1
1
mirror of https://github.com/rui314/mold.git synced 2024-11-11 05:46:58 +03:00
mold/main.cc
Rui Ueyama 00666d4970 wip
2021-04-05 20:26:32 +09:00

617 lines
17 KiB
C++

#include "mold.h"
#include <functional>
#include <map>
#include <signal.h>
#include <tbb/global_control.h>
#include <tbb/parallel_for_each.h>
#include <unordered_set>
template <typename E>
static bool is_text_file(Context<E> &ctx, MemoryMappedFile<E> *mb) {
u8 *data = mb->data(ctx);
return mb->size() >= 4 &&
isprint(data[0]) &&
isprint(data[1]) &&
isprint(data[2]) &&
isprint(data[3]);
}
enum class FileType { UNKNOWN, OBJ, DSO, AR, THIN_AR, TEXT };
template <typename E>
static FileType get_file_type(Context<E> &ctx, MemoryMappedFile<E> *mb) {
u8 *data = mb->data(ctx);
if (mb->size() >= 20 && memcmp(data, "\177ELF", 4) == 0) {
ElfEhdr<E> &ehdr = *(ElfEhdr<E> *)data;
if (ehdr.e_type == ET_REL)
return FileType::OBJ;
if (ehdr.e_type == ET_DYN)
return FileType::DSO;
return FileType::UNKNOWN;
}
if (mb->size() >= 8 && memcmp(data, "!<arch>\n", 8) == 0)
return FileType::AR;
if (mb->size() >= 8 && memcmp(data, "!<thin>\n", 8) == 0)
return FileType::THIN_AR;
if (is_text_file(ctx, mb))
return FileType::TEXT;
return FileType::UNKNOWN;
}
template <typename E>
static ObjectFile<E> *new_object_file(Context<E> &ctx, MemoryMappedFile<E> *mb,
std::string archive_name) {
static Counter count("parsed_objs");
count++;
bool in_lib = (!archive_name.empty() && !ctx.whole_archive);
ObjectFile<E> *file = new ObjectFile<E>(ctx, mb, archive_name, in_lib);
ctx.tg.run([file, &ctx]() { file->parse(ctx); });
if (ctx.arg.trace)
SyncOut(ctx) << "trace: " << *file;
return file;
}
template <typename E>
static SharedFile<E> *new_shared_file(Context<E> &ctx, MemoryMappedFile<E> *mb) {
SharedFile<E> *file = new SharedFile<E>(ctx, mb);
ctx.tg.run([file, &ctx]() { file->parse(ctx); });
if (ctx.arg.trace)
SyncOut(ctx) << "trace: " << *file;
return file;
}
template <typename E, typename T>
class FileCache {
public:
void store(MemoryMappedFile<E> *mb, T *obj) {
Key k(mb->name, mb->size(), mb->mtime);
cache[k].push_back(obj);
}
std::vector<T *> get(MemoryMappedFile<E> *mb) {
Key k(mb->name, mb->size(), mb->mtime);
std::vector<T *> objs = cache[k];
cache[k].clear();
return objs;
}
T *get_one(MemoryMappedFile<E> *mb) {
std::vector<T *> objs = get(mb);
return objs.empty() ? nullptr : objs[0];
}
private:
typedef std::tuple<std::string, i64, i64> Key;
std::map<Key, std::vector<T *>> cache;
};
template <typename E>
void read_file(Context<E> &ctx, MemoryMappedFile<E> *mb) {
if (ctx.visited.contains(mb->name))
return;
static FileCache<E, ObjectFile<E>> obj_cache;
static FileCache<E, SharedFile<E>> dso_cache;
if (ctx.is_preloading) {
switch (get_file_type(ctx, mb)) {
case FileType::OBJ:
obj_cache.store(mb, new_object_file(ctx, mb, ""));
return;
case FileType::DSO:
dso_cache.store(mb, new_shared_file(ctx, mb));
return;
case FileType::AR:
for (MemoryMappedFile<E> *child : read_fat_archive_members(ctx, mb))
if (get_file_type(ctx, child) == FileType::OBJ)
obj_cache.store(mb, new_object_file(ctx, child, mb->name));
return;
case FileType::THIN_AR:
for (MemoryMappedFile<E> *child : read_thin_archive_members(ctx, mb))
