1
1
mirror of https://github.com/rui314/mold.git synced 2024-11-13 09:39:13 +03:00
mold/elf/passes.cc
Rui Ueyama 455e729393 [ELF] Make version script application faster
Instead of calling regex match multiple times, create a single
regex and call regex match function only once.

https://github.com/rui314/mold/issues/156
2021-12-17 19:09:26 +09:00

1027 lines
31 KiB
C++

#include "mold.h"
#include <functional>
#include <map>
#include <regex>
#include <tbb/parallel_for_each.h>
#include <tbb/parallel_scan.h>
#include <tbb/partitioner.h>
#include <unordered_set>
namespace mold::elf {
template <typename E>
void apply_exclude_libs(Context<E> &ctx) {
Timer t(ctx, "apply_exclude_libs");
if (ctx.arg.exclude_libs.empty())
return;
std::unordered_set<std::string_view> set(ctx.arg.exclude_libs.begin(),
ctx.arg.exclude_libs.end());
for (ObjectFile<E> *file : ctx.objs)
if (!file->archive_name.empty())
if (set.contains("ALL") ||
set.contains(path_filename(file->archive_name)))
file->exclude_libs = true;
}
template <typename E>
void create_synthetic_sections(Context<E> &ctx) {
auto add = [&](auto &chunk) {
ctx.chunks.push_back(chunk.get());
};
add(ctx.ehdr = std::make_unique<OutputEhdr<E>>());
add(ctx.phdr = std::make_unique<OutputPhdr<E>>());
add(ctx.shdr = std::make_unique<OutputShdr<E>>());
add(ctx.got = std::make_unique<GotSection<E>>());
add(ctx.gotplt = std::make_unique<GotPltSection<E>>());
add(ctx.reldyn = std::make_unique<RelDynSection<E>>());
add(ctx.relplt = std::make_unique<RelPltSection<E>>());
add(ctx.strtab = std::make_unique<StrtabSection<E>>());
add(ctx.shstrtab = std::make_unique<ShstrtabSection<E>>());
add(ctx.plt = std::make_unique<PltSection<E>>());
add(ctx.pltgot = std::make_unique<PltGotSection<E>>());
add(ctx.symtab = std::make_unique<SymtabSection<E>>());
add(ctx.dynsym = std::make_unique<DynsymSection<E>>());
add(ctx.dynstr = std::make_unique<DynstrSection<E>>());
add(ctx.eh_frame = std::make_unique<EhFrameSection<E>>());
add(ctx.dynbss = std::make_unique<DynbssSection<E>>(false));
add(ctx.dynbss_relro = std::make_unique<DynbssSection<E>>(true));
if (!ctx.arg.dynamic_linker.empty())
add(ctx.interp = std::make_unique<InterpSection<E>>());
if (ctx.arg.build_id.kind != BuildId::NONE)
add(ctx.buildid = std::make_unique<BuildIdSection<E>>());
if (ctx.arg.eh_frame_hdr)
add(ctx.eh_frame_hdr = std::make_unique<EhFrameHdrSection<E>>());
if (ctx.arg.hash_style_sysv)
add(ctx.hash = std::make_unique<HashSection<E>>());
if (ctx.arg.hash_style_gnu)
add(ctx.gnu_hash = std::make_unique<GnuHashSection<E>>());
if (!ctx.arg.version_definitions.empty())
add(ctx.verdef = std::make_unique<VerdefSection<E>>());
add(ctx.dynamic = std::make_unique<DynamicSection<E>>());
add(ctx.versym = std::make_unique<VersymSection<E>>());
add(ctx.verneed = std::make_unique<VerneedSection<E>>());
add(ctx.note_property = std::make_unique<NotePropertySection<E>>());
if (ctx.arg.repro)
add(ctx.repro = std::make_unique<ReproSection<E>>());
}
template <typename E>
void resolve_symbols(Context<E> &ctx) {
Timer t(ctx, "resolve_obj_symbols");
// Register object symbols
tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
if (file->is_in_lib)
file->resolve_lazy_symbols(ctx);
else
file->resolve_regular_symbols(ctx);
});
// Register DSO symbols
tbb::parallel_for_each(ctx.dsos, [&](SharedFile<E> *file) {
file->resolve_dso_symbols(ctx);
});
// Mark reachable objects to decide which files to include
// into an output.
