#include "mold.h" #include "llvm/BinaryFormat/Magic.h" #include "llvm/Option/ArgList.h" #include "llvm/Support/FileOutputBuffer.h" #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::ELF; using llvm::object::Archive; using llvm::opt::InputArgList; class MyTimer { public: MyTimer(StringRef name) { timer = new Timer(name, name); timer->startTimer(); } MyTimer(StringRef name, llvm::TimerGroup &tg) { timer = new Timer(name, name, tg); timer->startTimer(); } ~MyTimer() { timer->stopTimer(); } private: llvm::Timer *timer; }; llvm::TimerGroup parse_timer("parse", "parse"); llvm::TimerGroup before_copy_timer("before_copy", "before_copy"); llvm::TimerGroup copy_timer("copy", "copy"); // // Command-line option processing // enum { OPT_INVALID = 0, #define OPTION(_1, _2, ID, _4, _5, _6, _7, _8, _9, _10, _11, _12) OPT_##ID, #include "options.inc" #undef OPTION }; // Create prefix string literals used in Options.td #define PREFIX(NAME, VALUE) const char *const NAME[] = VALUE; #include "options.inc" #undef PREFIX // Create table mapping all options defined in Options.td static const llvm::opt::OptTable::Info opt_info[] = { #define OPTION(X1, X2, ID, KIND, GROUP, ALIAS, X7, X8, X9, X10, X11, X12) \ {X1, X2, X10, X11, OPT_##ID, llvm::opt::Option::KIND##Class, \ X9, X8, OPT_##GROUP, OPT_##ALIAS, X7, X12}, #include "options.inc" #undef OPTION }; class MyOptTable : llvm::opt::OptTable { public: MyOptTable() : OptTable(opt_info) {} InputArgList parse(int argc, char **argv); }; InputArgList MyOptTable::parse(int argc, char **argv) { unsigned missing_index = 0; unsigned missing_count = 0; SmallVector vec(argv, argv + argc); InputArgList args = this->ParseArgs(vec, missing_index, missing_count); if (missing_count) error(Twine(args.getArgString(missing_index)) + ": missing argument"); for (auto *arg : args.filtered(OPT_UNKNOWN)) error("unknown argument '" + arg->getAsString(args) + "'"); return args; } // // Main // static std::vector get_archive_members(MemoryBufferRef mb) { std::unique_ptr file = CHECK(Archive::create(mb), mb.getBufferIdentifier() + ": failed to parse archive"); std::vector vec; Error err = Error::success(); for (const Archive::Child &c : file->children(err)) { MemoryBufferRef mbref = CHECK(c.getMemoryBufferRef(), mb.getBufferIdentifier() + ": could not get the buffer for a child of the archive"); vec.push_back(mbref); } if (err) error(mb.getBufferIdentifier() + ": Archive::children failed: " + toString(std::move(err))); file.release(); // leak return vec; } static void read_file(std::vector &files, StringRef path) { int fd = open(path.str().c_str(), O_RDONLY); if (fd == -1) error("cannot open " + path); struct stat st; if (fstat(fd, &st) == -1) error(path + ": stat failed"); void *addr = mmap(nullptr, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0); if (addr == MAP_FAILED) error(path + ": mmap failed: " + strerror(errno)); close(fd); auto &mb = *new MemoryBufferRef(StringRef((char *)addr, st.st_size), path); switch (identify_magic(mb.getBuffer())) { case file_magic::archive: for (MemoryBufferRef member : get_archive_members(mb)) files.push_back(new ObjectFile(member, path)); break; case file_magic::elf_relocatable: case file_magic::elf_shared_object: files.push_back(new ObjectFile(mb, "")); break; default: error(path + ": unknown file type"); } } template static std::vector> split(const std::vector &input, int unit) { ArrayRef arr(input); std::vector> vec; while (arr.size() >= unit) { vec.push_back(arr.slice(0, unit)); arr = arr.slice(unit); } if (!arr.empty()) vec.push_back(arr); return vec; } static void resolve_symbols(std::vector &files) { MyTimer t("resolve_symbols", before_copy_timer); // Register defined symbols tbb::parallel_for_each(files, [](ObjectFile *file) { file->resolve_symbols(); }); // Mark archive members we include into the final output. std::vector root; for (ObjectFile *file : files) if (file->is_alive) root.push_back(file); tbb::parallel_do( root, [&](ObjectFile *file, tbb::parallel_do_feeder &feeder) { file->mark_live_archive_members(feeder); }); // Eliminate unused archive members. files.erase(std::remove_if(files.begin(), files.end(), [](ObjectFile *file){ return !file->is_alive; }), files.end()); // Convert weak symbols to absolute symbols with value 0. tbb::parallel_for_each(files, [](ObjectFile *file) { file->hanlde_undefined_weak_symbols(); }); } static void eliminate_comdats(std::vector &files) { MyTimer t("comdat", before_copy_timer); tbb::parallel_for_each(files, [](ObjectFile *file) { file->resolve_comdat_groups(); }); tbb::parallel_for_each(files, [](ObjectFile *file) { file->eliminate_duplicate_comdat_groups(); }); } static void handle_mergeable_strings(std::vector &files) { MyTimer t("resolve_strings", before_copy_timer); // Resolve mergeable string pieces tbb::parallel_for_each(files, [](ObjectFile *file) { for (MergeableSection &isec : file->mergeable_sections) { for (StringPieceRef &ref : isec.pieces) { MergeableSection *cur = ref.piece->isec; while (!cur || cur->file->priority > isec.file->priority) if (ref.piece->isec.compare_exchange_strong(cur, &isec)) break; } } }); // Calculate the total bytes of mergeable strings for each input section. tbb::parallel_for_each(files, [](ObjectFile *file) { for (MergeableSection &isec : file->mergeable_sections) { u32 offset = 0; for (StringPieceRef &ref : isec.pieces) { StringPiece &piece = *ref.piece; if (piece.isec == &isec && piece.output_offset == -1) { ref.piece->output_offset = offset; offset += ref.piece->data.size(); } } isec.size = offset; } }); // Assign each mergeable input section a unique index. for (ObjectFile *file : files) { for (MergeableSection &isec : file->mergeable_sections) { MergedSection &osec = isec.parent; isec.offset = osec.shdr.sh_size; osec.shdr.sh_size += isec.size; } } static Counter counter("merged_strings"); for (MergedSection *osec : MergedSection::instances) counter.inc(osec->map.size()); } // So far, each input section has a pointer to its corresponding // output section, but there's no reverse edge to get a list of // input sections from an output section. This function creates it. // // An output section may contain millions of input sections. // So, we append input sections to output sections in parallel. static void bin_sections(std::vector &files) { MyTimer t("bin_sections", before_copy_timer); int unit = (files.size() + 127) / 128; std::vector> slices = split(files, unit); int num_osec = OutputSection::instances.size(); std::vector>> groups(slices.size()); for (int i = 0; i < groups.size(); i++) groups[i].resize(num_osec); tbb::parallel_for(0, (int)slices.size(), [&](int i) { for (ObjectFile *file : slices[i]) { for (InputSection *isec : file->sections) { if (!isec) continue; OutputSection *osec = isec->output_section; groups[i][osec->idx].push_back(isec); } } }); std::vector sizes(num_osec); for (ArrayRef> group : groups) for (int i = 0; i < group.size(); i++) sizes[i] += group[i].size(); tbb::parallel_for(0, num_osec, [&](int j) { OutputSection::instances[j]->members.reserve(sizes[j]); for (int i = 0; i < groups.size(); i++) { std::vector §ions = OutputSection::instances[j]->members; sections.insert(sections.end(), groups[i][j].begin(), groups[i][j].end()); } }); } static void set_isec_offsets() { MyTimer t("isec_offsets", before_copy_timer); tbb::parallel_for_each(OutputSection::instances, [&](OutputSection *osec) { if (osec->members.empty()) return; std::vector> slices = split(osec->members, 100000); std::vector size(slices.size()); std::vector alignments(slices.size()); tbb::parallel_for(0, (int)slices.size(), [&](int i) { u64 off = 0; u32 align = 1; for (InputChunk *isec : slices[i]) { off = align_to(off, isec->shdr.sh_addralign); isec->offset = off; off += isec->shdr.sh_size; align = std::max(align, isec->shdr.sh_addralign); } size[i] = off; alignments[i] = align; }); u32 align = *std::max_element(alignments.begin(), alignments.end()); std::vector start(slices.size()); for (int i = 1; i < slices.size(); i++) start[i] = align_to(start[i - 1] + size[i - 1], align); tbb::parallel_for(1, (int)slices.size(), [&](int i) { for (InputChunk *isec : slices[i]) isec->offset += start[i]; }); osec->shdr.sh_size = start.back() + size.back(); osec->shdr.sh_addralign = align; }); } static void scan_rels(ArrayRef