#include "mold.h" #include #include #include #include #include void OutputEhdr::copy_buf() { ElfEhdr &hdr = *(ElfEhdr *)(out::buf + shdr.sh_offset); memset(&hdr, 0, sizeof(hdr)); memcpy(&hdr.e_ident, "\177ELF", 4); hdr.e_ident[EI_CLASS] = ELFCLASS64; hdr.e_ident[EI_DATA] = ELFDATA2LSB; hdr.e_ident[EI_VERSION] = EV_CURRENT; hdr.e_type = config.pic ? ET_DYN : ET_EXEC; hdr.e_machine = EM_X86_64; hdr.e_version = EV_CURRENT; if (!config.shared) hdr.e_entry = Symbol::intern(config.entry)->get_addr(); hdr.e_phoff = out::phdr->shdr.sh_offset; hdr.e_shoff = out::shdr->shdr.sh_offset; hdr.e_ehsize = sizeof(ElfEhdr); hdr.e_phentsize = sizeof(ElfPhdr); hdr.e_phnum = out::phdr->shdr.sh_size / sizeof(ElfPhdr); hdr.e_shentsize = sizeof(ElfShdr); hdr.e_shnum = out::shdr->shdr.sh_size / sizeof(ElfShdr); hdr.e_shstrndx = out::shstrtab->shndx; } void OutputShdr::update_shdr() { i64 n = 1; for (OutputChunk *chunk : out::chunks) if (chunk->kind != OutputChunk::HEADER) n++; shdr.sh_size = n * sizeof(ElfShdr); } void OutputShdr::copy_buf() { ElfShdr *hdr = (ElfShdr *)(out::buf + shdr.sh_offset); hdr[0] = {}; i64 i = 1; for (OutputChunk *chunk : out::chunks) if (chunk->kind != OutputChunk::HEADER) hdr[i++] = chunk->shdr; } static i64 to_phdr_flags(OutputChunk *chunk) { i64 ret = PF_R; if (chunk->shdr.sh_flags & SHF_WRITE) ret |= PF_W; if (chunk->shdr.sh_flags & SHF_EXECINSTR) ret |= PF_X; return ret; } bool is_relro(OutputChunk *chunk) { u64 flags = chunk->shdr.sh_flags; u64 type = chunk->shdr.sh_type; std::string_view name = chunk->name; bool match = (flags & SHF_TLS) || type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || type == SHT_PREINIT_ARRAY || chunk == out::got || chunk == out::dynamic || name.ends_with(".rel.ro"); return (flags & SHF_WRITE) && match; } std::vector create_phdr() { std::vector vec; auto define = [&](u64 type, u64 flags, i64 min_align, OutputChunk *chunk) { vec.push_back({}); ElfPhdr &phdr = vec.back(); phdr.p_type = type; phdr.p_flags = flags; phdr.p_align = std::max(min_align, chunk->shdr.sh_addralign); phdr.p_offset = chunk->shdr.sh_offset; phdr.p_filesz = (chunk->shdr.sh_type == SHT_NOBITS) ? 0 : chunk->shdr.sh_size; phdr.p_vaddr = chunk->shdr.sh_addr; phdr.p_memsz = chunk->shdr.sh_size; if (type == PT_LOAD) chunk->starts_new_ptload = true; }; auto append = [&](OutputChunk *chunk) { ElfPhdr &phdr = vec.back(); phdr.p_align = std::max(phdr.p_align, chunk->shdr.sh_addralign); phdr.p_filesz = (chunk->shdr.sh_type == SHT_NOBITS) ? chunk->shdr.sh_offset - phdr.p_offset : chunk->shdr.sh_offset + chunk->shdr.sh_size - phdr.p_offset; phdr.p_memsz = chunk->shdr.sh_addr + chunk->shdr.sh_size - phdr.p_vaddr; }; auto is_bss = [](OutputChunk *chunk) { return chunk->shdr.sh_type == SHT_NOBITS && !(chunk->shdr.sh_flags & SHF_TLS); }; // Create a PT_PHDR for the program header itself. define(PT_PHDR, PF_R, 8, out::phdr); // Create a PT_INTERP. if (out::interp) define(PT_INTERP, PF_R, 1, out::interp); // Create a PT_NOTE for each group of SHF_NOTE sections with the same // alignment requirement. for (i64 i = 0, end = out::chunks.size(); i < end;) { OutputChunk *first = out::chunks[i++]; if (first->shdr.sh_type != SHT_NOTE) continue; i64 flags = to_phdr_flags(first); i64 alignment = first->shdr.sh_addralign; define(PT_NOTE, flags, alignment, first); while (i < end && out::chunks[i]->shdr.sh_type == SHT_NOTE && to_phdr_flags(out::chunks[i]) == flags && out::chunks[i]->shdr.sh_addralign == alignment) append(out::chunks[i++]); } // Create PT_LOAD segments. for (i64 i = 0, end = out::chunks.size(); i < end;) { OutputChunk *first = out::chunks[i++]; if (!(first->shdr.sh_flags & SHF_ALLOC)) break; i64 flags = to_phdr_flags(first); define(PT_LOAD, flags, PAGE_SIZE, first); if (!is_bss(first)) while (i < end && !is_bss(out::chunks[i]) && to_phdr_flags(out::chunks[i]) == flags) append(out::chunks[i++]); while (i < end && is_bss(out::chunks[i]) && to_phdr_flags(out::chunks[i]) == flags) append(out::chunks[i++]); } // Create a PT_TLS. for (i64 i = 0; i < out::chunks.size(); i++) { if (!