std::vector<ObjectFile<E> *> live_objs = ctx.objs;
erase(live_objs, [](InputFile<E> *file) { return !file->is_alive; });
auto load = [&](std::string_view name) {
if (InputFile<E> *file = intern(ctx, name)->file)
if (!file->is_alive.exchange(true) && !file->is_dso)
live_objs.push_back((ObjectFile<E> *)file);
};
for (std::string_view name : ctx.arg.undefined)
load(name);
for (std::string_view name : ctx.arg.require_defined)
load(name);
tbb::parallel_for_each(live_objs,
[&](ObjectFile<E> *file,
tbb::feeder<ObjectFile<E> *> &feeder) {
file->mark_live_objects(ctx, [&](ObjectFile<E> *obj) { feeder.add(obj); });
});
// Remove symbols of eliminated objects.
tbb::parallel_for_each(ctx.objs, [](ObjectFile<E> *file) {
if (!file->is_alive)
for (Symbol<E> *sym : file->get_global_syms())
if (sym->file == file)
new (sym) Symbol<E>(sym->name());
});
// Eliminate unused archive members.
erase(ctx.objs, [](InputFile<E> *file) { return !file->is_alive; });
// Mark live DSOs
tbb::parallel_for_each(ctx.objs, [](ObjectFile<E> *file) {
for (i64 i = file->first_global; i < file->elf_syms.size(); i++) {
const ElfSym<E> &esym = file->elf_syms[i];
Symbol<E> &sym = *file->symbols[i];
if (esym.is_undef_strong() && sym.file && sym.file->is_dso) {
std::lock_guard lock(sym.mu);
sym.file->is_alive = true;
sym.is_weak = false;
}
}
});
// DSOs referenced by live DSOs are also alive.
std::vector<SharedFile<E> *> live_dsos = ctx.dsos;
erase(live_dsos, [](SharedFile<E> *file) { return !file->is_alive; });
tbb::parallel_for_each(live_dsos,
[&](SharedFile<E> *file,
tbb::feeder<SharedFile<E> *> &feeder) {
for (Symbol<E> *sym : file->globals)
if (sym->file && sym->file != file && sym->file->is_dso &&
!sym->file->is_alive.exchange(true))
feeder.add(file);
});
// Remove symbols of unreferenced DSOs.
tbb::parallel_for_each(ctx.dsos, [](SharedFile<E> *file) {
if (!file->is_alive)
for (Symbol<E> *sym : file->symbols)
if (sym->file == file)
new (sym) Symbol<E>(sym->name());
});
// Remove unreferenced DSOs
erase(ctx.dsos, [](InputFile<E> *file) { return !file->is_alive; });
// Register common symbols
tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
file->resolve_common_symbols(ctx);
});
if (Symbol<E> *sym = intern(ctx, "__gnu_lto_slim"); sym->file)
Fatal(ctx) << *sym->file << ": looks like this file contains a GCC "
<< "intermediate code, but mold does not support LTO";
}
template <typename E>
void eliminate_comdats(Context<E> &ctx) {
Timer t(ctx, "eliminate_comdats");
tbb::parallel_for_each(ctx.objs, [](ObjectFile<E> *file) {
file->resolve_comdat_groups();
});
tbb::parallel_for_each(ctx.objs, [](ObjectFile<E> *file) {
file->eliminate_duplicate_comdat_groups();
});
}
template <typename E>
void convert_common_symbols(Context<E> &ctx) {
Timer t(ctx, "convert_common_symbols");
tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
file->convert_common_symbols(ctx);
});
}
template <typename E>
static std::string get_cmdline_args(Context<E> &ctx) {
std::stringstream ss;
ss << ctx.cmdline_args[1];
for (i64 i = 2; i < ctx.cmdline_args.size(); i++)
ss << " " << ctx.cmdline_args[i];
return ss.str();
}
template <typename E>
void add_comment_string(Context<E> &ctx, std::string str) {
std::string_view buf = save_string(ctx, str);
MergedSection<E> *sec =
MergedSection<E>::get_instance(ctx, ".comment", SHT_PROGBITS, 0);
std::string_view data(buf.data(), buf.size() + 1);
SectionFragment<E> *frag = sec->insert(data, hash_string(data), 1);
frag->is_alive = true;
}
template <typename E>
void compute_merged_section_sizes(Context<E> &ctx) {
Timer t(ctx, "compute_merged_section_sizes");
// Mark section fragments referenced by live objects.
if (!ctx.arg.gc_sections) {
tbb::parallel_for_each(ctx.objs, [](ObjectFile<E> *file) {
for (SectionFragment<E> *frag : file->fragments)
frag->is_alive.store(true, std::memory_order_relaxed);
});
}
// Add an identification string to .comment.
add_comment_string(ctx, mold_version);
// Embed command line arguments for debugging.
