#include "mold.h" #include #include #include #include #include #include #include MemoryMappedFile *MemoryMappedFile::open(std::string path) { struct stat st; if (stat(path.c_str(), &st) == -1) return nullptr; u64 mtime = (u64)st.st_mtim.tv_sec * 1000000000 + st.st_mtim.tv_nsec; return new MemoryMappedFile(path, nullptr, st.st_size, mtime); } MemoryMappedFile *MemoryMappedFile::must_open(std::string path) { if (MemoryMappedFile *mb = MemoryMappedFile::open(path)) return mb; Error() << "cannot open " << path; } u8 *MemoryMappedFile::data() { if (data_) return data_; std::lock_guard lock(mu); if (data_) return data_; int fd = ::open(name.c_str(), O_RDONLY); if (fd == -1) Error() << name << ": cannot open: " << strerror(errno); data_ = (u8 *)mmap(nullptr, size_, PROT_READ, MAP_PRIVATE, fd, 0); if (data_ == MAP_FAILED) Error() << name << ": mmap failed: " << strerror(errno); close(fd); return data_; } MemoryMappedFile *MemoryMappedFile::slice(std::string name, u64 start, u64 size) { MemoryMappedFile *mb = new MemoryMappedFile(name, data_ + start, size); mb->parent = this; return mb; } InputFile::InputFile(MemoryMappedFile *mb) : mb(mb), name(mb->name), ehdr(*(ElfEhdr *)mb->data()), is_dso(ehdr.e_type == ET_DYN) { if (mb->size() < sizeof(ElfEhdr)) Error() << *this << ": file too small"; if (memcmp(mb->data(), "\177ELF", 4)) Error() << *this << ": not an ELF file"; u8 *sh_begin = mb->data() + ehdr.e_shoff; u8 *sh_end = sh_begin + ehdr.e_shnum * sizeof(ElfShdr); if (mb->data() + mb->size() < sh_end) Error() << *this << ": e_shoff or e_shnum corrupted: " << mb->size() << " " << ehdr.e_shnum; elf_sections = {(ElfShdr *)sh_begin, (ElfShdr *)sh_end}; } std::string_view InputFile::get_string(const ElfShdr &shdr) { u8 *begin = mb->data() + shdr.sh_offset; u8 *end = begin + shdr.sh_size; if (mb->data() + mb->size() < end) Error() << *this << ": shdr corrupted"; return {(char *)begin, (char *)end}; } std::string_view InputFile::get_string(u32 idx) { if (elf_sections.size() <= idx) Error() << *this << ": invalid section index"; return get_string(elf_sections[idx]); } template std::span InputFile::get_data(const ElfShdr &shdr) { std::string_view view = get_string(shdr); if (view.size() % sizeof(T)) Error() << *this << ": corrupted section"; return {(T *)view.data(), view.size() / sizeof(T)}; } template std::span InputFile::get_data(u32 idx) { if (elf_sections.size() <= idx) Error() << *this << ": invalid section index"; return get_data(elf_sections[idx]); } ElfShdr *InputFile::find_section(u32 type) { for (ElfShdr &sec : elf_sections) if (sec.sh_type == type) return &sec; return nullptr; } ObjectFile::ObjectFile(MemoryMappedFile *mb, std::string archive_name) : InputFile(mb), archive_name(archive_name), is_in_archive(archive_name != "") { is_alive = (archive_name == ""); } void ObjectFile::initialize_sections() { // Read sections for (int i = 0; i < elf_sections.size(); i++) { const ElfShdr &shdr = elf_sections[i]; if ((shdr.sh_flags & SHF_EXCLUDE) && !