(out::chunks[i]->shdr.sh_flags & SHF_TLS)) continue; define(PT_TLS, to_phdr_flags(out::chunks[i]), 1, out::chunks[i]); i++; while (i < out::chunks.size() && (out::chunks[i]->shdr.sh_flags & SHF_TLS)) append(out::chunks[i++]); } // Create a PT_GNU_RELRO. if (config.z_relro) { for (i64 i = 0; i < out::chunks.size(); i++) { if (!is_relro(out::chunks[i])) continue; define(PT_GNU_RELRO, PF_R, 1, out::chunks[i]); i++; while (i < out::chunks.size() && is_relro(out::chunks[i])) append(out::chunks[i++]); } } // Add PT_DYNAMIC if (out::dynamic) define(PT_DYNAMIC, PF_R | PF_W, 1, out::dynamic); // Add PT_GNU_EH_FRAME if (out::eh_frame_hdr) define(PT_GNU_EH_FRAME, PF_R, 1, out::eh_frame_hdr); // Add PT_GNU_STACK, which is a marker segment that doesn't really // contain any segments. It controls executable bit of stack area. vec.push_back({}); vec.back().p_type = PT_GNU_STACK; if (config.z_execstack) vec.back().p_flags = PF_R | PF_W | PF_X; else vec.back().p_flags = PF_R | PF_W; return vec; } void OutputPhdr::update_shdr() { shdr.sh_size = create_phdr().size() * sizeof(ElfPhdr); } void OutputPhdr::copy_buf() { write_vector(out::buf + shdr.sh_offset, create_phdr()); } void InterpSection::copy_buf() { write_string(out::buf + shdr.sh_offset, config.dynamic_linker); } void RelDynSection::update_shdr() { shdr.sh_link = out::dynsym->shndx; // .rel.dyn contents are filled by GotSection::copy_buf() and // InputSection::apply_reloc_alloc(). i64 offset = out::got->get_reldyn_size(); for (ObjectFile *file : out::objs) { file->reldyn_offset = offset; offset += file->num_dynrel * sizeof(ElfRela); } shdr.sh_size = offset; } void StrtabSection::update_shdr() { shdr.sh_size = 1; for (ObjectFile *file : out::objs) { file->strtab_offset = shdr.sh_size; shdr.sh_size += file->strtab_size; } } void ShstrtabSection::update_shdr() { shdr.sh_size = 1; for (OutputChunk *chunk : out::chunks) { if (!chunk->name.empty()) { chunk->shdr.sh_name = shdr.sh_size; shdr.sh_size += chunk->name.size() + 1; } } } void ShstrtabSection::copy_buf() { u8 *base = out::buf + shdr.sh_offset; base[0] = '\0'; i64 i = 1; for (OutputChunk *chunk : out::chunks) { if (!chunk->name.empty()) { write_string(base + i, chunk->name); i += chunk->name.size() + 1; } } } i64 DynstrSection::add_string(std::string_view str) { auto [it, inserted] = strings.insert({str, shdr.sh_size}); if (inserted) shdr.sh_size += str.size() + 1; return it->second; } i64 DynstrSection::find_string(std::string_view str) { auto it = strings.find(str); assert(it != strings.end()); return it->second; } void DynstrSection::copy_buf() { u8 *base = out::buf + shdr.sh_offset; base[0] = '\0'; for (std::pair pair : strings) write_string(base + pair.second, pair.first); i64 offset = dynsym_offset; for (Symbol *sym : std::span(out::dynsym->symbols).subspan(1)) { write_string(base + offset, sym->name); offset += sym->name.size() + 1; } } void SymtabSection::update_shdr() { shdr.sh_size = sizeof(ElfSym); for (ObjectFile *file : out::objs) { file->local_symtab_offset = shdr.sh_size; shdr.sh_size += file->num_local_symtab * sizeof(ElfSym); } for (ObjectFile *file : out::objs) { file->global_symtab_offset = shdr.sh_size; shdr.sh_size += file->num_global_symtab * sizeof(ElfSym); } shdr.sh_info = out::objs[0]->global_symtab_offset / sizeof(ElfSym); shdr.sh_link = out::strtab->shndx; static Counter counter("symtab"); counter += shdr.sh_size / sizeof(ElfSym); } void SymtabSection::copy_buf() { memset(out::buf + shdr.sh_offset, 0, sizeof(ElfSym)); out::buf[out::strtab->shdr.sh_offset] = '\0'; tbb::parallel_for_each(out::objs, [](ObjectFile *file) { file->write_symtab(); }); } static std::vector create_dynamic_section() { std::vector vec; auto define = [&](u64 tag, u64 val) { vec.push_back(tag); vec.push_back(val); }; for (SharedFile *file : out::dsos) define(DT_NEEDED, out::dynstr->find_string(file->soname)); if (!config.rpaths.empty()) define(DT_RUNPATH, out::dynstr->find_string(config.rpaths)); if (!config.soname.empty()) define(DT_SONAME, out::dynstr->find_string(config.soname)); for (std::string_view