files) { MyTimer t("scan_rels", before_copy_timer); tbb::parallel_for_each(files, [&](ObjectFile *file) { file->scan_relocations(); }); for (ObjectFile *file : files) { file->got_offset = out::got->shdr.sh_size; out::got->shdr.sh_size += file->got_size; file->gotplt_offset = out::gotplt->shdr.sh_size; out::gotplt->shdr.sh_size += file->gotplt_size; file->plt_offset = out::plt->shdr.sh_size; out::plt->shdr.sh_size += file->plt_size; file->relplt_offset = out::relplt->shdr.sh_size; out::relplt->shdr.sh_size += file->relplt_size; if (out::dynsym) { file->dynsym_offset = out::dynsym->shdr.sh_size; out::dynsym->shdr.sh_size += file->dynsym_size; } if (out::dynstr) { file->dynstr_offset = out::dynstr->shdr.sh_size; out::dynstr->shdr.sh_size += file->dynstr_size; } } } static void assign_got_offsets(ArrayRef files) { MyTimer t("assign_got_offsets", before_copy_timer); tbb::parallel_for_each(files, [&](ObjectFile *file) { u32 got_offset = file->got_offset; u32 gotplt_offset = file->gotplt_offset; u32 plt_offset = file->plt_offset; u32 relplt_offset = file->relplt_offset; u32 dynsym_offset = file->dynsym_offset; for (Symbol *sym : file->symbols) { if (sym->file != file) continue; u8 flags = sym->flags.load(std::memory_order_relaxed); if (flags & Symbol::NEEDS_GOT) { sym->got_offset = got_offset; got_offset += GOT_SIZE; } if (flags & Symbol::NEEDS_GOTTP) { sym->gottp_offset = got_offset; got_offset += GOT_SIZE; } if (flags & Symbol::NEEDS_PLT) { // Write a .got.plt entry sym->gotplt_offset = gotplt_offset; gotplt_offset += GOT_SIZE; // Write a .plt entry sym->plt_offset = plt_offset; plt_offset += PLT_SIZE; // Write a .rela.dyn entry sym->relplt_offset = relplt_offset; relplt_offset += sizeof(ELF64LE::Rela); } if (flags & Symbol::NEEDS_DYNSYM) { sym->dynsym_offset = dynsym_offset; dynsym_offset += sizeof(ELF64LE::Sym); } } }); } static void write_got(u8 *buf, ArrayRef files) { MyTimer t("write_synthetic", copy_timer); u8 *got_buf = buf + out::got->shdr.sh_offset; u8 *plt_buf = buf + out::plt->shdr.sh_offset; u8 *relplt_buf = buf + out::relplt->shdr.sh_offset; u8 *dynsym_buf = buf + out::dynsym->shdr.sh_offset; u8 *dynstr_buf = buf + out::dynstr->shdr.sh_offset; memset(buf + out::gotplt->shdr.sh_offset, 0, out::gotplt->shdr.sh_size); tbb::parallel_for_each(files, [&](ObjectFile *file) { u32 dynstr_offset = file->dynstr_offset; for (Symbol *sym : file->symbols) { if (sym->file != file) continue; u8 flags = sym->flags.load(std::memory_order_relaxed); if (flags & Symbol::NEEDS_GOT) *(u64 *)(got_buf + sym->got_offset) = sym->get_addr(); if (flags & Symbol::NEEDS_GOTTP) *(u64 *)(got_buf + sym->gottp_offset) = sym->get_addr() - out::tls_end; if (flags & Symbol::NEEDS_PLT) { // Write a .plt entry u64 S = out::gotplt->shdr.sh_addr + sym->gotplt_offset; u64 P = out::plt->shdr.sh_addr + sym->plt_offset; out::plt->write_entry(plt_buf + sym->plt_offset, S - P - 6); // Write a .rela.dyn entry auto *rel = (ELF64LE::Rela *)(relplt_buf + sym->relplt_offset); memset(rel, 0, sizeof(*rel)); rel->r_offset = out::gotplt->shdr.sh_addr + sym->gotplt_offset; rel->setType(R_X86_64_IRELATIVE, false); rel->r_addend = sym->get_addr(); } if (flags & Symbol::NEEDS_DYNSYM) { // Write to .dynsym auto &esym = *(ELF64LE::Sym *)(dynsym_buf + sym->dynsym_offset); memset(&esym, 0, sizeof(esym)); esym.st_name = dynstr_offset; esym.setType(sym->type); esym.setBinding(STB_GLOBAL); // Write to .dynstr write_string(dynstr_buf + dynstr_offset, sym->name); dynstr_offset += sym->name.size() + 1; // Write to .hash if (out::hash) out::hash->write_symbol(buf, sym); } } }); } static void write_shstrtab(u8 *buf, ArrayRef chunks) { int offset = out::shstrtab->shdr.sh_offset + 1; for (OutputChunk *chunk : chunks) { if (!chunk->name.empty()) { write_string(buf + offset, chunk->name); offset += chunk->name.size() + 1; } } } static void write_dso_paths(u8 *buf, ArrayRef files) { int offset = out::dynstr->shdr.sh_offset + 1; for (ObjectFile *file : files) { if (!file->soname.empty()) { write_string(buf + offset, file->soname); offset += file->soname.size() + 1; } } } static void write_merged_strings(u8 *buf, ArrayRef files) { MyTimer