if (get_file_type(ctx, child) == FileType::OBJ)
obj_cache.store(child, new_object_file(ctx, child, mb->name));
return;
case FileType::TEXT:
parse_linker_script(ctx, mb);
return;
}
Fatal(ctx) << mb->name << ": unknown file type";
}
switch (get_file_type(ctx, mb)) {
case FileType::OBJ:
if (ObjectFile<E> *obj = obj_cache.get_one(mb))
ctx.objs.push_back(obj);
else
ctx.objs.push_back(new_object_file(ctx, mb, ""));
return;
case FileType::DSO:
if (SharedFile<E> *obj = dso_cache.get_one(mb))
ctx.dsos.push_back(obj);
else
ctx.dsos.push_back(new_shared_file(ctx, mb));
ctx.visited.insert(mb->name);
return;
case FileType::AR:
if (std::vector<ObjectFile<E> *> objs = obj_cache.get(mb); !objs.empty()) {
append(ctx.objs, objs);
} else {
for (MemoryMappedFile<E> *child : read_fat_archive_members(ctx, mb))
if (get_file_type(ctx, child) == FileType::OBJ)
ctx.objs.push_back(new_object_file(ctx, child, mb->name));
}
ctx.visited.insert(mb->name);
return;
case FileType::THIN_AR:
for (MemoryMappedFile<E> *child : read_thin_archive_members(ctx, mb)) {
if (ObjectFile<E> *obj = obj_cache.get_one(child))
ctx.objs.push_back(obj);
else if (get_file_type(ctx, child) == FileType::OBJ)
ctx.objs.push_back(new_object_file(ctx, child, mb->name));
}
ctx.visited.insert(mb->name);
return;
case FileType::TEXT:
parse_linker_script(ctx, mb);
return;
}
Fatal(ctx) << mb->name << ": unknown file type";
}
template <typename E>
void cleanup() {
if (OutputFile<E>::tmpfile)
unlink(OutputFile<E>::tmpfile);
if (socket_tmpfile)
unlink(socket_tmpfile);
}
template <typename E>
static void signal_handler(int) {
cleanup<E>();
_exit(1);
}
template <typename E>
MemoryMappedFile<E> *find_library(Context<E> &ctx, std::string name) {
if (name.starts_with(':')) {
for (std::string_view dir : ctx.arg.library_paths) {
std::string root = dir.starts_with("/") ? ctx.arg.sysroot : "";
std::string path = root + std::string(dir) + "/" + name.substr(1);
if (MemoryMappedFile<E> *mb = MemoryMappedFile<E>::open(path))
return mb;
}
Fatal(ctx) << "library not found: " << name;
}
for (std::string_view dir : ctx.arg.library_paths) {
std::string root = dir.starts_with("/") ? ctx.arg.sysroot : "";
std::string stem = root + std::string(dir) + "/lib" + name;
if (!ctx.is_static)
if (MemoryMappedFile<E> *mb = MemoryMappedFile<E>::open(stem + ".so"))
return mb;
if (MemoryMappedFile<E> *mb = MemoryMappedFile<E>::open(stem + ".a"))
return mb;
}
Fatal(ctx) << "library not found: " << name;
}
template <typename E>
static void read_input_files(Context<E> &ctx, std::span<std::string_view> args) {
std::vector<std::tuple<bool, bool, bool>> state;
while (!args.empty()) {
std::string_view arg;
if (read_flag(args, "as-needed")) {
ctx.as_needed = true;
} else if (read_flag(args, "no-as-needed")) {
ctx.as_needed = false;
} else if (read_flag(args, "whole-archive")) {
ctx.whole_archive = true;
} else if (read_flag(args, "no-whole-archive")) {
ctx.whole_archive = false;
} else if (read_flag(args, "Bstatic")) {
ctx.is_static = true;
} else if (read_flag(args, "Bdynamic")) {
ctx.is_static = false;
} else if (read_flag(args, "push-state")) {
