variable-length sequences of subword units. Reference: Rico Sennrich, Barry Haddow and Alexandra Birch (2015). Neural Machine Translation of Rare Words with Subword Units. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany. """ from __future__ import unicode_literals, division import sys import codecs import io import argparse import json import re from collections import defaultdict # hack for python2/3 compatibility from io import open argparse.open = open class BPE(object): def __init__(self, codes, merges=-1, separator='@@', vocab=None, glossaries=None): # check version information firstline = codes.readline() if firstline.startswith('#version:'): self.version = tuple([int(x) for x in re.sub(r'(\.0+)*$','', firstline.split()[-1]).split(".")]) else: self.version = (0, 1) codes.seek(0) self.bpe_codes = [tuple(item.split()) for (n, item) in enumerate(codes) if (n < merges or merges == -1)] # some hacking to deal with duplicates (only consider first instance) self.bpe_codes = dict([(code,i) for (i,code) in reversed(list(enumerate(self.bpe_codes)))]) self.bpe_codes_reverse = dict([(pair[0] + pair[1], pair) for pair,i in self.bpe_codes.items()]) self.separator = separator self.vocab = vocab self.glossaries = glossaries if glossaries else [] self.cache = {} def segment(self, sentence): """segment single sentence (whitespace-tokenized string) with BPE encoding""" output = [] for word in sentence.split(): new_word = [out for segment in self._isolate_glossaries(word) for out in encode(segment, self.bpe_codes, self.bpe_codes_reverse, self.vocab, self.separator, self.version, self.cache, self.glossaries)] for item in new_word[:-1]: output.append(item + self.separator) output.append(new_word[-1]) return ' '.join(output) def _isolate_glossaries(self, word): word_segments = [word] for gloss in self.glossaries: word_segments = [out_segments for segment in word_segments for out_segments in isolate_glossary(segment, gloss)] return word_segments def create_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description="learn BPE-based word segmentation") parser.add_argument( '--input', '-i', type=argparse.FileType('r'), default=sys.stdin, metavar='PATH', help="Input file (default: standard input).") parser.add_argument( '--codes', '-c', type=argparse.FileType('r'), metavar='PATH', required=True, help="File with BPE codes (created by learn_bpe.py).") parser.add_argument( '--merges', '-m', type=int, default=-1, metavar='INT', help="Use this many BPE operations (<= number of learned symbols)"+ "default: Apply all the learned merge operations") parser.add_argument( '--output', '-o', type=argparse.FileType('w'), default=sys.stdout, metavar='PATH', help="Output file (default: standard output)") parser.add_argument( '--separator', '-s', type=str, default='@@', metavar='STR', help="Separator between non-final subword units (default: '%(default)s'))") parser.add_argument( '--vocabulary', type=argparse.FileType('r'), default=None, metavar="PATH", help="Vocabulary file (built with get_vocab.py). If provided, this script reverts any merge operations that produce an OOV.") parser.add_argument( '--vocabulary-threshold', type=int, default=None, metavar="INT", help="Vocabulary threshold. If vocabulary is provided, any word with frequency < threshold will be treated as OOV") parser.add_argument( '--glossaries', type=str, nargs='+', default=None, metavar="STR", help="Glossaries. The strings provided in glossaries will not be affected"+ "by the BPE (i.e. they will neither be broken into subwords, nor concatenated with other subwords") return parser def get_pairs(word): """Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length strings) """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def encode(orig, bpe_codes, bpe_codes_reverse, vocab, separator, version, cache, glossaries=None): """Encode word based on list of BPE merge operations, which are applied consecutively """ if orig in cache: return cache[orig] if orig in glossaries: cache[orig] = (orig,) return (orig,) if version == (0, 1): word = tuple(orig) + ('',) elif version == (0, 2): # more consistent handling of word-final segments word = tuple(orig[:-1]) + ( orig[-1] + '',) else: raise NotImplementedError pairs = get_pairs(word) if not pairs: return orig while True: bigram = min(pairs, key = lambda pair: bpe_codes.get(pair, float('inf'))) if bigram not in bpe_codes: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) # don't print end-of-word symbols if word[-1] == '': word = word[:-1] elif word[-1].endswith(''): word = word[:-1] + (word[-1].replace('',''),) if vocab: word = check_vocab_and_split(word, bpe_codes_reverse, vocab, separator) cache[orig] = word return word def recursive_split(segment, bpe_codes, vocab, separator, final=False): """Recursively split segment into smaller units (by reversing BPE merges) until all units are either in-vocabulary, or cannot be split futher.""" try: if final: left, right = bpe_codes[segment + ''] right = right[:-4] else: left, right = bpe_codes[segment] except: #sys.stderr.write('cannot split {0} further.\n'.format(segment)) yield segment return if left + separator in vocab: yield left else: for item in recursive_split(left, bpe_codes, vocab, separator, False): yield item if (final and right in vocab) or (not final and right + separator in vocab): yield right else: for item in recursive_split(right, bpe_codes, vocab, separator, final): yield item def check_vocab_and_split(orig, bpe_codes, vocab, separator): """Check for each segment in word if it is in-vocabulary, and segment OOV segments into smaller units by reversing the BPE merge operations""" out = [] for segment in orig[:-1]: if segment + separator in vocab: out.append(segment) else: #sys.stderr.write('OOV: {0}\n'.format(segment)) for item in recursive_split(segment, bpe_codes, vocab, separator, False): out.append(item) segment = orig[-1] if segment in vocab: out.append(segment) else: #sys.stderr.write('OOV: {0}\n'.format(segment)) for item in recursive_split(segment, bpe_codes, vocab, separator, True): out.append(item) return out def read_vocabulary(vocab_file, threshold): """read vocabulary file produced by get_vocab.py, and filter according to frequency threshold. """ vocabulary = set() for line in vocab_file: word, freq = line.split() freq = int(freq) if threshold == None or freq >= threshold: vocabulary.add(word) return vocabulary def isolate_glossary(word, glossary): """ Isolate a glossary present inside a word. Returns a list of subwords. In which all 'glossary' glossaries are isolated For example, if 'USA' is the glossary and '1934USABUSA' the word, the return value is: ['1934', 'USA', 'B', 'USA'] """ if word == glossary or glossary not in word: return [word] else: splits = word.split(glossary) segments = [segment.strip() for split in splits[:-1] for segment in [split, glossary] if segment != ''] return segments + [splits[-1].strip()] if splits[-1] != '' else segments if __name__ == '__main__': # python 2/3 compatibility if sys.version_info < (3, 0): sys.stderr = codecs.getwriter('UTF-8')(sys.stderr) sys.stdout = codecs.getwriter('UTF-8')(sys.stdout) sys.stdin = codecs.getreader('UTF-8')(sys.stdin) else: sys.stdin = io.TextIOWrapper(sys.stdin.buffer, encoding='utf-8') sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8') sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8', write_through=True, line_buffering=True) parser = create_parser() args = parser.parse_args() # read/write files as UTF-8 args.codes = codecs.open(args.codes.name, encoding='utf-8') if args.input.name != '': args.input = codecs.open(args.input.name, encoding='utf-8') if args.output.name != '': args.output = codecs.open(args.output.name, 'w', encoding='utf-8') if args.vocabulary: args.vocabulary = codecs.open(args.vocabulary.name, encoding='utf-8') if args.vocabulary: vocabulary = read_vocabulary(args.vocabulary, args.vocabulary_threshold) else: vocabulary = None bpe = BPE(args.codes, args.merges, args.separator, vocabulary, args.glossaries) for line in args.input: args.output.write(bpe.segment(line).strip()) args.output.write('\n')