str : config.auxiliary) define(DT_AUXILIARY, out::dynstr->find_string(str)); for (std::string_view str : config.filter) define(DT_FILTER, out::dynstr->find_string(str)); define(DT_RELA, out::reldyn->shdr.sh_addr); define(DT_RELASZ, out::reldyn->shdr.sh_size); define(DT_RELAENT, sizeof(ElfRela)); define(DT_JMPREL, out::relplt->shdr.sh_addr); define(DT_PLTRELSZ, out::relplt->shdr.sh_size); define(DT_PLTGOT, out::gotplt->shdr.sh_addr); define(DT_PLTREL, DT_RELA); define(DT_SYMTAB, out::dynsym->shdr.sh_addr); define(DT_SYMENT, sizeof(ElfSym)); define(DT_STRTAB, out::dynstr->shdr.sh_addr); define(DT_STRSZ, out::dynstr->shdr.sh_size); define(DT_INIT_ARRAY, out::__init_array_start->value); define(DT_INIT_ARRAYSZ, out::__init_array_end->value - out::__init_array_start->value); define(DT_FINI_ARRAY, out::__fini_array_start->value); define(DT_FINI_ARRAYSZ, out::__fini_array_end->value - out::__fini_array_start->value); define(DT_VERSYM, out::versym->shdr.sh_addr); define(DT_VERNEED, out::verneed->shdr.sh_addr); define(DT_VERNEEDNUM, out::verneed->shdr.sh_info); if (out::verdef) { define(DT_VERDEF, out::verdef->shdr.sh_addr); define(DT_VERDEFNUM, out::verdef->shdr.sh_info); } define(DT_DEBUG, 0); if (Symbol *sym = Symbol::intern(config.init); sym->file) define(DT_INIT, sym->get_addr()); if (Symbol *sym = Symbol::intern(config.fini); sym->file) define(DT_FINI, sym->get_addr()); if (out::hash) define(DT_HASH, out::hash->shdr.sh_addr); if (out::gnu_hash) define(DT_GNU_HASH, out::gnu_hash->shdr.sh_addr); i64 flags = 0; i64 flags1 = 0; if (config.pie) flags1 |= DF_1_PIE; if (config.z_now) { flags |= DF_BIND_NOW; flags1 |= DF_1_NOW; } if (config.df_static_tls) flags |= DF_STATIC_TLS; if (flags) define(DT_FLAGS, flags); if (flags1) define(DT_FLAGS_1, flags1); define(DT_NULL, 0); return vec; } void DynamicSection::update_shdr() { shdr.sh_size = create_dynamic_section().size() * 8; shdr.sh_link = out::dynstr->shndx; } void DynamicSection::copy_buf() { write_vector(out::buf + shdr.sh_offset, create_dynamic_section()); } static std::string_view get_output_name(std::string_view name) { static std::string_view common_names[] = { ".text.", ".data.rel.ro.", ".data.", ".rodata.", ".bss.rel.ro.", ".bss.", ".init_array.", ".fini_array.", ".tbss.", ".tdata.", }; for (std::string_view s1 : common_names) { std::string_view s2 = s1.substr(0, s1.size() - 1); if (name.starts_with(s1) || name == s2) return s2; } return name; } OutputSection::OutputSection(std::string_view name, u32 type, u64 flags) : OutputChunk(REGULAR) { this->name = name; shdr.sh_type = type; shdr.sh_flags = flags; idx = instances.size(); instances.push_back(this); } OutputSection * OutputSection::get_instance(std::string_view name, u64 type, u64 flags) { if (name == ".eh_frame" && type == SHT_X86_64_UNWIND) type = SHT_PROGBITS; name = get_output_name(name); flags = flags & ~(u64)SHF_GROUP; auto find = [&]() -> OutputSection * { for (OutputSection *osec : OutputSection::instances) if (name == osec->name && type == osec->shdr.sh_type && flags == (osec->shdr.sh_flags & ~SHF_GROUP)) return osec; return nullptr; }; static std::shared_mutex mu; // Search for an exiting output section. { std::shared_lock lock(mu); if (OutputSection *osec = find()) return osec; } // Create a new output section. std::unique_lock lock(mu); if (OutputSection *osec = find()) return osec; return new OutputSection(name, type, flags); } void OutputSection::copy_buf() { if (shdr.sh_type == SHT_NOBITS) return; tbb::parallel_for((i64)0, (i64)members.size(), [&](i64 i) { // Copy section contents to an output file InputSection &isec = *members[i]; isec.copy_buf(); // Zero-clear trailing padding u64 this_end = isec.offset + isec.shdr.sh_size; u64 next_start = (i == members.size() - 1) ? shdr.sh_size : members[i + 1]->offset; memset(out::buf + shdr.sh_offset + this_end, 0, next_start - this_end); }); } void GotSection::add_got_symbol(Symbol *sym) { assert(sym->got_idx == -1); sym->got_idx = shdr.sh_size / GOT_SIZE; shdr.sh_size += GOT_SIZE; got_syms.push_back(sym); if (sym->is_imported) out::dynsym->add_symbol(sym); } void GotSection::add_gottpoff_symbol(Symbol *sym) { assert(sym->gottpoff_idx == -1); sym->gottpoff_idx = shdr.sh_size / GOT_SIZE; shdr.sh_size += GOT_SIZE; gottpoff_syms.push_back(sym); } void GotSection::add_tlsgd_symbol(Symbol *sym) { assert(sym->tlsgd_idx == -1); sym->tlsgd_idx = shdr.sh_size / GOT_SIZE; shdr.sh_size += GOT_SIZE * 2; tlsgd_syms.push_back(sym); out::dynsym->add_symbol(sym); } void GotSection::add_tlsld() { if (tlsld_idx != -1) return; tlsld_idx = shdr.sh_size / GOT_SIZE; shdr.sh_size += GOT_SIZE * 2; } i64 GotSection::get_reldyn_size() const { i64 n = 0; for (Symbol *sym : got_syms) if (sym->is_imported || (config.pic && sym->is_relative())) n++; n += tlsgd_syms.size() * 2; for (Symbol *sym : gottpoff_syms) if (sym->is_imported) n++; if (tlsld_idx != -1) n++; n += out::copyrel->symbols.size(); n += out::copyrel_relro->symbols.size(); return n * sizeof(ElfRela); } // Fill .got and .rel.dyn. void GotSection::copy_buf() { u64 *buf = (u64 *)(out::buf + shdr.sh_offset); memset(buf, 0, shdr.sh_size); ElfRela *rel = nullptr; if (out::reldyn) rel = (ElfRela *)(out::buf + out::reldyn->shdr.sh_offset); for (Symbol *sym : got_syms) { u64 addr = sym->get_got_addr(); if (sym->is_imported) { *rel++ = {addr, R_X86_64_GLOB_DAT, sym->dynsym_idx, 0}; } else { buf[sym->got_idx] = sym->get_addr(); if (config.pic && sym->is_relative()) *rel++ = {addr, R_X86_64_RELATIVE, 0, (i64)sym->get_addr()}; } } for (Symbol *sym : tlsgd_syms) { u64 addr = sym->get_tlsgd_addr(); *rel++ = {addr, R_X86_64_DTPMOD64, sym->dynsym_idx, 0}; *rel++ = {addr + GOT_SIZE, R_X86_64_DTPOFF64, sym->dynsym_idx, 0}; } for (Symbol *sym : gottpoff_syms) { if (sym->is_imported) *rel++ = {sym->get_gottpoff_addr(), R_X86_64_TPOFF32, sym->dynsym_idx, 0}; else buf[sym->gottpoff_idx] = sym->get_addr() - out::tls_end; } if (tlsld_idx != -1) *rel++ = {get_tlsld_addr(), R_X86_64_DTPMOD64, 0, 0}; for (Symbol *sym : out::copyrel->symbols) *rel++ = {sym->get_addr(), R_X86_64_COPY, sym->dynsym_idx, 0}; for (Symbol *sym : out::copyrel_relro->symbols) *rel++ = {sym->get_addr(), R_X86_64_COPY, sym->dynsym_idx, 0}; } void GotPltSection::copy_buf() { u64 *buf = (u64 *)(out::buf + shdr.sh_offset); buf[0] = out::dynamic ? out::dynamic->shdr.sh_addr : 0; buf[1] = 0; buf[2] = 0; for (Symbol *sym : out::plt->symbols) if (sym->gotplt_idx != -1) buf[sym->gotplt_idx] = sym->get_plt_addr() + 6; } void PltSection::add_symbol(Symbol *sym) { assert(sym->plt_idx == -1); assert(sym->got_idx == -1); sym->plt_idx = shdr.sh_size / PLT_SIZE; shdr.sh_size += PLT_SIZE; symbols.push_back(sym); sym->gotplt_idx = out::gotplt->shdr.sh_size / GOT_SIZE; out::gotplt->shdr.sh_size += GOT_SIZE; out::relplt->shdr.sh_size += sizeof(ElfRela); out::dynsym->add_symbol(sym); } void PltSection::copy_buf() { u8 *buf = out::buf + shdr.sh_offset; static const u8 plt0[] = { 0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip) 0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip) 0x0f, 0x1f, 0x40, 0x00, // nop }; memcpy(buf, plt0, sizeof(plt0)); *(u32 *)(buf + 2) = out::gotplt->shdr.sh_addr - shdr.sh_addr + 2; *(u32 *)(buf + 8) = out::gotplt->shdr.sh_addr - shdr.sh_addr + 4; i64 relplt_idx = 0; static const u8 data[] = { 0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOTPLT 0x68, 0, 0, 0, 0, // push $index_in_relplt 0xe9, 0, 0, 0, 0, // jmp PLT[0] }; for (Symbol *sym : symbols) { u8 *ent = buf + sym->plt_idx * PLT_SIZE; memcpy(ent, data, sizeof(data)); *(u32 *)(ent + 2) = sym->get_gotplt_addr() - sym->get_plt_addr() - 6; *(u32 *)(ent + 7) = relplt_idx++; *(u32 *)(ent + 12) = shdr.sh_addr - sym->get_plt_addr() - 16; } } void PltGotSection::add_symbol(Symbol *sym) { assert(sym->plt_idx == -1); assert(sym->got_idx != -1); sym->plt_idx = shdr.sh_size / PLT_GOT_SIZE; shdr.sh_size += PLT_GOT_SIZE; symbols.push_back(sym); } void PltGotSection::copy_buf() { u8 *buf = out::buf + shdr.sh_offset; static const u8 data[] = { 0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT 0x66, 0x90, // nop }; for (Symbol *sym : symbols) { u8 *ent = buf + sym->plt_idx * PLT_GOT_SIZE; memcpy(ent, data, sizeof(data)); *(u32 *)(ent + 2) = sym->get_got_addr() - sym->get_plt_addr() - 6; } } void RelPltSection::update_shdr() { shdr.sh_link = out::dynsym->shndx; } void RelPltSection::copy_buf() { ElfRela *buf = (ElfRela *)(out::buf + shdr.sh_offset); memset(buf, 0, shdr.sh_size); i64 relplt_idx = 0; for (Symbol *sym : out::plt->symbols) { ElfRela &rel = buf[relplt_idx++]; memset(&rel, 0, sizeof(rel)); rel.r_sym = sym->dynsym_idx; rel.r_offset = sym->get_gotplt_addr(); if (sym->get_type() == STT_GNU_IFUNC) { rel.r_type = R_X86_64_IRELATIVE; rel.r_addend = sym->input_section->get_addr() + sym->value; } else { rel.r_type = R_X86_64_JUMP_SLOT; } } } void DynsymSection::add_symbol(Symbol *sym) { if (sym->dynsym_idx != -1) return; sym->dynsym_idx = -2; symbols.push_back(sym); } void DynsymSection::sort_symbols() { Timer t("sort_dynsyms"); struct T { Symbol *sym; i32 idx; u32 hash; bool is_local() const { return sym->esym->st_bind == STB_LOCAL; } }; std::vector vec(symbols.size()); for (i32 i = 1; i < symbols.size(); i++) vec[i] = {symbols[i], i, 0}; // In any ELF file, local symbols should precede global symbols. tbb::parallel_sort(vec.begin() + 1, vec.end(), [](const T &a, const T &b) { if (a.is_local() == b.is_local()) return a.idx < b.idx; return a.is_local(); }); auto first_global = std::partition_point(vec.begin() + 1, vec.end(), [](const T &x) { return x.is_local(); }); // In any ELF file, the index of the first global symbols can be // found in the symtab's sh_info field. shdr.sh_info = first_global - vec.begin(); // If we have .gnu.hash section, it imposes more constraints // on the order of symbols. if (out::gnu_hash) { i64 num_globals = vec.end() - first_global; out::gnu_hash->num_buckets = num_globals / out::gnu_hash->LOAD_FACTOR + 1; out::gnu_hash->symoffset = first_global - vec.begin(); tbb::parallel_for_each(first_global, vec.end(), [](T &x) { x.hash = gnu_hash(x.sym->name) % out::gnu_hash->num_buckets; }); tbb::parallel_sort(first_global, vec.end(), [&](const T &a, const T &b) { if (a.hash == b.hash) return a.idx < b.idx; return a.hash < b.hash; }); } out::dynstr->dynsym_offset = out::dynstr->shdr.sh_size; for (i64 i = 1; i < symbols.size(); i++) { symbols[i] = vec[i].sym; symbols[i]->dynsym_idx = i; out::dynstr->shdr.sh_size += symbols[i]->name.size() + 1; } } void DynsymSection::update_shdr() { shdr.sh_link = out::dynstr->shndx; shdr.sh_size = sizeof(ElfSym) * symbols.size(); } void DynsymSection::copy_buf() { u8 *base = out::buf + shdr.sh_offset; memset(base, 0, sizeof(ElfSym)); i64 name_offset = out::dynstr->dynsym_offset; for (i64 i = 1; i < symbols.size(); i++) { Symbol &sym = *symbols[i]; ElfSym &esym = *(ElfSym *)(base + sym.dynsym_idx * sizeof(ElfSym)); memset(&esym, 0, sizeof(esym)); esym.st_type = sym.get_type(); esym.st_bind = (sym.is_weak ? STB_WEAK : sym.esym->st_bind); esym.st_size = sym.esym->st_size; esym.st_name = name_offset; name_offset += sym.name.size() + 1; if (sym.has_copyrel) { esym.st_shndx = sym.copyrel_readonly ? out::copyrel_relro->shndx : out::copyrel->shndx; esym.st_value = sym.get_addr(); } else if (sym.file->is_dso || sym.esym->is_undef()) { esym.st_shndx = SHN_UNDEF; esym.st_size = 0; if (!config.shared && sym.plt_idx != -1 && sym.got_idx == -1) { // Emit an address for a canonical PLT esym.st_value = sym.get_plt_addr(); } } else if (!sym.input_section) { esym.st_shndx = SHN_ABS; esym.st_value = sym.get_addr(); } else if (sym.get_type() == STT_TLS) { esym.st_shndx = sym.input_section->output_section->shndx; esym.st_value = sym.get_addr() - out::tls_begin; } else { esym.st_shndx = sym.input_section->output_section->shndx; esym.st_value = sym.get_addr(); } } } void HashSection::update_shdr() { i64 header_size = 8; i64 num_slots = out::dynsym->symbols.size(); shdr.sh_size = header_size + num_slots * 8; shdr.sh_link = out::dynsym->shndx; } void HashSection::copy_buf() { u8 *base = out::buf + shdr.sh_offset; memset(base, 0, shdr.sh_size); i64 num_slots = out::dynsym->symbols.size(); u32 *hdr = (u32 *)base; u32 *buckets = (u32 *)(base + 8); u32 *chains = buckets + num_slots; hdr[0] = hdr[1] = num_slots; for (i64 i = 1; i < out::dynsym->symbols.size(); i++) { Symbol *sym = out::dynsym->symbols[i]; i64 idx = elf_hash(sym->name) % num_slots; chains[sym->dynsym_idx] = buckets[idx]; buckets[idx] = sym->dynsym_idx; } } void GnuHashSection::update_shdr() { shdr.sh_link = out::dynsym->shndx; if (i64 num_symbols = out::dynsym->symbols.size() - symoffset) { // We allocate 12 bits for each symbol in the bloom filter. i64 num_bits = num_symbols * 12; num_bloom = next_power_of_two(num_bits / ELFCLASS_BITS); } i64 num_symbols = out::dynsym->symbols.size() - symoffset; shdr.sh_size = HEADER_SIZE; // Header shdr.sh_size += num_bloom * ELFCLASS_BITS / 8; // Bloom filter shdr.sh_size += num_buckets * 4; // Hash buckets shdr.sh_size += num_symbols * 4; // Hash values } void GnuHashSection::copy_buf() { u8 *base = out::buf + shdr.sh_offset; memset(base, 0, shdr.sh_size); *(u32 *)base = num_buckets; *(u32 *)(base + 4) = symoffset; *(u32 *)(base + 8) = num_bloom; *(u32 *)(base + 12) = BLOOM_SHIFT; std::span symbols = std::span(out::dynsym->symbols).subspan(symoffset); std::vector hashes(symbols.size()); for (i64 i = 0; i < symbols.size(); i++) hashes[i] = gnu_hash(symbols[i]->name); // Write a bloom filter u64 *bloom = (u64 *)(base + HEADER_SIZE); for (i64 hash : hashes) { i64 idx = (hash / 64) % num_bloom; bloom[idx] |= (u64)1 << (hash % ELFCLASS_BITS); bloom[idx] |= (u64)1 << ((hash >> BLOOM_SHIFT) % ELFCLASS_BITS); } // Write hash bucket indices u32 *buckets = (u32 *)(bloom + num_bloom); for (i64 i = 0; i < hashes.size(); i++) { i64 idx = hashes[i] % num_buckets; if (!buckets[idx]) buckets[idx] = i + symoffset; } // Write a hash table u32 *table = buckets + num_buckets; for (i64 i = 0; i < symbols.size(); i++) { bool is_last = false; if (i == symbols.size() - 1 || (hashes[i] % num_buckets) != (hashes[i + 1] % num_buckets)) is_last = true; if (is_last) table[i] = hashes[i] | 1; else table[i] = hashes[i] & ~1; } } MergedSection * MergedSection::get_instance(std::string_view name, u64 type, u64 flags) { name = get_output_name(name); flags = flags & ~(u64)SHF_MERGE & ~(u64)SHF_STRINGS; auto find = [&]() -> MergedSection * { for (MergedSection *osec : MergedSection::instances) if (std::tuple(name, flags, type) == std::tuple(osec->name, osec->shdr.sh_flags, osec->shdr.sh_type)) return osec; return nullptr; }; // Search for an exiting output section. static std::shared_mutex mu; { std::shared_lock lock(mu); if (MergedSection *osec = find()) return osec; } // Create a new output section. std::unique_lock lock(mu); if (MergedSection *osec = find()) return osec; auto *osec = new MergedSection(name, flags, type); MergedSection::instances.push_back(osec); return osec; } static void update_atomic_max(std::atomic_uint16_t &atom, i16 val) { u16 cur = atom; while (cur < val) if (atom.compare_exchange_strong(cur, val)) break; } SectionFragment *MergedSection::insert(std::string_view data, i64 alignment) { assert(alignment < UINT16_MAX); std::string_view suffix = data; if (suffix.size() > 32) suffix = suffix.substr(suffix.size() - 32); i64 shard = hash_string(suffix) % NUM_SHARDS; MapTy::const_accessor acc; bool inserted = maps[shard].insert(acc, std::pair(data, SectionFragment(this, data))); SectionFragment *frag = const_cast(&acc->second); update_atomic_max(frag->alignment, alignment); update_atomic_max(max_alignment, alignment); return frag; } void MergedSection::assign_offsets() { std::vector fragments[NUM_SHARDS]; i64 sizes[NUM_SHARDS] = {}; tbb::parallel_for((i64)0, NUM_SHARDS, [&](i64 i) { for (auto it = maps[i].begin(); it != maps[i].end(); it++) if (SectionFragment &frag = it->second; frag.is_alive) fragments[i].push_back(&frag); // Sort section fragments to make an output deterministic. std::sort(fragments[i].begin(), fragments[i].end(), [&](SectionFragment *a, SectionFragment *b) { if (a->alignment != b->alignment) return a->alignment > b->alignment; if (a->data.size() != b->data.size()) return