state.push_back({ctx.as_needed, ctx.whole_archive, ctx.is_static});
} else if (read_flag(args, "pop-state")) {
if (state.empty())
Fatal(ctx) << "no state pushed before popping";
std::tie(ctx.as_needed, ctx.whole_archive, ctx.is_static) = state.back();
state.pop_back();
} else if (read_arg(ctx, args, arg, "l")) {
MemoryMappedFile<E> *mb = find_library(ctx, std::string(arg));
read_file(ctx, mb);
} else {
read_file(ctx, MemoryMappedFile<E>::must_open(ctx, std::string(args[0])));
args = args.subspan(1);
}
}
}
template <typename E>
static void show_stats(Context<E> &ctx) {
for (ObjectFile<E> *obj : ctx.objs) {
static Counter defined("defined_syms");
defined += obj->first_global - 1;
static Counter undefined("undefined_syms");
undefined += obj->symbols.size() - obj->first_global;
for (InputSection<E> *sec : obj->sections) {
if (!sec)
continue;
static Counter alloc("reloc_alloc");
static Counter nonalloc("reloc_nonalloc");
if (sec->shdr.sh_flags & SHF_ALLOC)
alloc += sec->get_rels(ctx).size();
else
nonalloc += sec->get_rels(ctx).size();
}
}
Counter num_input_sections("input_sections");
for (ObjectFile<E> *file : ctx.objs)
num_input_sections += file->sections.size();
Counter num_output_chunks("output_chunks", ctx.chunks.size());
Counter num_objs("num_objs", ctx.objs.size());
Counter num_dsos("num_dsos", ctx.dsos.size());
Counter::print();
}
template <typename E>
int do_main(int argc, char **argv) {
Context<E> ctx;
// Process -run option first. process_run_subcommand() does not return.
if (argc >= 2)
if (std::string_view arg = argv[1]; arg == "-run" || arg == "--run")
process_run_subcommand(ctx, argc, argv);
Timer t_all("all");
// Parse non-positional command line options
ctx.cmdline_args = expand_response_files(ctx, argv + 1);
std::vector<std::string_view> file_args;
parse_nonpositional_args(ctx, file_args);
if (!ctx.arg.preload)
if (i64 code; resume_daemon(ctx, argv, &code))
exit(code);
tbb::global_control tbb_cont(tbb::global_control::max_allowed_parallelism,
ctx.arg.thread_count);
signal(SIGINT, signal_handler<E>);
signal(SIGTERM, signal_handler<E>);
// Preload input files
std::function<void()> on_complete;
if (ctx.arg.preload) {
Timer t("preload");
std::function<void()> wait_for_client;
daemonize(ctx, argv, &wait_for_client, &on_complete);
ctx.reset_reader_context(true);
read_input_files(ctx, file_args);
ctx.tg.wait();
t.stop();
Timer t2("wait_for_client");
wait_for_client();
} else if (ctx.arg.fork) {
on_complete = fork_child();
}
for (std::string_view arg : ctx.arg.trace_symbol)
Symbol<E>::intern(ctx, arg)->traced = true;
// Parse input files
{
Timer t("parse");
ctx.reset_reader_context(false);
read_input_files(ctx, file_args);
ctx.tg.wait();
}
if (ctx.objs.empty())
Fatal(ctx) << "no input files";
// Uniquify shared object files with soname
{
std::vector<SharedFile<E> *> vec;
std::unordered_set<std::string_view> seen;
for (SharedFile<E> *file : ctx.dsos)
if (seen.insert(file->soname).second)
vec.push_back(file);
ctx.dsos = vec;
}
Timer t_total("total");
Timer t_before_copy("before_copy");
// Apply -exclude-libs
apply_exclude_libs(ctx);
// Create instances of linker-synthesized sections such as
// .got or .plt.
