#include "mold.h" #include InputChunk::InputChunk(ObjectFile *file, const ElfShdr &shdr, std::string_view name) : file(file), shdr(shdr), name(name), output_section(OutputSection::get_instance(name, shdr.sh_type, shdr.sh_flags)) {} std::string_view InputChunk::get_contents() const { return file->get_string(shdr); } static std::string rel_to_string(u64 r_type) { switch (r_type) { case R_X86_64_NONE: return "R_X86_64_NONE"; case R_X86_64_8: return "R_X86_64_8"; case R_X86_64_16: return "R_X86_64_16"; case R_X86_64_32: return "R_X86_64_32"; case R_X86_64_32S: return "R_X86_64_32S"; case R_X86_64_64: return "R_X86_64_64"; case R_X86_64_PC8: return "R_X86_64_PC8"; case R_X86_64_PC16: return "R_X86_64_PC16"; case R_X86_64_PC32: return "R_X86_64_PC32"; case R_X86_64_PC64: return "R_X86_64_PC64"; case R_X86_64_GOT32: return "R_X86_64_GOT32"; case R_X86_64_GOTPC32: return "R_X86_64_GOTPC32"; case R_X86_64_GOTPCREL: return "R_X86_64_GOTPCREL"; case R_X86_64_GOTPCRELX: return "R_X86_64_GOTPCRELX"; case R_X86_64_REX_GOTPCRELX: return "R_X86_64_REX_GOTPCRELX"; case R_X86_64_PLT32: return "R_X86_64_PLT32"; case R_X86_64_TLSGD: return "R_X86_64_TLSGD"; case R_X86_64_TLSLD: return "R_X86_64_TLSLD"; case R_X86_64_TPOFF32: return "R_X86_64_TPOFF32"; case R_X86_64_DTPOFF32: return "R_X86_64_DTPOFF32"; case R_X86_64_TPOFF64: return "R_X86_64_TPOFF64"; case R_X86_64_DTPOFF64: return "R_X86_64_DTPOFF64"; case R_X86_64_GOTTPOFF: return "R_X86_64_GOTTPOFF"; } unreachable(); } static void overflow_check(InputSection *sec, Symbol &sym, u64 r_type, u64 val) { switch (r_type) { case R_X86_64_8: if (val != (u8)val) Error() << *sec << ": relocation " << rel_to_string(r_type) << " against " << sym.name << " out of range: " << val << " is not in [0, 255]"; return; case R_X86_64_PC8: if (val != (i8)val) Error() << *sec << ": relocation " << rel_to_string(r_type) << " against " << sym.name << " out of range: " << (i64)val << " is not in [-128, 127]"; return; case R_X86_64_16: if (val != (u16)val) Error() << *sec << ": relocation " << rel_to_string(r_type) << " against " << sym.name << " out of range: " << val << " is not in [0, 65535]"; return; case R_X86_64_PC16: if (val != (i16)val) Error() << *sec << ": relocation " << rel_to_string(r_type) << " against " << sym.name << " out of range: " << (i64)val << " is not in [-32768, 32767]"; return; case R_X86_64_32: if (val != (u32)val) Error() << *sec << ": relocation " << rel_to_string(r_type) << " against " << sym.name << " out of range: " << val << " is not in [0, 4294967296]"; return; case R_X86_64_32S: case R_X86_64_PC32: case R_X86_64_GOT32: case R_X86_64_GOTPC32: case R_X86_64_GOTPCREL: case R_X86_64_GOTPCRELX: case R_X86_64_REX_GOTPCRELX: case R_X86_64_PLT32: case R_X86_64_TLSGD: case R_X86_64_TLSLD: case R_X86_64_TPOFF32: case R_X86_64_DTPOFF32: case R_X86_64_GOTTPOFF: if (val != (i32)val) Error() << *sec << ": relocation " << rel_to_string(r_type) << " against " << sym.name << " out of range: " << (i64)val << " is not in [-2147483648, 2147483647]"; return; case R_X86_64_NONE: case R_X86_64_64: case R_X86_64_PC64: case R_X86_64_TPOFF64: case R_X86_64_DTPOFF64: return; } unreachable(); } static void write_val(u64 r_type, u8 *loc, u64 val) { switch (r_type) { case R_X86_64_NONE: return; case R_X86_64_8: case R_X86_64_PC8: *loc = val; return; case R_X86_64_16: case R_X86_64_PC16: *(u16 *)loc = val; return; case R_X86_64_32: case R_X86_64_32S: case R_X86_64_PC32: case R_X86_64_GOT32: case R_X86_64_GOTPC32: case R_X86_64_GOTPCREL: case R_X86_64_GOTPCRELX: case R_X86_64_REX_GOTPCRELX: case R_X86_64_PLT32: case R_X86_64_TLSGD: case