t("write_merged_strings", copy_timer); tbb::parallel_for_each(files, [&](ObjectFile *file) { for (MergeableSection &isec : file->mergeable_sections) { u8 *base = buf + isec.parent.shdr.sh_offset + isec.offset; for (StringPieceRef &ref : isec.pieces) { StringPiece &piece = *ref.piece; if (piece.isec == &isec) memcpy(base + piece.output_offset, piece.data.data(), piece.data.size()); } } }); } static void clear_padding(u8 *buf, ArrayRef chunks, u64 filesize) { MyTimer t("clear_padding", copy_timer); auto zero = [&](OutputChunk *chunk, u64 next_start) { u64 pos = chunk->shdr.sh_offset; if (chunk->shdr.sh_type != SHT_NOBITS) pos += chunk->shdr.sh_size; memset(buf + pos, 0, next_start - pos); }; for (int i = 1; i < chunks.size(); i++) zero(chunks[i - 1], chunks[i]->shdr.sh_offset); zero(chunks.back(), filesize); } // We want to sort output sections in the following order. // // alloc readonly data // alloc readonly code // alloc writable tdata // alloc writable tbss // alloc writable data // alloc writable bss // nonalloc static int get_section_rank(const ELF64LE::Shdr &shdr) { bool alloc = shdr.sh_flags & SHF_ALLOC; bool writable = shdr.sh_flags & SHF_WRITE; bool exec = shdr.sh_flags & SHF_EXECINSTR; bool tls = shdr.sh_flags & SHF_TLS; bool nobits = shdr.sh_type == SHT_NOBITS; return (alloc << 5) | (!writable << 4) | (!exec << 3) | (tls << 2) | !nobits; } static void sort_output_chunks(std::vector &chunks) { } static std::vector create_ehdr() { ELF64LE::Ehdr hdr = {}; memcpy(&hdr.e_ident, "\177ELF", 4); hdr.e_ident[EI_CLASS] = ELFCLASS64; hdr.e_ident[EI_DATA] = ELFDATA2LSB; hdr.e_ident[EI_VERSION] = EV_CURRENT; hdr.e_ident[EI_OSABI] = 0; hdr.e_ident[EI_ABIVERSION] = 0; hdr.e_type = ET_EXEC; hdr.e_machine = EM_X86_64; hdr.e_version = EV_CURRENT; hdr.e_entry = Symbol::intern("_start")->get_addr(); hdr.e_phoff = out::phdr->shdr.sh_offset; hdr.e_shoff = out::shdr->shdr.sh_offset; hdr.e_flags = 0; hdr.e_ehsize = sizeof(ELF64LE::Ehdr); hdr.e_phentsize = sizeof(ELF64LE::Phdr); hdr.e_phnum = out::phdr->shdr.sh_size / sizeof(ELF64LE::Phdr); hdr.e_shentsize = sizeof(ELF64LE::Shdr); hdr.e_shnum = out::shdr->shdr.sh_size / sizeof(ELF64LE::Shdr); hdr.e_shstrndx = out::shstrtab->shndx; std::vector ret(sizeof(hdr)); memcpy(ret.data(), &hdr, sizeof(hdr)); return ret; } template static std::vector to_u8vector(const std::vector &vec) { std::vector ret(vec.size() * sizeof(T)); memcpy(ret.data(), vec.data(), ret.size()); return ret; } static std::vector create_shdr(ArrayRef chunks) { std::vector vec(1); for (OutputChunk *chunk : chunks) if (chunk->kind != OutputChunk::HEADER) vec.push_back(chunk->shdr); return to_u8vector(vec); } static u32 to_phdr_flags(OutputChunk *chunk) { u32 ret = PF_R; if (chunk->shdr.sh_flags & SHF_WRITE) ret |= PF_W; if (chunk->shdr.sh_flags & SHF_EXECINSTR) ret |= PF_X; return ret; } static std::vector create_phdr(ArrayRef chunks) { std::vector vec; auto define = [&](u32 type, u32 flags, u32 align, OutputChunk *chunk) { vec.push_back({}); ELF64LE::Phdr &phdr = vec.back(); phdr.p_type = type; phdr.p_flags = flags; phdr.p_align = std::max(align, chunk->shdr.sh_addralign); phdr.p_offset = chunk->shdr.sh_offset; phdr.p_filesz = (chunk->shdr.sh_type == SHT_NOBITS) ? 0 : chunk->shdr.sh_size; phdr.p_vaddr = chunk->shdr.sh_addr; phdr.p_memsz = chunk->shdr.sh_size; if (type == PT_LOAD) chunk->starts_new_ptload = true; }; auto append = [&](OutputChunk *chunk) { ELF64LE::Phdr &phdr = vec.back(); phdr.p_align = std::max(phdr.p_align, chunk->shdr.sh_addralign); phdr.p_filesz = (chunk->shdr.sh_type == SHT_NOBITS) ? chunk->shdr.sh_offset - phdr.p_offset : chunk->shdr.sh_offset + chunk->shdr.sh_size - phdr.p_offset; phdr.p_memsz = chunk->shdr.sh_addr + chunk->shdr.sh_size - phdr.p_vaddr; }; auto is_bss = [](OutputChunk *chunk) { return chunk->shdr.sh_type == SHT_NOBITS && !(chunk->shdr.sh_flags & SHF_TLS); }; // Create a PT_PHDR for the program header itself. define(PT_PHDR, PF_R, 8, out::phdr); // Create an PT_INTERP. if (out::interp) define(PT_INTERP, PF_R, 1, out::interp); // Create PT_LOAD segments. for (int i = 0, end = chunks.size(); i < end;) { OutputChunk *first = chunks[i++]; if (!