create_synthetic_sections(ctx);
// Set unique indices to files.
set_file_priority(ctx);
// Resolve symbols and fix the set of object files that are
// included to the final output.
resolve_obj_symbols(ctx);
// Remove redundant comdat sections (e.g. duplicate inline functions).
eliminate_comdats(ctx);
// Create .bss sections for common symbols.
convert_common_symbols(ctx);
// Apply version scripts.
apply_version_script(ctx);
// Parse symbol version suffixes (e.g. "foo@ver1").
parse_symbol_version(ctx);
// Set is_import and is_export bits for each symbol.
compute_import_export(ctx);
// Garbage-collect unreachable sections.
if (ctx.arg.gc_sections)
gc_sections(ctx);
// Merge identical read-only sections.
if (ctx.arg.icf)
icf_sections(ctx);
// Compute sizes of sections containing mergeable strings.
compute_merged_section_sizes(ctx);
// ctx input sections into output sections
bin_sections(ctx);
// Get a list of output sections.
append(ctx.chunks, collect_output_sections(ctx));
// Create a dummy file containing linker-synthesized symbols
// (e.g. `__bss_start`).
ctx.internal_obj = new ObjectFile<E>(ctx);
ctx.internal_obj->resolve_regular_symbols(ctx);
ctx.objs.push_back(ctx.internal_obj);
// Add symbols from shared object files.
resolve_dso_symbols(ctx);
// Beyond this point, no new files will be added to ctx.objs
// or ctx.dsos.
// Convert weak symbols to absolute symbols with value 0.
convert_undefined_weak_symbols(ctx);
// If we are linking a .so file, remaining undefined symbols does
// not cause a linker error. Instead, they are treated as if they
// were imported symbols.
if (ctx.arg.shared && !ctx.arg.z_defs) {
Timer t("claim_unresolved_symbols");
tbb::parallel_for_each(ctx.objs, [](ObjectFile<E> *file) {
file->claim_unresolved_symbols();
});
}
// Beyond this point, no new symbols will be added to the result.
// Make sure that all symbols have been resolved.
if (!ctx.arg.allow_multiple_definition)
check_duplicate_symbols(ctx);
// Compute sizes of output sections while assigning offsets
// within an output section to input sections.
compute_section_sizes(ctx);
// Sort sections by section attributes so that we'll have to
// create as few segments as possible.
sort(ctx.chunks, [&](OutputChunk<E> *a, OutputChunk<E> *b) {
return get_section_rank(ctx, a) < get_section_rank(ctx, b);
});
// Copy string referred by .dynamic to .dynstr.
for (SharedFile<E> *file : ctx.dsos)
ctx.dynstr->add_string(file->soname);
for (std::string_view str : ctx.arg.auxiliary)
ctx.dynstr->add_string(str);
for (std::string_view str : ctx.arg.filter)
ctx.dynstr->add_string(str);
if (!ctx.arg.rpaths.empty())
ctx.dynstr->add_string(ctx.arg.rpaths);
if (!ctx.arg.soname.empty())
ctx.dynstr->add_string(ctx.arg.soname);
// Scan relocations to find symbols that need entries in .got, .plt,
// .got.plt, .dynsym, .dynstr, etc.
scan_rels(ctx);
// Sort .dynsym contents. Beyond this point, no symbol will be
// added to .dynsym.
ctx.dynsym->sort_symbols(ctx);
// Fill .gnu.version_d section contents.
fill_verdef(ctx);
// Fill .gnu.version_r section contents.
fill_verneed(ctx);
// Compute .symtab and .strtab sizes for each file.
{
Timer t("compute_symtab");
tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
file->compute_symtab(ctx);
});
}
// .eh_frame is a special section from the linker's point of view,
// as its contents are parsed and reconstructed by the linker,
// unlike other sections that are regarded as opaque bytes.
// Here, we transplant .eh_frame sections from a regular output
// section to the special EHFrameSection.