(shdr.sh_flags & SHF_ALLOC)) continue; switch (shdr.sh_type) { case SHT_GROUP: { // Get the signature of this section group. if (shdr.sh_info >= elf_syms.size()) Error() << *this << ": invalid symbol index"; const ElfSym &sym = elf_syms[shdr.sh_info]; std::string_view signature = symbol_strtab.data() + sym.st_name; // Get comdat group members. std::span entries = get_data(shdr); if (entries.empty()) Error() << *this << ": empty SHT_GROUP"; if (entries[0] == 0) continue; if (entries[0] != GRP_COMDAT) Error() << *this << ": unsupported SHT_GROUP format"; static ConcurrentMap map; ComdatGroup *group = map.insert(signature, ComdatGroup(nullptr, 0)); comdat_groups.push_back({group, entries}); static Counter counter("comdats"); counter.inc(); break; } case SHT_SYMTAB_SHNDX: Error() << *this << ": SHT_SYMTAB_SHNDX section is not supported"; break; case SHT_SYMTAB: case SHT_STRTAB: case SHT_REL: case SHT_RELA: case SHT_NULL: break; default: { static Counter counter("regular_sections"); counter.inc(); std::string_view shstrtab = get_string(ehdr.e_shstrndx); std::string_view name = shstrtab.data() + shdr.sh_name; this->sections[i] = new InputSection(this, shdr, name); break; } } } // Attach relocation sections to their target sections. for (const ElfShdr &shdr : elf_sections) { if (shdr.sh_type != SHT_RELA) continue; if (shdr.sh_info >= sections.size()) Error() << *this << ": invalid relocated section index: " << (u32)shdr.sh_info; InputSection *target = sections[shdr.sh_info]; if (target) { target->rels = get_data(shdr); target->rel_types.resize(target->rels.size()); target->has_rel_piece.resize(target->rels.size()); if (target->shdr.sh_flags & SHF_ALLOC) { static Counter counter("relocs_alloc"); counter.inc(target->rels.size()); } } } // Set is_comdat_member bits. for (auto &pair : comdat_groups) { std::span entries = pair.second; for (u32 i : entries) if (this->sections[i]) this->sections[i]->is_comdat_member = true; } } static bool should_write_symtab(const ElfSym &esym, std::string_view name) { if (config.discard_all || config.strip_all) return false; if (esym.st_type == STT_SECTION) return false; if (config.discard_locals && name.starts_with(".L")) return false; return true; } void ObjectFile::initialize_symbols() { if (!symtab_sec) return; static Counter counter("all_syms"); counter.inc(elf_syms.size()); symbols.reserve(elf_syms.size()); local_symbols.reserve(first_global); sym_pieces.resize(elf_syms.size() - first_global); // First symbol entry is always null local_symbols.push_back({}); symbols.push_back(&local_symbols.back()); // Initialize local symbols for (int i = 1; i < first_global; i++) { const ElfSym &esym = elf_syms[i]; local_symbols.push_back({}); Symbol &sym = local_symbols.back(); sym.name = symbol_strtab.data() + esym.st_name; sym.file = this; sym.type = esym.st_type; sym.value = esym.st_value; sym.esym = &esym; sym.write_symtab = should_write_symtab(esym, sym.name); if (!esym.is_abs()) { if (esym.is_common()) Error() << "common local symbol?"; sym.input_section = sections[esym.st_shndx]; } symbols.push_back(&local_symbols.back()); if (sym.write_symtab) { strtab_size += sym.name.size() + 1; local_symtab_size += sizeof(ElfSym); } } // Initialize global symbols for (int i = first_global; i < elf_syms.size(); i++) { const ElfSym &esym = elf_syms[i]; std::string_view name = symbol_strtab.data() + esym.st_name; int pos = name.find('@'); if (pos != std::string_view::npos) name = name.substr(0, pos); symbols.push_back(Symbol::intern(name)); if (esym.is_common()) has_common_symbol = true; } } static int binary_search(std::span span, u32 val) { if (val < span[0]) return -1; int ret = 0; while (span.size() > 1) { u32 mid = span.size() / 2; if (val < span[mid]) { span = span.subspan(0, mid); } else { span = span.subspan(mid); ret += mid; } } return ret; } static bool is_mergeable(const ElfShdr &shdr) { return (shdr.sh_flags & SHF_MERGE) && (shdr.sh_flags & SHF_STRINGS) && shdr.sh_entsize == 1; } void ObjectFile::initialize_mergeable_sections() { mergeable_sections.resize(sections.size()); for (int i = 0; i < sections.size(); i++) { InputSection *isec = sections[i]; if (isec && is_mergeable(isec->shdr)) { mergeable_sections[i] = new MergeableSection(isec, get_string(isec->shdr)); sections[i] = nullptr; } } // Initialize rel_pieces for (InputSection *isec : sections) { if (!isec || isec->rels.empty()) continue; for (int i = 0; i < isec->rels.size(); i++) { const ElfRela &rel = isec->rels[i]; switch (rel.r_type) { case R_X86_64_64: case R_X86_64_PC32: case R_X86_64_32: case R_X86_64_32S: case R_X86_64_16: case R_X86_64_PC16: case R_X86_64_8: case R_X86_64_PC8: if (rel.r_sym >= this->first_global) continue; const ElfSym &esym = elf_syms[rel.r_sym]; if (esym.st_type != STT_SECTION) continue; MergeableSection *m = mergeable_sections[esym.st_shndx]; if (!m) continue; u32 offset = esym.st_value + rel.r_addend; int idx = binary_search(m->piece_offsets, offset); if (idx == -1) Error() << *this << ": bad relocation at " << rel.r_sym; isec->rel_pieces.push_back( {m->pieces[idx], (i32)(offset - m->piece_offsets[idx])}); isec->has_rel_piece[i] = true; } } } // Initialize sym_pieces for (int i = 0; i < elf_syms.size(); i++) { const ElfSym &esym = elf_syms[i]; if (esym.is_abs() || esym.is_common()) continue; MergeableSection *m = mergeable_sections[esym.st_shndx]; if (!m) continue; int idx = binary_search(m->piece_offsets, esym.st_value); if (idx == -1) Error() << *this << ": bad symbol value"; if (i < first_global) { local_symbols[i].piece_ref.piece = m->pieces[idx]; } else { sym_pieces[i - first_global].piece = m->pieces[idx]; sym_pieces[i - first_global].addend = esym.st_value - m->piece_offsets[idx]; } } erase(mergeable_sections, [](MergeableSection *m) { return !m; }); } void ObjectFile::parse() { sections.resize(elf_sections.size()); symtab_sec = find_section(SHT_SYMTAB); if (symtab_sec) { first_global = symtab_sec->sh_info; elf_syms = get_data(*symtab_sec); symbol_strtab = get_string(symtab_sec->sh_link); } initialize_sections(); initialize_symbols(); initialize_mergeable_sections(); } // Symbols with higher priorities overwrites symbols with lower priorities. // Here is the list of priorities, from the highest to the lowest. // // 1. Strong defined symbol // 2. Weak defined symbol // 3. Defined symbol in an archive member // 4. Unclaimed (nonexistent) symbol // // Ties are broken by file priority. static u64 get_rank(InputFile *file, const ElfSym &esym, InputSection *isec) { if (isec && isec->is_comdat_member) return file->priority; if (esym.is_undef()) { assert(esym.st_bind == STB_WEAK); return ((u64)2 << 32) + file->priority; } if (esym.st_bind == STB_WEAK) return ((u64)1 << 32) + file->priority; return file->priority; } static u64 get_rank(const Symbol &sym) { if (!sym.file) return (u64)4 << 32; if (sym.is_placeholder) return ((u64)3 << 32) + sym.file->priority; return get_rank(sym.file, *sym.esym, sym.input_section); } void ObjectFile::maybe_override_symbol(Symbol &sym, int symidx) { InputSection *isec = nullptr; const ElfSym &esym = elf_syms[symidx]; if (!esym.is_abs() && !esym.is_common()) isec = sections[esym.st_shndx]; std::lock_guard lock(sym.mu); u64 new_rank = get_rank(this, esym, isec); u64 existing_rank = get_rank(sym); if (new_rank < existing_rank) { sym.file = this; sym.input_section = isec; sym.piece_ref = sym_pieces[symidx - first_global]; sym.value = esym.st_value; sym.ver_idx = 0; sym.type = esym.st_type; sym.esym = &esym; sym.is_placeholder = false; sym.is_weak = (esym.st_bind == STB_WEAK); sym.is_imported = false; if (UNLIKELY(sym.traced)) SyncOut() << "trace: " << sym.file << (sym.is_weak ? ": weak definition of " : ": definition of ") << sym.name; } } void ObjectFile::resolve_symbols() { for (int i = first_global; i < symbols.size(); i++) { const ElfSym &esym = elf_syms[i]; if (!esym.is_defined()) continue; Symbol &sym = *symbols[i]; if (is_in_archive) { std::lock_guard lock(sym.mu); bool is_new = !sym.file; bool tie_but_higher_priority = sym.is_placeholder && this->priority < sym.file->priority; if (is_new || tie_but_higher_priority) { sym.file = this; sym.is_placeholder = true; if (UNLIKELY(sym.traced)) SyncOut() << "trace: " << sym.file << ": lazy definition of " << sym.name; } } else { maybe_override_symbol(sym, i); } } } std::vector ObjectFile::mark_live_objects() { std::vector vec; assert(is_alive); for (int i = first_global; i < symbols.size(); i++) { const ElfSym &esym = elf_syms[i]; Symbol &sym = *symbols[i]; if (esym.is_defined()) { if (is_in_archive) maybe_override_symbol(sym, i); continue; } if (UNLIKELY(sym.traced)) SyncOut() << "trace: " << *this << ": reference to " << sym.name; if (esym.st_bind != STB_WEAK && sym.file && !sym.file->is_alive.exchange(true)) { if (!sym.file->is_dso) vec.push_back((ObjectFile *)sym.file); if (UNLIKELY(sym.traced)) SyncOut() << "trace: " << *this << " keeps " << sym.file << " for " << sym.name; } } return vec; } void ObjectFile::handle_undefined_weak_symbols() { if (!is_alive) return; for (int i = first_global; i < symbols.size(); i++) { const ElfSym &esym = elf_syms[i]; Symbol &sym = *symbols[i]; if (esym.is_undef() && esym.st_bind == STB_WEAK) { std::lock_guard lock(sym.mu); bool is_new = !sym.file || sym.is_placeholder; bool tie_but_higher_priority = !is_new && sym.is_undef_weak && this->priority < sym.file->priority; if (is_new || tie_but_higher_priority) { sym.file = this; sym.input_section = nullptr; sym.value = 0; sym.esym = &esym; sym.is_placeholder = false; sym.is_undef_weak = true; sym.is_imported = false; if (UNLIKELY(sym.traced)) SyncOut() << "trace: " << *this << ": unresolved weak symbol " << sym.name; } } } } void ObjectFile::resolve_comdat_groups() { if (!is_alive) return; for (auto &pair : comdat_groups) { ComdatGroup *group = pair.first; ObjectFile *cur = group->file; while (!cur || cur->priority > this->priority) if (group->file.compare_exchange_weak(cur, this)) break; } } void ObjectFile::eliminate_duplicate_comdat_groups() { if (!is_alive) return; for (auto &pair : comdat_groups) { ComdatGroup *group = pair.first; if (group->file == this) continue; std::span entries = pair.second; for (u32 i : entries) { if (sections[i]) sections[i]->is_alive = false; sections[i] = nullptr; } static Counter counter("removed_comdat_mem"); counter.inc(entries.size()); } } void ObjectFile::convert_common_symbols() { if (!has_common_symbol) return; static OutputSection *bss = OutputSection::get_instance(".bss", SHT_NOBITS, SHF_WRITE | SHF_ALLOC); for (int i = first_global; i < elf_syms.size(); i++) { if (!elf_syms[i].is_common()) continue; Symbol *sym = symbols[i]; if (sym->file != this) continue; auto *shdr = new ElfShdr; memset(shdr, 0, sizeof(*shdr)); shdr->sh_flags = SHF_ALLOC; shdr->sh_type = SHT_NOBITS; shdr->sh_size = elf_syms[i].st_size; shdr->sh_addralign = 1; auto *isec = new