(first->shdr.sh_flags & SHF_ALLOC)) break; u32 flags = to_phdr_flags(first); define(PT_LOAD, flags, PAGE_SIZE, first); if (!is_bss(first)) while (i < end && !is_bss(chunks[i]) && to_phdr_flags(chunks[i]) == flags) append(chunks[i++]); while (i < end && is_bss(chunks[i]) && to_phdr_flags(chunks[i]) == flags) append(chunks[i++]); } // Create a PT_TLS. for (int i = 0; i < chunks.size(); i++) { if (chunks[i]->shdr.sh_flags & SHF_TLS) { define(PT_TLS, to_phdr_flags(chunks[i]), 1, chunks[i]); i++; while (i < chunks.size() && (chunks[i]->shdr.sh_flags & SHF_TLS)) append(chunks[i++]); } } // Add PT_DYNAMIC if (out::dynamic) define(PT_DYNAMIC, PF_R | PF_W, out::dynamic->shdr.sh_addralign, out::dynamic); return to_u8vector(vec); } static std::vector create_dynamic_section(ArrayRef chunks) { std::vector vec; auto define = [&](u64 tag, u64 val) { vec.push_back(tag); vec.push_back(val); }; define(DT_RELA, out::reldyn->shdr.sh_addr); define(DT_RELASZ, out::reldyn->shdr.sh_size); define(DT_RELAENT, sizeof(ELF64LE::Rela)); define(DT_JMPREL, out::relplt->shdr.sh_addr); define(DT_PLTRELSZ, out::relplt->shdr.sh_size); define(DT_PLTGOT, out::gotplt->shdr.sh_addr); define(DT_PLTREL, DT_RELA); define(DT_SYMTAB, out::dynsym->shdr.sh_addr); define(DT_SYMENT, sizeof(ELF64LE::Sym)); define(DT_STRTAB, out::dynstr->shdr.sh_addr); define(DT_STRSZ, out::dynstr->shdr.sh_size); define(DT_HASH, out::hash->shdr.sh_addr); define(DT_INIT_ARRAY, out::__init_array_start->value); define(DT_INIT_ARRAYSZ, out::__init_array_end->value - out::__init_array_start->value); define(DT_FINI_ARRAY, out::__fini_array_start->value); define(DT_FINI_ARRAYSZ, out::__fini_array_end->value - out::__fini_array_start->value); define(DT_NULL, 0); return to_u8vector(vec); } static u64 set_osec_offsets(ArrayRef chunks) { MyTimer t("osec_offset", before_copy_timer); u64 fileoff = 0; u64 vaddr = 0x200000; for (OutputChunk *chunk : chunks) { if (chunk->starts_new_ptload) vaddr = align_to(vaddr, PAGE_SIZE); bool is_bss = chunk->shdr.sh_type == SHT_NOBITS; if (!is_bss) { if (vaddr % PAGE_SIZE > fileoff % PAGE_SIZE) fileoff += vaddr % PAGE_SIZE - fileoff % PAGE_SIZE; else if (vaddr % PAGE_SIZE < fileoff % PAGE_SIZE) fileoff = align_to(fileoff, PAGE_SIZE) + vaddr % PAGE_SIZE; } fileoff = align_to(fileoff, chunk->shdr.sh_addralign); vaddr = align_to(vaddr, chunk->shdr.sh_addralign); chunk->shdr.sh_offset = fileoff; if (chunk->shdr.sh_flags & SHF_ALLOC) chunk->shdr.sh_addr = vaddr; if (!is_bss) fileoff += chunk->shdr.sh_size; bool is_tbss = is_bss && (chunk->shdr.sh_flags & SHF_TLS); if (!is_tbss) vaddr += chunk->shdr.sh_size; } return fileoff; } static void fix_synthetic_symbols(ArrayRef chunks) { auto start = [&](OutputChunk *chunk, Symbol *sym) { if (sym) { sym->shndx = chunk->shndx; sym->value = chunk->shdr.sh_addr; } }; auto stop = [&](OutputChunk *chunk, Symbol *sym) { if (sym) { sym->shndx = chunk->shndx; sym->value = chunk->shdr.sh_addr + chunk->shdr.sh_size; } }; // __bss_start for (OutputChunk *chunk : chunks) { if (chunk->kind == OutputChunk::REGULAR && chunk->name == ".bss") { start(chunk, out::__bss_start); break; } } // __ehdr_start for (OutputChunk *chunk : chunks) { if (chunk->shndx == 1) { out::__ehdr_start->shndx = 1; out::__ehdr_start->value = out::ehdr->shdr.sh_addr; break; } } // __rela_iplt_start and __rela_iplt_end start(out::relplt, out::__rela_iplt_start); stop(out::relplt, out::__rela_iplt_end); // __{init,fini}_array_{start,end} for (OutputChunk *chunk : chunks) { switch (chunk->shdr.sh_type) { case SHT_INIT_ARRAY: start(chunk, out::__init_array_start); stop(chunk, out::__init_array_end); break; case SHT_FINI_ARRAY: start(chunk, out::__fini_array_start); stop(chunk, out::__fini_array_end); break; } } // _end, end, _etext, etext, _edata and edata for (OutputChunk *chunk : chunks) { if (chunk->kind == OutputChunk::HEADER) continue; if (chunk->shdr.sh_flags & SHF_ALLOC) stop(chunk, out::_end); if (chunk->shdr.sh_flags & SHF_EXECINSTR) stop(chunk, out::_etext); if (chunk->shdr.sh_type != SHT_NOBITS && chunk->shdr.sh_flags & SHF_ALLOC) stop(chunk, out::_edata); } // __start_ and __stop_ symbols for (OutputChunk *chunk : chunks) { if (is_c_identifier(chunk->name)) { start(chunk, Symbol::intern(("__start_" + chunk->name).str())); stop(chunk, Symbol::intern(("__stop_" + chunk->name).str())); } } } static u8 *open_output_file(u64 filesize) { int fd = open(config.output.str().c_str(), O_RDWR | O_CREAT, 0777); if (fd == -1) error("cannot open " + config.output + ": " + strerror(errno)); if (ftruncate(fd, filesize)) error("ftruncate"); void *buf = mmap(nullptr, filesize, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (buf == MAP_FAILED) error(config.output + ": mmap failed: " + strerror(errno)); close(fd); if (config.filler != -1) memset(buf, config.filler, filesize); return (u8 *)buf; } static void write_symtab(u8 *buf, std::vector files) { MyTimer t("write_symtab", copy_timer); std::vector local_symtab_off(files.size() + 1); std::vector local_strtab_off(files.size() + 1); local_symtab_off[0] = sizeof(ELF64LE::Sym); local_strtab_off[0] = 1; for (int i = 1; i < files.size() + 1; i++) { local_symtab_off[i] = local_symtab_off[i - 1] + files[i - 1]->local_symtab_size; local_strtab_off[i] = local_strtab_off[i - 1] + files[i - 1]->local_strtab_size; } out::symtab->shdr.sh_info = local_symtab_off.back() / sizeof(ELF64LE::Sym); std::vector global_symtab_off(files.size() + 1); std::vector global_strtab_off(files.size() + 1); global_symtab_off[0] = local_symtab_off.back(); global_strtab_off[0] = local_strtab_off.back(); for (int i = 1; i < files.size() + 1; i++) { global_symtab_off[i] = global_symtab_off[i - 1] + files[i - 1]->global_symtab_size; global_strtab_off[i] = global_strtab_off[i - 1] + files[i - 1]->global_strtab_size; } assert(global_symtab_off.back() == out::symtab->shdr.sh_size); assert(global_strtab_off.back() == out::strtab->shdr.sh_size); tbb::parallel_for((size_t)0, files.size(), [&](size_t i) { files[i]->write_local_symtab(buf, local_symtab_off[i], local_strtab_off[i]); files[i]->write_global_symtab(buf, global_symtab_off[i], global_strtab_off[i]); }); } static int get_thread_count(InputArgList &args) { if (auto *arg = args.getLastArg(OPT_thread_count)) { int n; if (!llvm::to_integer(arg->getValue(), n) || n <= 0) error(arg->getSpelling() + ": expected a positive integer, but got '" + arg->getValue() + "'"); return n; } return tbb::global_control::active_value(tbb::global_control::max_allowed_parallelism); } static void write_vector(u8 *buf, ArrayRef vec) { memcpy(buf, vec.data(), vec.size()); } static int parse_filler(opt::InputArgList &args) { auto *arg = args.getLastArg(OPT_filler); if (!arg) return -1; StringRef val = arg->getValue(); if (!val.startswith("0x")) error("invalid argument: " + arg->getAsString(args)); int ret; if (!to_integer(val.substr(2), ret, 16)) error("invalid argument: " + arg->getAsString(args)); return (u8)ret; } int main(int argc, char **argv) { // Parse command line options MyOptTable opt_table; InputArgList args = opt_table.parse(argc - 1, argv + 1); tbb::global_control tbb_cont(tbb::global_control::max_allowed_parallelism, get_thread_count(args)); Counter::enabled = args.hasArg(OPT_stat); if (auto *arg = args.getLastArg(OPT_o)) config.output = arg->getValue(); else error("-o option is missing"); config.print_map = args.hasArg(OPT_print_map); config.is_static = args.hasArg(OPT_static); config.filler = parse_filler(args); for (auto *arg : args.filtered(OPT_trace_symbol)) Symbol::intern(arg->getValue())->traced = true; std::vector files; // Open input files { MyTimer t("open", parse_timer); for (auto *arg : args) if (arg->getOption().getID() == OPT_INPUT) read_file(files, arg->getValue()); } // Parse input files { MyTimer t("parse", parse_timer); tbb::parallel_for_each(files, [](ObjectFile *file) { file->parse(); }); } { MyTimer t("merge", parse_timer); tbb::parallel_for_each(files, [](ObjectFile *file) { file->initialize_mergeable_sections(); }); } Timer total_timer("total", "total"); total_timer.startTimer(); out::ehdr = new OutputHeader; out::shdr = new OutputHeader; out::phdr = new OutputHeader; out::got = new SpecialSection(".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, 8); out::gotplt = new SpecialSection(".