{
Timer t("eh_frame");
erase(ctx.chunks, [](OutputChunk<E> *chunk) {
return chunk->kind == OutputChunk<E>::REGULAR &&
chunk->name == ".eh_frame";
});
ctx.eh_frame->construct(ctx);
}
// Now that we have computed sizes for all sections and assigned
// section indices to them, so we can fix section header contents
// for all output sections.
for (OutputChunk<E> *chunk : ctx.chunks)
chunk->update_shdr(ctx);
erase(ctx.chunks, [](OutputChunk<E> *chunk) {
return chunk->kind == OutputChunk<E>::SYNTHETIC &&
chunk->shdr.sh_size == 0;
});
// Set section indices.
for (i64 i = 0, shndx = 1; i < ctx.chunks.size(); i++)
if (ctx.chunks[i]->kind != OutputChunk<E>::HEADER)
ctx.chunks[i]->shndx = shndx++;
for (OutputChunk<E> *chunk : ctx.chunks)
chunk->update_shdr(ctx);
// Assign offsets to output sections
i64 filesize = set_osec_offsets(ctx);
// At this point, file layout is fixed.
// Fix linker-synthesized symbol addresses.
fix_synthetic_symbols(ctx);
// Beyond this, you can assume that symbol addresses including their
// GOT or PLT addresses have a correct final value.
// Some types of relocations for TLS symbols need the TLS segment
// address. Find it out now.
for (ElfPhdr<E> phdr : create_phdr(ctx)) {
if (phdr.p_type == PT_TLS) {
ctx.tls_begin = phdr.p_vaddr;
ctx.tls_end = align_to(phdr.p_vaddr + phdr.p_memsz, phdr.p_align);
break;
}
}
t_before_copy.stop();
// Create an output file
OutputFile<E> *file = OutputFile<E>::open(ctx, ctx.arg.output, filesize);
ctx.buf = file->buf;
Timer t_copy("copy");
// Copy input sections to the output file
{
Timer t("copy_buf");
tbb::parallel_for_each(ctx.chunks, [&](OutputChunk<E> *chunk) {
std::string name(chunk->name);
if (name.empty())
name = "(header)";
Timer t2(name, &t);
chunk->copy_buf(ctx);
});
Error<E>::checkpoint(ctx);
}
// Dynamic linker works better with sorted .rela.dyn section,
// so we sort them.
ctx.reldyn->sort(ctx);
// Zero-clear paddings between sections
clear_padding(ctx, filesize);
if (ctx.buildid) {
Timer t("build_id");
ctx.buildid->write_buildid(ctx, filesize);
}
t_copy.stop();
// Commit
file->close(ctx);
t_total.stop();
t_all.stop();
if (ctx.arg.print_map)
print_map(ctx);
// Show stats numbers
if (ctx.arg.stats)
show_stats(ctx);
if (ctx.arg.perf)
Timer::print();
std::cout << std::flush;
std::cerr << std::flush;
if (on_complete)
on_complete();
if (ctx.arg.quick_exit)
std::quick_exit(0);
return 0;
}
enum class MachineType { X86_64, I386 };
static MachineType get_machine_type(int argc, char **argv) {
for (i64 i = 1; i < argc; i++) {
if (std::string_view(argv[i]) == "-m") {
if (i + 1 == argc)
break;
i++;
std::string_view val(argv[i]);
if (val == "elf_x86_64")
return MachineType::X86_64;
if (val == "elf_i386")
return MachineType::I386;
std::cerr << "unknown -m argument: " << val;
exit(1);
}
}
return MachineType::X86_64;
// std::cerr << "-m is missing";
// exit(1);
}
int main(int argc, char **argv) {
switch (get_machine_type(argc, argv)) {
case MachineType::X86_64:
return do_main<X86_64>(argc, argv);
case MachineType::I386:
return do_main<I386>(argc, argv);
}
}
template void read_file(Context<X86_64> &ctx, MemoryMappedFile<X86_64> *mb);