R_X86_64_TLSLD: case R_X86_64_TPOFF32: case R_X86_64_DTPOFF32: case R_X86_64_GOTTPOFF: *(u32 *)loc = val; return; case R_X86_64_64: case R_X86_64_PC64: case R_X86_64_TPOFF64: case R_X86_64_DTPOFF64: *(u64 *)loc = val; return; } unreachable(); } void InputSection::copy_buf() { if (shdr.sh_type == SHT_NOBITS || shdr.sh_size == 0) return; // Copy data u8 *base = out::buf + output_section->shdr.sh_offset + offset; std::string_view contents = get_contents(); memcpy(base, contents.data(), contents.size()); // Apply relocations if (shdr.sh_flags & SHF_ALLOC) apply_reloc_alloc(base); else apply_reloc_nonalloc(base); } // Apply relocations to SHF_ALLOC sections (i.e. sections that are // mapped to memory at runtime) based on the result of // scan_relocations(). void InputSection::apply_reloc_alloc(u8 *base) { i64 ref_idx = 0; ElfRela *dynrel = nullptr; if (out::reldyn) dynrel = (ElfRela *)(out::buf + out::reldyn->shdr.sh_offset + file->reldyn_offset + reldyn_offset); for (i64 i = 0; i < rels.size(); i++) { const ElfRela &rel = rels[i]; Symbol &sym = *file->symbols[rel.r_sym]; u8 *loc = base + rel.r_offset; const SectionFragmentRef *ref = nullptr; if (has_fragments[i]) ref = &rel_fragments[ref_idx++]; auto write = [&](u64 val) { overflow_check(this, sym, rel.r_type, val); write_val(rel.r_type, loc, val); }; #define S (ref ? ref->frag->get_addr() \ : (sym.plt_idx == -1 ? sym.get_addr() : sym.get_plt_addr())) #define A (ref ? ref->addend : rel.r_addend) #define P (output_section->shdr.sh_addr + offset + rel.r_offset) #define G (sym.get_got_addr() - out::got->shdr.sh_addr) #define GOT out::got->shdr.sh_addr switch (rel_types[i]) { case R_NONE: break; case R_ABS: write(S + A); break; case R_ABS_DYN: write(S + A); *dynrel++ = {P, R_X86_64_RELATIVE, 0, (i64)(S + A)}; break; case R_DYN: *dynrel++ = {P, R_X86_64_64, sym.dynsym_idx, A}; break; case R_PC: write(S + A - P); break; case R_GOT: write(G + A); break; case R_GOTPC: write(GOT + A - P); break; case R_GOTPCREL: write(G + GOT + A - P); break; case R_TLSGD: write(sym.get_tlsgd_addr() + A - P); break; case R_TLSGD_RELAX_LE: { // Relax GD to LE static const u8 insn[] = { 0x64, 0x48, 0x8b, 0x04, 0x25, 0, 0, 0, 0, // mov %fs:0, %rax 0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff, %rax }; memcpy(loc - 4, insn, sizeof(insn)); *(u32 *)(loc + 8) = S - out::tls_end + A + 4; i++; break; } case R_TLSLD: write(out::got->get_tlsld_addr() + A - P); break; case R_TLSLD_RELAX_LE: { // Relax LD to LE static const u8 insn[] = { // mov %fs:0, %rax 0x66, 0x66, 0x66, 0x64, 0x48, 0x8b, 0x04, 0x25, 0, 0, 0, 0, }; memcpy(loc - 3, insn, sizeof(insn)); i++; break; } case R_DTPOFF: write(S + A - out::tls_begin); break; case R_TPOFF: write(S + A - out::tls_end); break; case R_GOTTPOFF: write(sym.get_gottpoff_addr() + A - P); break; default: unreachable(); } #undef S #undef A #undef P #undef G #undef GOT } } // This function is responsible for applying relocations against // non-SHF_ALLOC sections (i.e. sections that are not mapped to memory // at runtime). // // Relocations against non-SHF_ALLOC sections are much easier to // handle than that against SHF_ALLOC sections. It is because, since // they are not mapped to memory, they don't contain any variable or // function and never need PLT or GOT. Non-SHF_ALLOC sections are // mostly debug info sections. // // Relocations against non-SHF_ALLOC sections are not scanned by // scan_relocations. void InputSection::apply_reloc_nonalloc(u8 *base) { static Counter counter("reloc_nonalloc"); counter.inc(rels.size()); i64 ref_idx = 0; for (i64 i = 0; i < rels.size(); i++) { const ElfRela &rel = rels[i]; Symbol &sym = *file->symbols[rel.r_sym]; if (!sym.file || sym.is_placeholder) { Error() << "undefined symbol: " << *file << ": " << sym.name; continue; } const SectionFragmentRef *ref = nullptr; if (has_fragments[i]) ref = &rel_fragments[ref_idx++]; u8 *loc = base + rel.r_offset; switch (rel.r_type) { case R_X86_64_NONE: break; case R_X86_64_8: case R_X86_64_16: case R_X86_64_32: case R_X86_64_32S: case R_X86_64_64: { u64 val = ref ? ref->frag->get_addr() : sym.get_addr(); overflow_check(this, sym, rel.r_type, val); write_val(rel.r_type, loc, val); break; } case R_X86_64_DTPOFF64: write_val(rel.r_type, loc, sym.get_addr() + rel.r_addend - out::tls_begin); break; case R_X86_64_PC8: case R_X86_64_PC16: case R_X86_64_PC32: case R_X86_64_PC64: case R_X86_64_GOT32: case R_X86_64_GOTPC32: case R_X86_64_GOTPCREL: case R_X86_64_GOTPCRELX: case R_X86_64_REX_GOTPCRELX: case R_X86_64_PLT32: case R_X86_64_TLSGD: case R_X86_64_TLSLD: case R_X86_64_DTPOFF32: case R_X86_64_TPOFF32: case R_X86_64_TPOFF64: case R_X86_64_GOTTPOFF: Error() << *this << ": invalid relocation for non-allocated sections: " << rel.r_type; break; default: Error() << *this << ": unknown relocation: " << rel.r_type; } } } // Linker has to create data structures in an output file to apply // some type of relocations. For example, if a relocation refers a GOT // or a PLT entry of a symbol, linker has to create an entry in .got // or in .plt for that symbol. In order to fix the file layout, we // need to scan relocations. void InputSection::scan_relocations() { if (!(shdr.sh_flags & SHF_ALLOC)) return; static Counter counter("reloc_alloc"); counter.inc(rels.size()); this->reldyn_offset = file->num_dynrel * sizeof(ElfRela); this->rel_types.resize(rels.size()); // Scan relocations for (i64 i = 0; i < rels.size(); i++) { const ElfRela &rel = rels[i]; Symbol &sym = *file->symbols[rel.r_sym]; bool is_readonly = !(shdr.sh_flags & SHF_WRITE); bool is_code = (sym.st_type == STT_FUNC); if (!sym.file || sym.is_placeholder) { Error() << "undefined symbol: " << *file << ": " << sym.name; continue; } auto report_error = [&]() { Error() << *this << ": " << rel_to_string(rel.r_type) << " relocation against symbol `" << sym.name << "' can not be used; recompile with -fPIE"; }; switch (rel.r_type) { case R_X86_64_NONE: rel_types[i] = R_NONE; break; case R_X86_64_8: case R_X86_64_16: case R_X86_64_32: case R_X86_64_32S: if (config.pie && sym.is_relative()) report_error(); if (sym.is_imported) sym.flags |= is_code ? NEEDS_PLT : NEEDS_COPYREL; rel_types[i] = R_ABS; break; case R_X86_64_64: if (config.pie) { if (sym.is_imported) { if (is_readonly) report_error(); sym.flags |= NEEDS_DYNSYM; rel_types[i] = R_DYN; file->num_dynrel++; } else if (sym.is_relative()) { if (is_readonly) report_error(); rel_types[i] = R_ABS_DYN; file->num_dynrel++; } else { rel_types[i] = R_ABS; } } else { if (sym.is_imported) sym.flags |= is_code ? NEEDS_PLT : NEEDS_COPYREL; rel_types[i] = R_ABS; } break; case R_X86_64_PC8: case R_X86_64_PC16: case R_X86_64_PC32: case R_X86_64_PC64: if (sym.is_imported) sym.flags |= is_code ? NEEDS_PLT : NEEDS_COPYREL; rel_types[i] = R_PC; break; case R_X86_64_GOT32: sym.flags |= NEEDS_GOT; rel_types[i] = R_GOT; break; case R_X86_64_GOTPC32: sym.flags |= NEEDS_GOT; rel_types[i] = R_GOTPC; break; case R_X86_64_GOTPCREL: case R_X86_64_GOTPCRELX: case R_X86_64_REX_GOTPCRELX: sym.flags |= NEEDS_GOT; rel_types[i] = R_GOTPCREL; break; case R_X86_64_PLT32: if (sym.is_imported || sym.st_type == STT_GNU_IFUNC) sym.flags |= NEEDS_PLT; rel_types[i] = R_PC; break; case R_X86_64_TLSGD: if (i + 1 == rels.size() || rels[i + 1].r_type != R_X86_64_PLT32) Error() << *this << ": TLSGD reloc not followed by PLT32"; if (config.relax && !sym.is_imported) { rel_types[i] = R_TLSGD_RELAX_LE; i++; } else { sym.flags |= NEEDS_TLSGD; sym.flags |= NEEDS_DYNSYM; rel_types[i] = R_TLSGD; } break; case R_X86_64_TLSLD: if (i + 1 == rels.size() || rels[i + 1].r_type != R_X86_64_PLT32) Error() << *this << ": TLSLD reloc not followed by PLT32"; if (sym.is_imported) Error() << *this << ": TLSLD reloc refers external symbol " << sym.name; if (config.relax) { rel_types[i] = R_TLSLD_RELAX_LE; i++; } else { sym.flags |= NEEDS_TLSLD; rel_types[i] = R_TLSLD; } break; case R_X86_64_DTPOFF32: case R_X86_64_DTPOFF64: if (sym.is_imported) Error() << *this << ": DTPOFF reloc refers external symbol " << sym.name; rel_types[i] = config.relax ? R_TPOFF : R_DTPOFF; break; case R_X86_64_TPOFF32: case R_X86_64_TPOFF64: rel_types[i] = R_TPOFF; break; case R_X86_64_GOTTPOFF: sym.flags |= NEEDS_GOTTPOFF; rel_types[i] = R_GOTTPOFF; break; default: Error() << *this << ": unknown relocation: " << rel.r_type; } } } void InputSection::kill() { is_alive = false; for (FdeRecord &fde : fdes) fde.is_alive = false; file->sections[section_idx] = nullptr; } static size_t find_null(std::string_view data, u64 entsize) { if (entsize == 1) return data.find('\0'); for (i64 i = 0; i <= data.size() - entsize; i += entsize) if (data.substr(i, i + entsize).find_first_not_of('\0') == std::string_view::npos) return i; return std::string_view::npos; } // Mergeable sections (sections with SHF_MERGE bit) typically contain // string literals. Linker is expected to split the section contents // into null-terminated strings, merge them with mergeable strings // from other object files, and emit uniquified strings to an output // file. // // This mechanism reduces the size of an output file. If two source // files happen to contain the same string literal, the output will // contain only a single copy of it. // // It is less common than string literals, but mergeable sections can // contain fixed-sized read-only records too. // // This function splits the section contents into small pieces that we // call "section fragments". Section fragment is a unit of merging. // // We do not support mergeable sections that have relocations. MergeableSection::MergeableSection(InputSection *isec) : InputChunk(isec->file, isec->shdr, isec->name), parent(*MergedSection::get_instance(isec->name, isec->shdr.sh_type, isec->shdr.sh_flags)) { std::string_view data = isec->get_contents(); const char *begin = data.data(); u64 entsize = isec->shdr.sh_entsize; static_assert(sizeof(SectionFragment::alignment) == 2); if (isec->shdr.sh_addralign >= (1 << 16)) Fatal() << *isec << ": alignment too large"; if (isec->shdr.sh_flags & SHF_STRINGS) { while (!data.empty()) { size_t end = find_null(data, entsize); if (end == std::string_view::npos) Error() << *this << ": string is not null terminated"; std::string_view substr = data.substr(0, end + entsize); data = data.substr(end + entsize); SectionFragment *frag = parent.insert(substr, isec->shdr.sh_addralign); fragments.push_back(frag); frag_offsets.push_back(substr.data() - begin); } } else { if (data.size() % entsize) Fatal() << *isec << ": section size is not multiple of sh_entsize"; while (!data.empty()) { std::string_view substr = data.substr(0, entsize); data = data.substr(entsize); SectionFragment *frag = parent.insert(substr, isec->shdr.sh_addralign); fragments.push_back(frag); frag_offsets.push_back(substr.data() - begin); } } static Counter counter("string_fragments"); counter.inc(fragments.size()); }