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, 8); out::relplt = new SpecialSection(".rela.plt", SHT_RELA, SHF_ALLOC, 8, sizeof(ELF64LE::Rela)); out::strtab = new StrtabSection(".strtab", 0); out::shstrtab = new StrtabSection(".shstrtab", 0); out::plt = new PltSection; out::symtab = new SymtabSection(".symtab", SHT_SYMTAB, 0); out::dynsym = new SymtabSection(".dynsym", SHT_DYNSYM, SHF_ALLOC); out::dynstr = new StrtabSection(".dynstr", SHF_ALLOC); out::dynsym->shdr.sh_size = sizeof(ELF64LE::Sym); if (!config.is_static) { out::interp = new SpecialSection(".interp", SHT_PROGBITS, SHF_ALLOC); out::dynamic = new SpecialSection(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE, 8, sizeof(ELF64LE::Dyn)); out::reldyn = new SpecialSection(".rela.dyn", SHT_RELA, SHF_ALLOC, 8, sizeof(ELF64LE::Rela)); out::hash = new HashSection; out::interp->shdr.sh_size = config.dynamic_linker.size() + 1; } // Set priorities to files int priority = 1; for (ObjectFile *file : files) if (!file->is_in_archive) file->priority = priority++; for (ObjectFile *file : files) if (file->is_in_archive) file->priority = priority++; // Resolve symbols and fix the set of object files that are // included to the final output. resolve_symbols(files); if (args.hasArg(OPT_trace)) for (ObjectFile *file : files) llvm::outs() << toString(file) << "\n"; // Remove redundant comdat sections (e.g. duplicate inline functions). eliminate_comdats(files); // Merge strings constants in SHF_MERGE sections. handle_mergeable_strings(files); // Create .bss sections for common symbols. { MyTimer t("common", before_copy_timer); tbb::parallel_for_each(files, [](ObjectFile *file) { file->convert_common_symbols(); }); } // Bin input sections into output sections bin_sections(files); // Assign offsets within an output section to input sections. set_isec_offsets(); // Create a list of output sections. std::vector chunks; // Sections are added to the section lists in an arbitrary order because // they are created in parallel. Sor them to to make the output deterministic. auto section_compare = [](OutputChunk *x, OutputChunk *y) { return std::make_tuple(x->name, (u32)x->shdr.sh_type, (u64)x->shdr.sh_flags) < std::make_tuple(y->name, (u32)y->shdr.sh_type, (u64)y->shdr.sh_flags); }; std::stable_sort(OutputSection::instances.begin(), OutputSection::instances.end(), section_compare); std::stable_sort(MergedSection::instances.begin(), MergedSection::instances.end(), section_compare); // Add sections to the section lists for (OutputSection *osec : OutputSection::instances) if (osec->shdr.sh_size) chunks.push_back(osec); for (MergedSection *osec : MergedSection::instances) if (osec->shdr.sh_size) chunks.push_back(osec); // Create a dummy file containing linker-synthesized symbols // (e.g. `__bss_start`). ObjectFile *internal_file = ObjectFile::create_internal_file(chunks); internal_file->priority = priority++; files.push_back(internal_file); // Beyond this point, no new symbols will be added to the result. // Reserve space in .dynsym for DT_NEEDED strings. for (ObjectFile *file : files) if (file->is_alive && file->is_dso) out::dynstr->shdr.sh_size += file->soname.size() + 1; // Scan relocations to fix the sizes of .got, .plt, .got.plt, .dynstr, // .rela.dyn, .rela.plt. scan_rels(files); // Compute .symtab and .strtab sizes { MyTimer t("symtab_size", before_copy_timer); tbb::parallel_for_each(files, [](ObjectFile *file) { file->compute_symtab(); }); for (ObjectFile *file : files) { out::symtab->shdr.sh_size += file->local_symtab_size + file->global_symtab_size; out::strtab->shdr.sh_size += file->local_strtab_size + file->global_strtab_size; } } // Add synthetic sections. chunks.push_back(out::got); chunks.push_back(out::plt); chunks.push_back(out::gotplt); chunks.push_back(out::relplt); chunks.push_back(out::reldyn); chunks.push_back(out::dynamic); chunks.push_back(out::dynsym); chunks.push_back(out::dynstr); chunks.push_back(out::shstrtab); chunks.push_back(out::symtab); chunks.push_back(out::strtab); chunks.push_back(out::hash); chunks.erase(std::remove_if(chunks.begin(), chunks.end(), [](OutputChunk *c){ return !c; }), chunks.end()); // Sort