#include "mold.h" #include #include #include void OutputEhdr::copy_buf() { auto &hdr = *(ElfEhdr *)(out::buf + shdr.sh_offset); memset(&hdr, 0, sizeof(hdr)); memcpy(&hdr.e_ident, "\177ELF", 4); hdr.e_ident[EI_CLASS] = ELFCLASS64; hdr.e_ident[EI_DATA] = ELFDATA2LSB; hdr.e_ident[EI_VERSION] = EV_CURRENT; hdr.e_type = config.pie ? ET_DYN : ET_EXEC; hdr.e_machine = EM_X86_64; hdr.e_version = EV_CURRENT; hdr.e_entry = Symbol::intern(config.entry)->get_addr(); hdr.e_phoff = out::phdr->shdr.sh_offset; hdr.e_shoff = out::shdr->shdr.sh_offset; hdr.e_ehsize = sizeof(ElfEhdr); hdr.e_phentsize = sizeof(ElfPhdr); hdr.e_phnum = out::phdr->shdr.sh_size / sizeof(ElfPhdr); hdr.e_shentsize = sizeof(ElfShdr); hdr.e_shnum = out::shdr->shdr.sh_size / sizeof(ElfShdr); hdr.e_shstrndx = out::shstrtab->shndx; } void OutputShdr::update_shdr() { shdr.sh_size = sizeof(ElfShdr); for (OutputChunk *chunk : out::chunks) if (chunk->kind != OutputChunk::HEADER) shdr.sh_size += sizeof(ElfShdr); } void OutputShdr::copy_buf() { u8 *base = out::buf + shdr.sh_offset; memset(base, 0, sizeof(ElfShdr)); auto *ptr = (ElfShdr *)(base + sizeof(ElfShdr)); for (OutputChunk *chunk : out::chunks) if (chunk->kind != OutputChunk::HEADER) *ptr++ = chunk->shdr; } static u32 to_phdr_flags(OutputChunk *chunk) { u32 ret = PF_R; if (chunk->shdr.sh_flags & SHF_WRITE) ret |= PF_W; if (chunk->shdr.sh_flags & SHF_EXECINSTR) ret |= PF_X; return ret; } std::vector create_phdr() { std::vector vec; auto define = [&](u32 type, u32 flags, u32 align, OutputChunk *chunk) { vec.push_back({}); ElfPhdr &phdr = vec.back(); phdr.p_type = type; phdr.p_flags = flags; phdr.p_align = std::max(align, chunk->shdr.sh_addralign); phdr.p_offset = chunk->shdr.sh_offset; phdr.p_filesz = (chunk->shdr.sh_type == SHT_NOBITS) ? 0 : chunk->shdr.sh_size; phdr.p_vaddr = chunk->shdr.sh_addr; phdr.p_paddr = chunk->shdr.sh_addr; phdr.p_memsz = chunk->shdr.sh_size; if (type == PT_LOAD) chunk->starts_new_ptload = true; }; auto append = [&](OutputChunk *chunk) { ElfPhdr &phdr = vec.back(); phdr.p_align = std::max(phdr.p_align, chunk->shdr.sh_addralign); phdr.p_filesz = (chunk->shdr.sh_type == SHT_NOBITS) ? chunk->shdr.sh_offset - phdr.p_offset : chunk->shdr.sh_offset + chunk->shdr.sh_size - phdr.p_offset; phdr.p_memsz = chunk->shdr.sh_addr + chunk->shdr.sh_size - phdr.p_vaddr; }; auto is_bss = [](OutputChunk *chunk) { return chunk->shdr.sh_type == SHT_NOBITS && !(chunk->shdr.sh_flags & SHF_TLS); }; // Create a PT_PHDR for the program header itself. define(PT_PHDR, PF_R, 8, out::phdr); // Create a PT_INTERP. if (out::interp) define(PT_INTERP, PF_R, 1, out::interp); // Create a PT_NOTE for each group of SHF_NOTE sections with the same // alignment requirement. for (int i = 0, end = out::chunks.size(); i < end;) { OutputChunk *first = out::chunks[i++]; if (first->shdr.sh_type != SHT_NOTE) continue; u32 flags = to_phdr_flags(first); u32 alignment = first->shdr.sh_addralign; define(PT_NOTE, flags, alignment, first); while (i < end && out::chunks[i]->shdr.sh_type == SHT_NOTE && to_phdr_flags(out::chunks[i]) == flags && out::chunks[i]->shdr.sh_addralign == alignment) append(out::chunks[i++]); } // Create PT_LOAD segments. for (int i = 0, end = out::chunks.size(); i < end;) { OutputChunk *first = out::chunks[i++]; if (!