InputSection(this, *shdr, ".bss"); isec->output_section = bss; sections.push_back(isec); sym->input_section = isec; sym->value = 0; } } static bool should_write_global_symtab(Symbol &sym) { return !config.strip_all && sym.esym->st_type != STT_SECTION; } void ObjectFile::compute_symtab() { for (int i = first_global; i < elf_syms.size(); i++) { const ElfSym &esym = elf_syms[i]; Symbol &sym = *symbols[i]; if (sym.file == this && should_write_global_symtab(sym)) { global_symtab_size += sizeof(ElfSym); strtab_size += sym.name.size() + 1; } } } void ObjectFile::write_symtab() { u8 *symtab_base = out::buf + out::symtab->shdr.sh_offset; u8 *strtab_base = out::buf + out::strtab->shdr.sh_offset; u32 symtab_off; u32 strtab_off = strtab_offset; auto write_sym = [&](u32 i) { Symbol &sym = *symbols[i]; ElfSym &esym = *(ElfSym *)(symtab_base + symtab_off); symtab_off += sizeof(ElfSym); esym = elf_syms[i]; esym.st_name = strtab_off; if (sym.type == STT_TLS) esym.st_value = sym.get_addr() - sym.input_section->output_section->shdr.sh_addr; else esym.st_value = sym.get_addr(); if (sym.input_section) esym.st_shndx = sym.input_section->output_section->shndx; else if (sym.shndx) esym.st_shndx = sym.shndx; else esym.st_shndx = SHN_ABS; write_string(strtab_base + strtab_off, sym.name); strtab_off += sym.name.size() + 1; }; symtab_off = local_symtab_offset; for (int i = 1; i < first_global; i++) if (symbols[i]->write_symtab) write_sym(i); symtab_off = global_symtab_offset; for (int i = first_global; i < elf_syms.size(); i++) if (symbols[i]->file == this && should_write_global_symtab(*symbols[i])) write_sym(i); } bool is_c_identifier(std::string_view name) { static std::regex re("[a-zA-Z_][a-zA-Z0-9_]*"); return std::regex_match(name.begin(), name.end(), re); } ObjectFile *ObjectFile::create_internal_file() { // Create a dummy object file. constexpr int bufsz = 256; u8 *buf = (u8 *)calloc(1, bufsz); memcpy(buf, "\177ELF", 4); MemoryMappedFile *mb = new MemoryMappedFile("", buf, bufsz); auto *obj = new ObjectFile(mb, ""); // Create linker-synthesized symbols. auto *elf_syms = new std::vector(1); obj->symbols.push_back(new Symbol); obj->first_global = 1; obj->is_alive = true; auto add = [&](std::string_view name, u8 visibility = STV_DEFAULT) { ElfSym esym = {}; esym.st_type = STT_NOTYPE; esym.st_shndx = SHN_ABS; esym.st_bind = STB_GLOBAL; esym.st_visibility = visibility; elf_syms->push_back(esym); Symbol *sym = Symbol::intern(name); obj->symbols.push_back(sym); return sym; }; out::__ehdr_start = add("__ehdr_start", STV_HIDDEN); out::__rela_iplt_start = add("__rela_iplt_start", STV_HIDDEN); out::__rela_iplt_end = add("__rela_iplt_end", STV_HIDDEN); out::__init_array_start = add("__init_array_start", STV_HIDDEN); out::__init_array_end = add("__init_array_end", STV_HIDDEN); out::__fini_array_start = add("__fini_array_start", STV_HIDDEN); out::__fini_array_end = add("__fini_array_end", STV_HIDDEN); out::__preinit_array_start = add("__preinit_array_start", STV_HIDDEN); out::__preinit_array_end = add("__preinit_array_end", STV_HIDDEN); out::_DYNAMIC = add("_DYNAMIC", STV_HIDDEN); out::_GLOBAL_OFFSET_TABLE_ = add("_GLOBAL_OFFSET_TABLE_", STV_HIDDEN); out::__bss_start = add("__bss_start", STV_HIDDEN); out::_end = add("_end", STV_HIDDEN); out::_etext = add("_etext", STV_HIDDEN); out::_edata = add("_edata", STV_HIDDEN); for (OutputChunk *chunk : out::chunks) { if (!is_c_identifier(chunk->name)) continue; auto *start = new std::string("__start_" + std::string(chunk->name)); auto *stop = new std::string("__stop_" + std::string(chunk->name)); add(*start, STV_HIDDEN); add(*stop, STV_HIDDEN); } obj->elf_syms = *elf_syms; obj->sym_pieces.resize(elf_syms->size() - obj->first_global); return obj; } std::ostream &operator<<(std::ostream &out, const InputFile &file) { if (file.is_dso) { out << file.name; return out; } ObjectFile *obj = (ObjectFile *)&file; if (obj->archive_name == "") out << obj->name; else out << obj->archive_name << ":(" << obj->name + ")"; return out; } std::string_view SharedFile::get_soname() { if (ElfShdr *sec = find_section(SHT_DYNAMIC)) for (ElfDyn &dyn : get_data(*sec)) if (dyn.d_tag == DT_SONAME) return std::string_view(symbol_strtab.data() + dyn.d_val); return name; } void SharedFile::parse() { symtab_sec = find_section(SHT_DYNSYM); if (!symtab_sec) return; symbol_strtab = get_string(symtab_sec->sh_link); soname = get_soname(); version_strings = read_verdef(); // Read a symbol table. int first_global = symtab_sec->sh_info; std::span esyms = get_data(*symtab_sec); std::span vers; if (ElfShdr *sec = find_section(SHT_GNU_VERSYM)) vers = get_data(*sec); std::vector> pairs; for (int i = first_global; i < esyms.size(); i++) { if (!esyms[i].is_defined()) continue; if (!vers.empty() && (vers[i] >> 15) == 1) continue; if (vers.empty()) pairs.push_back({&esyms[i], 1}); else pairs.push_back({&esyms[i], vers[i]}); } // Sort symbols by value for find_aliases(), as find_aliases() does // binary search on symbols. sort(pairs, [](const std::pair &a, const std::pair &b) { return a.first->st_value < b.first->st_value; }); elf_syms.reserve(pairs.size()); versyms.reserve(pairs.size()); symbols.reserve(pairs.size()); for (std::pair &x : pairs) { elf_syms.push_back(x.first); versyms.push_back(x.second); std::string_view name = symbol_strtab.data() + x.first->st_name; symbols.push_back(Symbol::intern(name)); } static Counter counter("dso_syms"); counter.inc(elf_syms.size()); } std::vector SharedFile::read_verdef() { ElfShdr *verdef_sec = find_section(SHT_GNU_VERDEF); if (!verdef_sec) return {}; std::string_view verdef = get_string(*verdef_sec); std::string_view strtab = get_string(verdef_sec->sh_link); std::vector ret(2); auto *ver = (ElfVerdef *)verdef.data(); for (;;) { if (ret.size() <= ver->vd_ndx) ret.resize(ver->vd_ndx + 1); ElfVerdaux *aux = (ElfVerdaux *)((u8 *)ver + ver->vd_aux); ret[ver->vd_ndx] = strtab.data() + aux->vda_name; if (!ver->vd_next) break; ver = (ElfVerdef *)((u8 *)ver + ver->vd_next); } return ret; } void SharedFile::resolve_symbols() { for (int i = 0; i < symbols.size(); i++) { Symbol &sym = *symbols[i]; const ElfSym &esym = *elf_syms[i]; std::lock_guard lock(sym.mu); u64 new_rank = get_rank(this, esym, nullptr); u64 existing_rank = get_rank(sym); if (new_rank < existing_rank) { sym.file = this; sym.input_section = nullptr; sym.piece_ref = {}; sym.value = esym.st_value; sym.ver_idx = versyms[i]; sym.type = (esym.st_type == STT_GNU_IFUNC) ? STT_FUNC : esym.st_type; sym.esym = &esym; sym.is_placeholder = false; sym.is_weak = (esym.st_bind == STB_WEAK); sym.is_imported = true; if (UNLIKELY(sym.traced)) SyncOut() << "trace: " << *sym.file << (sym.is_weak ? ": weak definition of " : ": definition of ") << sym.name; } } } std::span SharedFile::find_aliases(Symbol *sym) { assert(sym->file == this); auto [begin, end] = std::equal_range( symbols.begin(), symbols.end(), sym, [&](Symbol *a, Symbol *b) { return a->value < b->value; }); return {begin, end}; }