Unsupervised Word Segmentation for Neural Machine Translation and Text Generation
Go to file
Rico Sennrich 61ad855cf0 new option --total-symbols in learn-bpe
redefines "--symbols" to be the number of merge operations,
minus the character vocabulary size, so that "--symbols" becomes
an estimate of the final symbol vocabulary size.

thx @phikoehn
2018-06-28 11:43:56 +01:00
subword_nmt new option --total-symbols in learn-bpe 2018-06-28 11:43:56 +01:00
.gitignore move files to package structure; add setup.py 2018-05-16 11:44:24 +01:00
apply_bpe.py create symlink in old script location (with deprecation warning) 2018-05-16 14:47:23 +01:00
CHANGELOG.md create symlink in old script location (with deprecation warning) 2018-05-16 14:47:23 +01:00
get_vocab.py create symlink in old script location (with deprecation warning) 2018-05-16 14:47:23 +01:00
learn_bpe.py create symlink in old script location (with deprecation warning) 2018-05-16 14:47:23 +01:00
learn_joint_bpe_and_vocab.py create symlink in old script location (with deprecation warning) 2018-05-16 14:47:23 +01:00
LICENSE initial commit 2015-09-01 11:48:49 +01:00
README.md fix pip package with Python3 2018-05-21 10:53:59 +01:00
setup.py fix pip package with Python3 2018-05-21 10:53:59 +01:00

Subword Neural Machine Translation

This repository contains preprocessing scripts to segment text into subword units. The primary purpose is to facilitate the reproduction of our experiments on Neural Machine Translation with subword units (see below for reference).

INSTALLATION

install via pip (from PyPI):

pip install subword-nmt

install via pip (from Github):

pip install https://github.com/rsennrich/subword-nmt/archive/master.zip

alternatively, clone this repository; the scripts are executable stand-alone.

USAGE INSTRUCTIONS

Check the individual files for usage instructions.

To apply byte pair encoding to word segmentation, invoke these commands:

subword-nmt learn-bpe -s {num_operations} < {train_file} > {codes_file}
subword-nmt apply-bpe -c {codes_file} < {test_file} > {out_file}

To segment rare words into character n-grams, do the following:

subword-nmt get-vocab --train_file {train_file} --vocab_file {vocab_file}
subword-nmt segment-char-ngrams --vocab {vocab_file} -n {order} --shortlist {size} < {test_file} > {out_file}

The original segmentation can be restored with a simple replacement:

sed -r 's/(@@ )|(@@ ?$)//g'

If you cloned the repository and did not install a package, you can also run the individual commands as scripts:

./subword_nmt/learn_bpe.py -s {num_operations} < {train_file} > {codes_file}

BEST PRACTICE ADVICE FOR BYTE PAIR ENCODING IN NMT

We found that for languages that share an alphabet, learning BPE on the concatenation of the (two or more) involved languages increases the consistency of segmentation, and reduces the problem of inserting/deleting characters when copying/transliterating names.

However, this introduces undesirable edge cases in that a word may be segmented in a way that has only been observed in the other language, and is thus unknown at test time. To prevent this, apply_bpe.py accepts a --vocabulary and a --vocabulary-threshold option so that the script will only produce symbols which also appear in the vocabulary (with at least some frequency).

To use this functionality, we recommend the following recipe (assuming L1 and L2 are the two languages):

Learn byte pair encoding on the concatenation of the training text, and get resulting vocabulary for each:

cat {train_file}.L1 {train_file}.L2 | subword-nmt learn-bpe -s {num_operations} -o {codes_file}
subword-nmt apply-bpe -c {codes_file} < {train_file}.L1 && subword-nmt get-vocab --train_file {codes_file} --vocab_file {vocab_file}.L1
subword-nmt apply-bpe -c {codes_file} < {train_file}.L2 && subword-nmt get-vocab --train_file {codes_file} --vocab_file {vocab_file}.L2

more conventiently, you can do the same with with this command:

subword-nmt learn-joint-bpe-and-vocab --input {train_file}.L1 {train_file}.L2 -s {num_operations} -o {codes_file} --write-vocabulary {vocab_file}.L1 {vocab_file}.L2

re-apply byte pair encoding with vocabulary filter:

subword-nmt apply-bpe -c {codes_file} --vocabulary {vocab_file}.L1 --vocabulary-threshold 50 < {train_file}.L1 > {train_file}.BPE.L1
subword-nmt apply-bpe -c {codes_file} --vocabulary {vocab_file}.L2 --vocabulary-threshold 50 < {train_file}.L2 > {train_file}.BPE.L2

as a last step, extract the vocabulary to be used by the neural network. Example with Nematus:

nematus/data/build_dictionary.py {train_file}.BPE.L1 {train_file}.BPE.L2

[you may want to take the union of all vocabularies to support multilingual systems]

for test/dev data, re-use the same options for consistency:

subword-nmt apply-bpe -c {codes_file} --vocabulary {vocab_file}.L1 --vocabulary-threshold 50 < {test_file}.L1 > {test_file}.BPE.L1

PUBLICATIONS

The segmentation methods are described in:

Rico Sennrich, Barry Haddow and Alexandra Birch (2016): Neural Machine Translation of Rare Words with Subword Units Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany.

ACKNOWLEDGMENTS

This project has received funding from Samsung Electronics Polska sp. z o.o. - Samsung R&D Institute Poland, and from the European Unions Horizon 2020 research and innovation programme under grant agreement 645452 (QT21).