(first->shdr.sh_flags & SHF_ALLOC)) break; u32 flags = to_phdr_flags(first); define(PT_LOAD, flags, PAGE_SIZE, first); if (!is_bss(first)) while (i < end && !is_bss(out::chunks[i]) && to_phdr_flags(out::chunks[i]) == flags) append(out::chunks[i++]); while (i < end && is_bss(out::chunks[i]) && to_phdr_flags(out::chunks[i]) == flags) append(out::chunks[i++]); } // Create a PT_TLS. for (int i = 0; i < out::chunks.size(); i++) { if (!(out::chunks[i]->shdr.sh_flags & SHF_TLS)) continue; define(PT_TLS, to_phdr_flags(out::chunks[i]), 1, out::chunks[i]); i++; while (i < out::chunks.size() && (out::chunks[i]->shdr.sh_flags & SHF_TLS)) append(out::chunks[i++]); } // Add PT_DYNAMIC if (out::dynamic) define(PT_DYNAMIC, PF_R | PF_W, out::dynamic->shdr.sh_addralign, out::dynamic); // Add PT_GNU_STACK, which is a marker segment that doesn't really // contain any segments. If exists, the runtime turn on the No Exeecute // bit for stack pages. vec.push_back({}); vec.back().p_type = PT_GNU_STACK; vec.back().p_flags = PF_R | PF_W; return vec; } void OutputPhdr::update_shdr() { shdr.sh_size = create_phdr().size() * sizeof(ElfPhdr); } void OutputPhdr::copy_buf() { write_vector(out::buf + shdr.sh_offset, create_phdr()); } void InterpSection::copy_buf() { write_string(out::buf + shdr.sh_offset, config.dynamic_linker); } void RelDynSection::update_shdr() { shdr.sh_link = out::dynsym->shndx; int n = 0; for (Symbol *sym : out::got->got_syms) if (sym->is_imported || (config.pie && sym->is_relative())) n++; n += out::got->tlsgd_syms.size() * 2; n += out::copyrel->symbols.size(); if (out::got->tlsld_idx != -1) n++; for (ObjectFile *file : out::objs) { file->reldyn_offset = n * sizeof(ElfRela); n += file->num_dynrel; } shdr.sh_size = n * sizeof(ElfRela); } void RelDynSection::copy_buf() { ElfRela *rel = (ElfRela *)(out::buf + shdr.sh_offset); for (Symbol *sym : out::got->got_syms) { if (sym->is_imported) *rel++ = {sym->get_got_addr(), R_X86_64_GLOB_DAT, sym->dynsym_idx, 0}; else if (config.pie && sym->is_relative()) *rel++ = {sym->get_got_addr(), R_X86_64_RELATIVE, 0, (i64)sym->get_addr()}; } for (Symbol *sym : out::got->tlsgd_syms) { *rel++ = {sym->get_tlsgd_addr(), R_X86_64_DTPMOD64, sym->dynsym_idx, 0}; *rel++ = {sym->get_tlsgd_addr() + GOT_SIZE, R_X86_64_DTPOFF64, sym->dynsym_idx, 0}; } if (out::got->tlsld_idx != -1) *rel++ = {out::got->get_tlsld_addr(), R_X86_64_DTPMOD64, 0, 0}; for (Symbol *sym : out::got->gottpoff_syms) if (sym->is_imported) *rel++ = {sym->get_gottpoff_addr(), R_X86_64_TPOFF32, sym->dynsym_idx, 0}; for (Symbol *sym : out::copyrel->symbols) *rel++ = {sym->get_addr(), R_X86_64_COPY, sym->dynsym_idx, 0}; } void StrtabSection::update_shdr() { shdr.sh_size = 1; for (ObjectFile *file : out::objs) { file->strtab_offset = shdr.sh_size; shdr.sh_size += file->strtab_size; } } void ShstrtabSection::update_shdr() { shdr.sh_size = 1; for (OutputChunk *chunk : out::chunks) { if (!chunk->name.empty()) { chunk->shdr.sh_name = shdr.sh_size; shdr.sh_size += chunk->name.size() + 1; } } } void ShstrtabSection::copy_buf() { u8 *base = out::buf + shdr.sh_offset; base[0] = '\0'; int i = 1; for (OutputChunk *chunk : out::chunks) { if (!chunk->name.empty()) { write_string(base + i, chunk->name); i += chunk->name.size() + 1; } } } u32 DynstrSection::add_string(std::string_view str) { u32 ret = shdr.sh_size; shdr.sh_size += str.size() + 1; contents.push_back(str); return ret; } u32 DynstrSection::find_string(std::string_view str) { u32 i = 1; for (std::string_view s : contents) { if (s == str) return i; i += s.size() + 1; } unreachable(); } void DynstrSection::copy_buf() { u8 *base = out::buf + shdr.sh_offset; base[0] = '\0'; int i = 1; for (std::string_view s : contents) { write_string(base + i, s); i += s.size() + 1; } } void SymtabSection::update_shdr() { shdr.sh_size = sizeof(ElfSym); for (ObjectFile *file : out::objs) { file->local_symtab_offset = shdr.sh_size; shdr.sh_size += file->local_symtab_size; } for (ObjectFile *file : out::objs) { file->global_symtab_offset = shdr.sh_size; shdr.sh_size += file->global_symtab_size; } shdr.sh_info = out::objs[0]->global_symtab_offset / sizeof(ElfSym); shdr.sh_link = out::strtab->shndx; static Counter counter("symtab"); counter.inc(shdr.sh_size / sizeof(ElfSym)); } void SymtabSection::copy_buf() { memset(out::buf + shdr.sh_offset, 0, sizeof(ElfSym)); out::buf[out::strtab->shdr.sh_offset] = '\0'; tbb::parallel_for_each(out::objs, [](ObjectFile *file) { file->write_symtab(); }); } static std::vector create_dynamic_section() { std::vector vec; auto define = [&](u64 tag, u64 val) { vec.push_back(tag); vec.push_back(val); }; for (SharedFile *file : out::dsos) define(DT_NEEDED, out::dynstr->find_string(file->soname)); define(DT_RUNPATH, out::dynstr->find_string(config.rpaths)); define(DT_RELA, out::reldyn->shdr.sh_addr); define(DT_RELASZ, out::reldyn->shdr.sh_size); define(DT_RELAENT, sizeof(ElfRela)); define(DT_JMPREL, out::relplt->shdr.sh_addr); define(DT_PLTRELSZ, out::relplt->shdr.sh_size); define(DT_PLTGOT, out::gotplt->shdr.sh_addr); define(DT_PLTREL, DT_RELA); define(DT_SYMTAB, out::dynsym->shdr.sh_addr); define(DT_SYMENT, sizeof(ElfSym)); define(DT_STRTAB, out::dynstr->shdr.sh_addr); define(DT_STRSZ, out::dynstr->shdr.sh_size); define(DT_HASH, out::hash->shdr.sh_addr); define(DT_INIT_ARRAY, out::__init_array_start->value); define(DT_INIT_ARRAYSZ, out::__init_array_end->value - out::__init_array_start->value); define(DT_FINI_ARRAY, out::__fini_array_start->value); define(DT_FINI_ARRAYSZ, out::__fini_array_end->value - out::__fini_array_start->value); define(DT_VERSYM, out::versym->shdr.sh_addr); define(DT_VERNEED, out::verneed->shdr.sh_addr); define(DT_VERNEEDNUM, out::verneed->shdr.sh_info); define(DT_DEBUG, 0); auto find = [](std::string_view name) -> OutputChunk * { for (OutputChunk *chunk : out::chunks) if (chunk->name == name) return chunk; return nullptr; }; if (OutputChunk *chunk = find(".init")) define(DT_INIT, chunk->shdr.sh_addr); if (OutputChunk *chunk = find(".fini")) define(DT_FINI, chunk->shdr.sh_addr); u32 flags = 0; u32 flags1 = 0; if (config.pie) flags1 |= DF_1_PIE; if (config.z_now) { flags |= DF_BIND_NOW; flags1 |= DF_1_NOW; } if (flags) define(DT_FLAGS, flags); if (flags1) define(DT_FLAGS_1, flags1); define(DT_NULL, 0); return vec; } void DynamicSection::update_shdr() { shdr.sh_size = create_dynamic_section().size() * 8; shdr.sh_link = out::dynstr->shndx; } void DynamicSection::copy_buf() { write_vector(out::buf + shdr.sh_offset, create_dynamic_section()); } static std::string_view get_output_name(std::string_view name) { static std::string_view common_names[] = { ".text.", ".data.rel.ro.", ".data.", ".rodata.", ".bss.rel.ro.", ".bss.", ".init_array.", ".fini_array.", ".tbss.", ".tdata.", }; for (std::string_view s1 : common_names) { std::string_view s2 = s1.substr(0, s1.size() - 1); if (name.starts_with(s1) || name == s2) return s2; } return name; } OutputSection * OutputSection::get_instance(std::string_view name, u32 type, u64 flags) { if (name == ".eh_frame" && type == SHT_X86_64_UNWIND) type = SHT_PROGBITS; name = get_output_name(name); flags = flags & ~(u64)SHF_GROUP; auto find = [&]() -> OutputSection * { for (OutputSection *osec : OutputSection::instances) if (name == osec->name && type == osec->shdr.sh_type && flags == (osec->shdr.sh_flags & ~SHF_GROUP)) return osec; return nullptr; }; // Search for an exiting output section. static std::shared_mutex mu; { std::shared_lock lock(mu); if (OutputSection *osec = find()) return osec; } // Create a new output section. std::unique_lock lock(mu); if (OutputSection *osec = find()) return osec; return new OutputSection(name, type, flags); } void OutputSection::copy_buf() { if (shdr.sh_type == SHT_NOBITS) return; int num_members = members.size(); tbb::parallel_for(0, num_members, [&](int i) { if (members[i]->shdr.sh_type != SHT_NOBITS) { // Copy section contents to an output file members[i]->copy_buf(); // Zero-clear trailing padding u64 this_end = members[i]->offset + members[i]->shdr.sh_size; u64 next_start = (i == num_members - 1) ? shdr.sh_size : members[i + 1]->offset; memset(out::buf + shdr.sh_offset + this_end, 0, next_start - this_end); } }); } void GotSection::add_got_symbol(Symbol *sym) { assert(sym->got_idx == -1); sym->got_idx = shdr.sh_size / GOT_SIZE; shdr.sh_size += GOT_SIZE; got_syms.push_back(sym); } void GotSection::add_gottpoff_symbol(Symbol *sym) { assert(sym->gottpoff_idx == -1); sym->gottpoff_idx = shdr.sh_size / GOT_SIZE; shdr.sh_size += GOT_SIZE; gottpoff_syms.push_back(sym); } void GotSection::add_tlsgd_symbol(Symbol *sym) { assert(sym->tlsgd_idx == -1); sym->tlsgd_idx = shdr.sh_size / GOT_SIZE; shdr.sh_size += GOT_SIZE * 2; tlsgd_syms.push_back(sym); } void GotSection::add_tlsld() { if (tlsld_idx != -1) return; tlsld_idx = shdr.sh_size / GOT_SIZE; shdr.sh_size += GOT_SIZE * 2; } void GotSection::copy_buf() { u64 *buf = (u64 *)(out::buf + shdr.sh_offset); memset(buf, 0, shdr.sh_size); for (Symbol *sym : got_syms) if (!sym->is_imported) buf[sym->got_idx] = sym->get_addr(); for (Symbol *sym : gottpoff_syms) if (!sym->is_imported) buf[sym->gottpoff_idx] = sym->get_addr() - out::tls_end; } void GotPltSection::copy_buf() { u64 *buf = (u64 *)(out::buf + shdr.sh_offset); buf[0] = out::dynamic ? out::dynamic->shdr.sh_addr : 0; buf[1] = 0; buf[2] = 0; for (Symbol *sym : out::plt->symbols) if (sym->gotplt_idx != -1) buf[sym->gotplt_idx] = sym->get_plt_addr() + 6; } void PltSection::add_symbol(Symbol *sym) { assert(sym->plt_idx == -1); sym->plt_idx = shdr.sh_size / PLT_SIZE; shdr.sh_size += PLT_SIZE; symbols.push_back(sym); if (sym->got_idx == -1) { sym->gotplt_idx = out::gotplt->shdr.sh_size / GOT_SIZE; out::gotplt->shdr.sh_size += GOT_SIZE; sym->has_relplt = true; out::relplt->shdr.sh_size += sizeof(ElfRela); out::dynsym->add_symbol(sym); } } void PltSection::copy_buf() { u8 *buf = out::buf + shdr.sh_offset; const u8 plt0[] = { 0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip) 0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip) 0x0f, 0x1f, 0x40, 0x00, // nop }; memcpy(buf, plt0, sizeof(plt0)); *(u32 *)(buf + 2) = out::gotplt->shdr.sh_addr - shdr.sh_addr + 2; *(u32 *)(buf + 8) = out::gotplt->shdr.sh_addr - shdr.sh_addr + 4; int relplt_idx = 0; for (Symbol *sym : symbols) { u8 *ent = buf + sym->plt_idx * PLT_SIZE; if (sym->gotplt_idx != -1) { const u8 data[] = { 0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOTPLT 0x68, 0, 0, 0, 0, // push $index_in_relplt 0xe9, 0, 0, 0, 0, // jmp