if (char *env = getenv("MOLD_DEBUG"); env && env[0])
add_comment_string(ctx, "mold command line: " + get_cmdline_args(ctx));
Timer t2(ctx, "MergedSection assign_offsets");
tbb::parallel_for_each(ctx.merged_sections,
[&](std::unique_ptr<MergedSection<E>> &sec) {
sec->assign_offsets(ctx);
});
}
template <typename T>
static std::vector<std::span<T>> split(std::vector<T> &input, i64 unit) {
assert(input.size() > 0);
std::span<T> span(input);
std::vector<std::span<T>> vec;
while (span.size() >= unit) {
vec.push_back(span.subspan(0, unit));
span = span.subspan(unit);
}
if (!span.empty())
vec.push_back(span);
return vec;
}
// So far, each input section has a pointer to its corresponding
// output section, but there's no reverse edge to get a list of
// input sections from an output section. This function creates it.
//
// An output section may contain millions of input sections.
// So, we append input sections to output sections in parallel.
template <typename E>
void bin_sections(Context<E> &ctx) {
Timer t(ctx, "bin_sections");
static constexpr i64 num_shards = 128;
i64 unit = (ctx.objs.size() + num_shards - 1) / num_shards;
std::vector<std::span<ObjectFile<E> *>> slices = split(ctx.objs, unit);
i64 num_osec = ctx.output_sections.size();
std::vector<std::vector<std::vector<InputSection<E> *>>> groups(slices.size());
for (i64 i = 0; i < groups.size(); i++)
groups[i].resize(num_osec);
tbb::parallel_for((i64)0, (i64)slices.size(), [&](i64 i) {
for (ObjectFile<E> *file : slices[i])
for (std::unique_ptr<InputSection<E>> &isec : file->sections)
if (isec && isec->is_alive)
groups[i][isec->output_section->idx].push_back(isec.get());
});
std::vector<i64> sizes(num_osec);
for (std::span<std::vector<InputSection<E> *>> group : groups)
for (i64 i = 0; i < group.size(); i++)
sizes[i] += group[i].size();
tbb::parallel_for((i64)0, num_osec, [&](i64 j) {
ctx.output_sections[j]->members.reserve(sizes[j]);
for (i64 i = 0; i < groups.size(); i++)
append(ctx.output_sections[j]->members, groups[i][j]);
});
}
// Create a dummy object file containing linker-synthesized
// symbols.
template <typename E>
ObjectFile<E> *create_internal_file(Context<E> &ctx) {
ObjectFile<E> *obj = new ObjectFile<E>;
ctx.obj_pool.push_back(std::unique_ptr<ObjectFile<E>>(obj));
// Create linker-synthesized symbols.
auto *esyms = new std::vector<ElfSym<E>>(1);
obj->symbols.push_back(new Symbol<E>);
obj->first_global = 1;
obj->is_alive = true;
obj->priority = 1;
auto add = [&](std::string_view name) {
ElfSym<E> esym = {};
esym.st_type = STT_NOTYPE;
esym.st_shndx = SHN_ABS;
esym.st_bind = STB_GLOBAL;
esym.st_visibility = STV_HIDDEN;
esyms->push_back(esym);
Symbol<E> *sym = intern(ctx, name);
obj->symbols.push_back(sym);
return sym;
};
ctx.__ehdr_start = add("__ehdr_start");
ctx.__init_array_start = add("__init_array_start");
ctx.__init_array_end = add("__init_array_end");
ctx.__fini_array_start = add("__fini_array_start");
ctx.__fini_array_end = add("__fini_array_end");
ctx.__preinit_array_start = add("__preinit_array_start");
ctx.__preinit_array_end = add("__preinit_array_end");
ctx._DYNAMIC = add("_DYNAMIC");
ctx._GLOBAL_OFFSET_TABLE_ = add("_GLOBAL_OFFSET_TABLE_");
ctx.__bss_start = add("__bss_start");
ctx._end = add("_end");
ctx._etext = add("_etext");
ctx._edata = add("_edata");
ctx.__executable_start = add("__executable_start");
ctx.__rel_iplt_start =
add(E::is_rel ? "__rel_iplt_start" : "__rela_iplt_start");
ctx.__rel_iplt_end =
add(E::is_rel ? "__rel_iplt_end" : "__rela_iplt_end");
if (ctx.arg.eh_frame_hdr)
ctx.__GNU_EH_FRAME_HDR = add("__GNU_EH_FRAME_HDR");
if (!intern(ctx, "end")->file)
ctx.end = add("end");
if (!intern(ctx, "etext")->file)
ctx.etext = add("etext");
if (!intern(ctx, "edata")->file)
ctx.edata = add("edata");
for (Chunk<E> *chunk : ctx.chunks) {
if (!is_c_identifier(chunk->name))