the sections by section flags so that we'll have to create // as few segments as possible. std::stable_sort(chunks.begin(), chunks.end(), [](OutputChunk *a, OutputChunk *b) { return get_section_rank(a->shdr) > get_section_rank(b->shdr); }); // Add headers and sections that have to be at the beginning // or the ending of a file. chunks.insert(chunks.begin(), out::ehdr); chunks.insert(chunks.begin() + 1, out::phdr); if (out::interp) chunks.insert(chunks.begin() + 2, out::interp); chunks.push_back(out::shdr); // Fix .shstrtab contents. for (OutputChunk *chunk : chunks) { if (!chunk->name.empty()) { chunk->shdr.sh_name = out::shstrtab->shdr.sh_size; out::shstrtab->shdr.sh_size += chunk->name.size() + 1; } } // Set section indices. for (int i = 0, shndx = 1; i < chunks.size(); i++) if (chunks[i]->kind != OutputChunk::HEADER) chunks[i]->shndx = shndx++; // Initialize synthetic section contents out::ehdr->shdr.sh_size = sizeof(ELF64LE::Ehdr); out::shdr->shdr.sh_size = create_shdr(chunks).size(); out::phdr->shdr.sh_size = create_phdr(chunks).size(); if (out::dynamic) out::dynamic->shdr.sh_size = create_dynamic_section(chunks).size(); if (out::hash) out::hash->set_num_dynsym(out::dynsym->shdr.sh_size / sizeof(ELF64LE::Sym)); out::symtab->shdr.sh_link = out::strtab->shndx; if (out::dynsym) { out::dynsym->shdr.sh_info = 1; out::dynsym->shdr.sh_link = out::dynstr->shndx; } if (out::hash && out::dynsym) out::hash->shdr.sh_link = out::dynsym->shndx; if (out::dynamic && out::dynstr) out::dynamic->shdr.sh_link = out::dynstr->shndx; // Assign offsets to output sections u64 filesize = set_osec_offsets(chunks); // Assign symbols to GOT offsets assign_got_offsets(files); // Fix linker-synthesized symbol addresses. fix_synthetic_symbols(chunks); // At this point, file layout is fixed. Beyond this, you can assume // that symbol addresses including their GOT/PLT/etc addresses have // a correct final value. // Some types of relocations for TLS symbols need the ending address // of the TLS section. Find it out now. for (OutputChunk *chunk : chunks) { ELF64LE::Shdr &shdr = chunk->shdr; if (shdr.sh_flags & SHF_TLS) out::tls_end = align_to(shdr.sh_addr + shdr.sh_size, shdr.sh_addralign); } // Create an output file u8 *buf; { MyTimer t("open_file", before_copy_timer); buf = open_output_file(filesize); } // Initialize the output buffer. { MyTimer t("copy", copy_timer); tbb::parallel_for_each(chunks, [&](OutputChunk *chunk) { chunk->initialize(buf); }); } // Copy input sections to the output file { MyTimer t("copy", copy_timer); tbb::parallel_for_each(chunks, [&](OutputChunk *chunk) { chunk->copy_to(buf); }); } // Fill .symtab and .strtab write_symtab(buf, files); // Fill .shstrtab write_shstrtab(buf, chunks); // Write DT_NEEDED paths to .dynstr. write_dso_paths(buf, files); // Fill .plt, .got, got.plt, .rela.plt sections write_got(buf, files); // Fill mergeable string sections write_merged_strings(buf, files); // Write headers and synthetic sections. write_vector(buf + out::ehdr->shdr.sh_offset, create_ehdr()); write_vector(buf + out::shdr->shdr.sh_offset, create_shdr(chunks)); write_vector(buf + out::phdr->shdr.sh_offset, create_phdr(chunks)); if (out::interp) write_string(buf + out::interp->shdr.sh_offset, config.dynamic_linker); if (out::dynamic) write_vector(buf + out::dynamic->shdr.sh_offset, create_dynamic_section(chunks)); // Zero-clear paddings between sections clear_padding(buf, chunks, filesize); // Commit { MyTimer t("munmap", copy_timer); munmap(buf, filesize); } total_timer.stopTimer(); if (config.print_map) { MyTimer t("print_map"); print_map(files, chunks); } #if 0 for (ObjectFile *file : files) for (InputSection *isec : file->sections) if (isec) llvm::outs() << toString(isec) << "\n"; #endif // Show stat numbers Counter num_input_sections("input_sections"); for (ObjectFile *file : files) num_input_sections.inc(file->sections.size()); Counter num_output_chunks("output_chunks", chunks.size()); Counter num_files("files", files.size()); Counter filesize_counter("filesize", filesize); Counter::print(); llvm::TimerGroup::printAll(llvm::outs()); llvm::outs().flush(); _exit(0); }