PLT[0] }; memcpy(ent, data, sizeof(data)); *(u32 *)(ent + 2) = sym->get_gotplt_addr() - sym->get_plt_addr() - 6; *(u32 *)(ent + 7) = relplt_idx++; *(u32 *)(ent + 12) = shdr.sh_addr - sym->get_plt_addr() - 16; } else { const u8 data[] = { 0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT 0x66, 0x66, 0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nop }; memcpy(ent, data, sizeof(data)); *(u32 *)(ent + 2) = sym->get_got_addr() - sym->get_plt_addr() - 6; } } } void RelPltSection::update_shdr() { shdr.sh_link = out::dynsym->shndx; } void RelPltSection::copy_buf() { ElfRela *buf = (ElfRela *)(out::buf + shdr.sh_offset); memset(buf, 0, shdr.sh_size); int relplt_idx = 0; for (Symbol *sym : out::plt->symbols) { if (!sym->has_relplt) continue; ElfRela &rel = buf[relplt_idx++]; memset(&rel, 0, sizeof(rel)); rel.r_sym = sym->dynsym_idx; rel.r_offset = sym->get_gotplt_addr(); if (sym->st_type == STT_GNU_IFUNC) { rel.r_type = R_X86_64_IRELATIVE; rel.r_addend = sym->get_addr(); } else { rel.r_type = R_X86_64_JUMP_SLOT; } } } void DynsymSection::add_symbol(Symbol *sym) { if (sym->dynsym_idx != -1) return; sym->dynsym_idx = -2; symbols.push_back(sym); name_indices.push_back(out::dynstr->add_string(sym->name)); } void DynsymSection::sort_symbols() { auto first_global = std::stable_partition( symbols.begin(), symbols.end(), [](Symbol *sym) { return sym->esym->st_bind == STB_LOCAL; }); shdr.sh_info = first_global - symbols.begin() + 1; int i = 1; for (Symbol *sym : symbols) sym->dynsym_idx = i++; } void DynsymSection::update_shdr() { shdr.sh_link = out::dynstr->shndx; shdr.sh_size = sizeof(ElfSym) * (symbols.size() + 1); } void DynsymSection::copy_buf() { u8 *base = out::buf + shdr.sh_offset; memset(base, 0, sizeof(ElfSym)); for (int i = 0; i < symbols.size(); i++) { Symbol &sym = *symbols[i]; ElfSym &esym = *(ElfSym *)(base + sym.dynsym_idx * sizeof(ElfSym)); memset(&esym, 0, sizeof(esym)); esym.st_name = name_indices[i]; esym.st_type = sym.st_type; esym.st_bind = sym.esym->st_bind; esym.st_size = sym.esym->st_size; if (sym.has_copyrel) { esym.st_shndx = out::copyrel->shndx; esym.st_value = sym.get_addr(); } else if (sym.is_imported || sym.esym->is_undef()) { esym.st_shndx = SHN_UNDEF; } else if (!sym.input_section) { esym.st_shndx = SHN_ABS; esym.st_value = sym.get_addr(); } else if (sym.st_type == STT_TLS) { esym.st_shndx = sym.input_section->output_section->shndx; esym.st_value = sym.get_addr() - out::tls_begin; } else { esym.st_shndx = sym.input_section->output_section->shndx; esym.st_value = sym.get_addr(); } } } void HashSection::update_shdr() { int header_size = 8; int num_slots = out::dynsym->symbols.size() + 1; shdr.sh_size = header_size + num_slots * 8; shdr.sh_link = out::dynsym->shndx; } void HashSection::copy_buf() { u8 *base = out::buf + shdr.sh_offset; memset(base, 0, shdr.sh_size); int num_slots = out::dynsym->symbols.size() + 1; u32 *hdr = (u32 *)base; u32 *buckets = (u32 *)(base + 8); u32 *chains = buckets + num_slots; hdr[0] = hdr[1] = num_slots; for (Symbol *sym : out::dynsym->symbols) { u32 i = elf_hash(sym->name) % num_slots; chains[sym->dynsym_idx] = buckets[i]; buckets[i] = sym->dynsym_idx; } } MergedSection * MergedSection::get_instance(std::string_view name, u32 type, u64 flags) { name = get_output_name(name); flags = flags & ~(u64)SHF_MERGE & ~(u64)SHF_STRINGS; auto find = [&]() -> MergedSection * { for (MergedSection *osec : MergedSection::instances) if (name == osec->name && flags == osec->shdr.sh_flags && type == osec->shdr.sh_type) return osec; return nullptr; }; // Search for an exiting output section. static std::shared_mutex mu; { std::shared_lock lock(mu); if (MergedSection *osec = find()) return osec; } // Create a new output section. std::unique_lock lock(mu); if (MergedSection *osec = find()) return osec; auto *osec = new MergedSection(name, flags, type); MergedSection::instances.push_back(osec); return osec; } void MergedSection::copy_buf() { u8 *base = out::buf + shdr.sh_offset; map.for_each_value([&](const StringPiece &piece) { if (MergeableSection *m = piece.isec) memcpy(base + m->offset + piece.output_offset, piece.data, piece.size); }); } void EhFrameSection::construct() { std::vector fde_size(out::objs.size()); tbb::parallel_for(0, (int)out::objs.size(), [&](int i) { ObjectFile *file = out::objs[i]; for (CieRecord &cie : file->cies) { erase(cie.fdes, [&](FdeRecord &fde) { return !fde.is_alive(); }); for (FdeRecord &fde : cie.fdes) fde_size[i] += fde.contents.size(); } }); // Aggreagate eh records std::vector vec; vec.reserve(out::objs.size()); for (ObjectFile *file : out::objs) for (CieRecord &cie : file->cies) vec.push_back(&cie); std::stable_sort(vec.begin(), vec.end(), [](CieRecord *a, CieRecord *b) { return *a < *b; }); for (CieRecord *cie : vec) { if (cies.empty() || cies.back() != cie) cies.push_back(cie); else std::move(cie->fdes.begin(), cie->fdes.end(), std::back_inserter(cies.back()->fdes)); } // Compute output size u32 size = 0; for (CieRecord *cie : cies) size += cie->contents.size(); for (u32 x : fde_size) size += x; shdr.sh_size = size; } void EhFrameSection::copy_buf() { u8 *base = out::buf + shdr.sh_offset; u32 offset = 0; for (CieRecord *cie : cies) { u32 cie_offset = offset; memcpy(base + offset, cie->contents.data(), cie->contents.size()); offset += cie->contents.size(); for (FdeRecord &fde : cie->fdes) { memcpy(base + offset, fde.contents.data(), fde.contents.size()); offset += fde.contents.size(); } } } void CopyrelSection::add_symbol(Symbol *sym) { assert(sym->is_imported); if (sym->has_copyrel) return; shdr.sh_size = align_to(shdr.sh_size, shdr.sh_addralign); sym->value = shdr.sh_size; sym->has_copyrel = true; shdr.sh_size += sym->esym->st_size; symbols.push_back(sym); out::dynsym->add_symbol(sym); } void VersymSection::update_shdr() { shdr.sh_size = contents.size() * sizeof(contents[0]); shdr.sh_link = out::dynsym->shndx; } void VersymSection::copy_buf() { write_vector(out::buf + shdr.sh_offset, contents); } void VerneedSection::update_shdr() { shdr.sh_size = contents.size() * sizeof(contents[0]); shdr.sh_link = out::dynstr->shndx; } void VerneedSection::copy_buf() { write_vector(out::buf + shdr.sh_offset, contents); } void BuildIdSection::copy_buf() { u32 *base = (u32 *)(out::buf + shdr.sh_offset); memset(base, 0, shdr.sh_size); base[0] = 4; // Name size base[1] = SHA256_SIZE; // Hash size base[2] = NT_GNU_BUILD_ID; // Type memcpy(base + 3, "GNU", 4); // Name string } void BuildIdSection::write_buildid(u64 filesize) { Timer t("build_id"); int shard_size = 1024 * 1024; int num_shards = filesize / shard_size + 1; u8 shards[num_shards][SHA256_SIZE]; tbb::parallel_for(0, num_shards, [&](int i) { u8 *begin = out::buf + shard_size * i; u64 size = (i < num_shards - 1) ? shard_size : (filesize % shard_size); SHA256(begin, size, shards[i]); }); SHA256((u8 *)shards, sizeof(shards), out::buf + shdr.sh_offset + 16); }