a->data.size() < b->data.size(); return a->data < b->data; }); i64 offset = 0; for (SectionFragment *frag : fragments[i]) { offset = align_to(offset, frag->alignment); frag->offset = offset; offset += frag->data.size(); } sizes[i] = offset; }); for (i64 i = 1; i < NUM_SHARDS + 1; i++) shard_offsets[i] = align_to(shard_offsets[i - 1] + sizes[i - 1], max_alignment); tbb::parallel_for((i64)1, NUM_SHARDS, [&](i64 i) { for (SectionFragment *frag : fragments[i]) frag->offset += shard_offsets[i]; }); shdr.sh_size = shard_offsets[NUM_SHARDS]; shdr.sh_addralign = max_alignment; static Counter merged_strings("merged_strings"); for (std::span span : fragments) merged_strings += span.size(); } void MergedSection::copy_buf() { u8 *base = out::buf + shdr.sh_offset; tbb::parallel_for((i64)0, NUM_SHARDS, [&](i64 i) { memset(base + shard_offsets[i], 0, shard_offsets[i + 1] - shard_offsets[i]); for (auto it = maps[i].begin(); it != maps[i].end(); it++) if (SectionFragment &frag = it->second; frag.is_alive) memcpy(base + frag.offset, frag.data.data(), frag.data.size()); }); } void EhFrameSection::construct() { // Remove dead FDEs and assign them offsets within their corresponding // CIE group. tbb::parallel_for((i64)0, (i64)out::objs.size(), [&](i64 i) { ObjectFile *file = out::objs[i]; i64 count = 0; for (CieRecord &cie : file->cies) { i64 offset = 0; for (FdeRecord &fde : cie.fdes) { if (!fde.is_alive) continue; fde.offset = offset; offset += fde.contents.size(); cie.num_fdes++; } cie.fde_size = offset; } }); // Aggreagate CIEs. cies.reserve(out::objs.size()); for (ObjectFile *file : out::objs) for (CieRecord &cie : file->cies) cies.push_back(&cie); // Record the total number of FDes for .eh_frame_hdr. for (CieRecord *cie : cies) { cie->fde_idx = num_fdes; num_fdes += cie->num_fdes; } // Assign offsets within the output section to CIEs. auto should_merge = [](CieRecord &a, CieRecord &b) { return a.contents == b.contents && a.rels == b.rels; }; i64 offset = 0; for (i64 i = 0; i < cies.size(); i++) { CieRecord &cie = *cies[i]; cie.offset = offset; if (i == 0 || !should_merge(cie, *cies[i - 1])) { cie.leader_offset = offset; offset += cie.contents.size() + cie.fde_size; } else { cie.leader_offset = cies[i - 1]->leader_offset; offset += cie.fde_size; } } shdr.sh_size = offset; if (out::eh_frame_hdr) out::eh_frame_hdr->shdr.sh_size = out::eh_frame_hdr->HEADER_SIZE + num_fdes * 8; } void EhFrameSection::copy_buf() { u8 *base = out::buf + shdr.sh_offset; u8 *hdr_base = nullptr; if (out::eh_frame_hdr) hdr_base = out::buf + out::eh_frame_hdr->shdr.sh_offset; auto apply_reloc = [&](EhReloc &rel, u64 loc, u64 val) { if (rel.type == R_X86_64_32) *(u32 *)(base + loc) = val; else if (rel.type == R_X86_64_PC32) *(u32 *)(base + loc) = val - shdr.sh_addr - loc; else unreachable(); }; struct Entry { i32 init_addr; i32 fde_addr; }; // Copy CIEs and FDEs. tbb::parallel_for_each(cies, [&](CieRecord *cie) { i64 cie_size = 0; Entry *entry = nullptr; if (out::eh_frame_hdr) entry = (Entry *)(hdr_base + out::eh_frame_hdr->HEADER_SIZE) + cie->fde_idx; // Copy a CIE. if (cie->offset == cie->leader_offset) { memcpy(base + cie->offset, cie->contents.data(), cie->contents.size()); cie_size = cie->contents.size(); for (EhReloc &rel : cie->rels) { u64 loc = cie->offset + rel.offset; u64 val = rel.sym.get_addr() + rel.addend; apply_reloc(rel, loc, val); } } // Copy FDEs. for (FdeRecord &fde : cie->fdes) { if (fde.offset == -1) continue; i64 fde_off = cie->offset + cie_size + fde.offset; memcpy(base + fde_off, fde.contents.data(), fde.contents.size()); *(u32 *)(base + fde_off + 4) = fde_off + 4 - cie->leader_offset; for (i64 i = 0; i < fde.rels.size(); i++) { EhReloc &rel = fde.rels[i]; u64 loc = fde_off + rel.offset; u64 val = rel.sym.get_addr() + rel.addend; apply_reloc(rel, loc, val); // Write to .eh_frame_hdr if (out::eh_frame_hdr && i == 0) { assert(rel.offset == 8); entry->init_addr = val - out::eh_frame_hdr->shdr.sh_addr; entry->fde_addr = shdr.sh_addr + fde_off - out::eh_frame_hdr->shdr.sh_addr; entry++; } } } }); if (out::eh_frame_hdr) { // Write .eh_frame_hdr header hdr_base[0] = 1; hdr_base[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; hdr_base[2] = DW_EH_PE_udata4; hdr_base[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; *(u32 *)(hdr_base + 4) = shdr.sh_addr - out::eh_frame_hdr->shdr.sh_addr - 4; *(u32 *)(hdr_base + 8) = num_fdes; // Sort .eh_frame_hdr contents Entry *begin = (Entry *)(hdr_base + out::eh_frame_hdr->HEADER_SIZE); Entry *end = begin + num_fdes; tbb::parallel_sort(begin, end, [](const Entry &a, const Entry &b) { return a.init_addr < b.init_addr; }); } } u64 EhFrameSection::get_addr(const Symbol &sym) { InputSection &isec = *sym.input_section; const char *section_begin = isec.contents.data(); auto contains = [](std::string_view str, const char *ptr) { const char *begin = str.data(); const char *end = begin + str.size(); return (begin == ptr) || (begin < ptr && ptr < end); }; for (CieRecord &cie : isec.file.cies) { u64 offset = 0; if (cie.offset == cie.leader_offset) { if (contains(cie.contents, section_begin + offset)) { u64 cie_addr = shdr.sh_addr + cie.offset; u64 addend = sym.value - offset; return cie_addr + addend; } offset += cie.contents.size(); } for (FdeRecord &fde : cie.fdes) { if (contains(fde.contents, section_begin + offset)) { if (!fde.is_alive) return 0; u64 fde_addr = shdr.sh_addr + cie.offset + offset; u64 addend = sym.value - offset; return fde_addr + addend; } offset += fde.contents.size(); } } Fatal() << isec.file << ": .eh_frame has bad symbol: " << sym; } void CopyrelSection::add_symbol(Symbol *sym) { assert(!config.shared); assert(sym->file->is_dso); if (sym->has_copyrel) return; shdr.sh_size = align_to(shdr.sh_size, shdr.sh_addralign); sym->value = shdr.sh_size; sym->has_copyrel = true; shdr.sh_size += sym->esym->st_size; symbols.push_back(sym); out::dynsym->add_symbol(sym); } void VersymSection::update_shdr() { shdr.sh_size = contents.size() * sizeof(contents[0]); shdr.sh_link = out::dynsym->shndx; } void VersymSection::copy_buf() { write_vector(out::buf + shdr.sh_offset, contents); } void VerneedSection::update_shdr() { shdr.sh_size = contents.size(); shdr.sh_link = out::dynstr->shndx; } void VerneedSection::copy_buf() { write_vector(out::buf + shdr.sh_offset, contents); } void VerdefSection::update_shdr() { shdr.sh_size = contents.size(); shdr.sh_link = out::dynstr->shndx; } void VerdefSection::copy_buf() { write_vector(out::buf + shdr.sh_offset, contents); } void BuildIdSection::update_shdr() { shdr.sh_size = HEADER_SIZE + config.build_id.size(); } void BuildIdSection::copy_buf() { u32 *base = (u32 *)(out::buf + shdr.sh_offset); memset(base, 0, shdr.sh_size); base[0] = 4; // Name size base[1] = config.build_id.size(); // Hash size base[2] = NT_GNU_BUILD_ID; // Type memcpy(base + 3, "GNU", 4); // Name string } static void compute_sha256(u8 *buf, i64 size, u8 *digest) { i64 shard_size = 1024 * 1024; i64 num_shards = size / shard_size + 1; std::vector shards(num_shards * SHA256_SIZE); tbb::parallel_for((i64)0, num_shards, [&](i64 i) { u8 *begin = buf + shard_size * i; i64 sz = (i < num_shards - 1) ? shard_size : (size % shard_size); SHA256(begin, sz, shards.data() + i * SHA256_SIZE); }); SHA256(shards.data(), shards.size(), digest); } void BuildIdSection::write_buildid(i64 filesize) { switch (config.build_id.kind) { case BuildId::HEX: write_vector(out::buf + shdr.sh_offset + HEADER_SIZE, config.build_id.value); return; case BuildId::HASH: { // Modern x86 processors have purpose-built instructions to accelerate // SHA256 computation, and SHA256 outperforms MD5 on such computers. // So, we always compute SHA256 and truncate it if smaller digest was // requested. u8 digest[SHA256_SIZE]; assert(config.build_id.size() <= SHA256_SIZE); compute_sha256(out::buf, filesize, digest); memcpy(out::buf + shdr.sh_offset + HEADER_SIZE, digest, config.build_id.size()); return; } case BuildId::UUID: if (!RAND_bytes(out::buf + shdr.sh_offset + HEADER_SIZE, config.build_id.size())) Fatal() << "RAND_bytes failed"; return; } unreachable(); }