1
1
mirror of https://github.com/rui314/mold.git synced 2024-12-29 11:24:36 +03:00
mold/compress.cc

111 lines
3.2 KiB
C++
Raw Normal View History

2021-05-06 16:33:49 +03:00
// This file implements a multi-threaded zlib compression routine.
//
2021-05-06 19:58:19 +03:00
// Multiple pieces of raw compressed data in zlib-format can be merged
2021-05-07 04:46:07 +03:00
// just by concatenation as long as each zlib stream is flushed with
2021-05-06 19:58:19 +03:00
// Z_SYNC_FLUSH. In this file, we split input data into multiple
// shards, compress them individually and concatenate them. We then
2021-05-07 04:46:07 +03:00
// append a header, a trailer and a checksum so that the concatenated
// data is valid zlib-format data.
2021-05-06 19:58:19 +03:00
//
// Using threads to compress data has a downside. Since the dictionary
// is reset on boundaries of shards, compression ratio is sacrificed
// a little bit. However, if a shard size is large enough, that loss
// is negligible in practice.
2021-05-06 16:33:49 +03:00
#include "mold.h"
#include <tbb/parallel_for_each.h>
#include <zlib.h>
static constexpr i64 SHARD_SIZE = 1024 * 1024;
static std::vector<std::string_view> split(std::string_view input) {
std::vector<std::string_view> shards;
while (input.size() >= SHARD_SIZE) {
shards.push_back(input.substr(0, SHARD_SIZE));
input = input.substr(SHARD_SIZE);
}
if (!input.empty())
shards.push_back(input);
return shards;
}
static std::vector<u8> do_compress(std::string_view input) {
// Initialize zlib stream. Since debug info is generally compressed
// pretty well, we chose compression level 3.
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
int r = deflateInit2(&strm, 3, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY);
assert(r == Z_OK);
// Set an input buffer
strm.avail_in = input.size();
strm.next_in = (u8 *)input.data();
// Set an output buffer. deflateBound() returns an upper bound
// on the compression size. +16 for Z_SYNC_FLUSH.
std::vector<u8> buf(deflateBound(&strm, strm.avail_in) + 16);
strm.avail_out = buf.size();
strm.next_out = buf.data();
r = deflate(&strm, Z_SYNC_FLUSH);
assert(r == Z_OK);
assert(strm.avail_out > 0);
buf.resize(buf.size() - strm.avail_out);
deflateEnd(&strm);
return buf;
}
Compress::Compress(std::string_view input) {
std::vector<std::string_view> inputs = split(input);
std::vector<u64> adlers(inputs.size());
shards.resize(inputs.size());
// Compress each shard
tbb::parallel_for((i64)0, (i64)inputs.size(), [&](i64 i) {
adlers[i] = adler32(1, (u8 *)inputs[i].data(), inputs[i].size());
shards[i] = do_compress(inputs[i]);
});
// Combine checksums
checksum = adlers[0];
for (i64 i = 1; i < inputs.size(); i++)
checksum = adler32_combine(checksum, adlers[i], inputs[i].size());
}
i64 Compress::size() const {
i64 size = 2; // +2 for header
for (const std::vector<u8> &shard : shards)
size += shard.size();
return size + 6; // +6 for trailer and checksum
}
void Compress::write_to(u8 *buf) {
// Write a zlib-format header
buf[0] = 0x78;
buf[1] = 0x9c;
// Copy compressed data
std::vector<i64> offsets(shards.size());
offsets[0] = 2; // +2 for header
for (i64 i = 1; i < shards.size(); i++)
offsets[i] = offsets[i - 1] + shards[i - 1].size();
tbb::parallel_for((i64)0, (i64)shards.size(), [&](i64 i) {
memcpy(&buf[offsets[i]], shards[i].data(), shards[i].size());
});
// Write a trailer
u8 *end = buf + size();
end[-6] = 3;
end[-5] = 0;
// Write a checksum
write32be(end - 4, checksum);
}