continue;
add(save_string(ctx, "__start_" + std::string(chunk->name)));
add(save_string(ctx, "__stop_" + std::string(chunk->name)));
}
obj->elf_syms = *esyms;
obj->sym_fragments.resize(obj->elf_syms.size());
i64 num_globals = obj->elf_syms.size() - obj->first_global;
obj->symvers.resize(num_globals);
ctx.on_exit.push_back([=]() {
delete esyms;
delete obj->symbols[0];
});
return obj;
}
template <typename E>
void check_duplicate_symbols(Context<E> &ctx) {
Timer t(ctx, "check_dup_syms");
tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
for (i64 i = file->first_global; i < file->elf_syms.size(); i++) {
const ElfSym<E> &esym = file->elf_syms[i];
Symbol<E> &sym = *file->symbols[i];
if (sym.file == file || sym.file == ctx.internal_obj ||
esym.is_undef() || esym.is_common() || (esym.st_bind == STB_WEAK))
continue;
if (!esym.is_abs() && !file->get_section(esym)->is_alive)
continue;
Error(ctx) << "duplicate symbol: " << *file << ": " << *sym.file
<< ": " << sym;
}
});
ctx.checkpoint();
}
template <typename E>
void sort_init_fini(Context<E> &ctx) {
Timer t(ctx, "sort_init_fini");
auto get_priority = [](InputSection<E> *isec) {
static std::regex re(R"(_array\.(\d+)$)", std::regex_constants::optimize);
std::string name = isec->name().begin();
std::smatch m;
if (std::regex_search(name, m, re))
return std::stoi(m[1]);
return 65536;
};
for (std::unique_ptr<OutputSection<E>> &osec : ctx.output_sections) {
if (osec->name == ".init_array" || osec->name == ".fini_array") {
sort(osec->members, [&](InputSection<E> *a, InputSection<E> *b) {
return get_priority(a) < get_priority(b);
});
}
}
}
template <typename E>
std::vector<Chunk<E> *> collect_output_sections(Context<E> &ctx) {
std::vector<Chunk<E> *> vec;
for (std::unique_ptr<OutputSection<E>> &osec : ctx.output_sections)
if (!osec->members.empty())
vec.push_back(osec.get());
for (std::unique_ptr<MergedSection<E>> &osec : ctx.merged_sections)
if (osec->shdr.sh_size)
vec.push_back(osec.get());
// Sections are added to the section lists in an arbitrary order because
// they are created in parallel.
// Sort them to to make the output deterministic.
sort(vec, [](Chunk<E> *x, Chunk<E> *y) {
return std::tuple(x->name, x->shdr.sh_type, x->shdr.sh_flags) <
std::tuple(y->name, y->shdr.sh_type, y->shdr.sh_flags);
});
return vec;
}
template <typename E>
void compute_section_sizes(Context<E> &ctx) {
Timer t(ctx, "compute_section_sizes");
tbb::parallel_for_each(ctx.output_sections,
[&](std::unique_ptr<OutputSection<E>> &osec) {
if (osec->members.empty())
return;
struct T {
i64 offset;
i64 align;
};
T sum = tbb::parallel_scan(
tbb::blocked_range<i64>(0, osec->members.size(), 10000),
T{0, 1},
[&](const tbb::blocked_range<i64> &r, T sum, bool is_final) {
for (i64 i = r.begin(); i < r.end(); i++) {
InputSection<E> &isec = *osec->members[i];
sum.offset = align_to(sum.offset, isec.shdr.sh_addralign);
if (is_final)
isec.offset = sum.offset;
sum.offset += isec.shdr.sh_size;
sum.align = std::max<i64>(sum.align, isec.shdr.sh_addralign);
}
return sum;
},
[](T lhs, T rhs) {
i64 offset = align_to(lhs.offset, rhs.align) + rhs.offset;
i64 align = std::max(lhs.align, rhs.align);
return T{offset, align};
},
tbb::simple_partitioner());
osec->shdr.sh_size = sum.offset;
osec->shdr.sh_addralign = sum.align;
});
}
template <typename E>
void claim_unresolved_symbols(Context<E> &ctx) {
Timer t(ctx, "claim_unresolved_symbols");
tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
file->claim_unresolved_symbols(ctx);
});
}
template <typename E>
void scan_rels(Context<E> &ctx) {
Timer t(ctx, "scan_rels");
// Scan relocations to find dynamic symbols.
tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
file->scan_relocations(ctx);
});
// Exit if there was a relocation that refers an undefined symbol.
ctx.checkpoint();
// Add symbol aliases for COPYREL.
tbb::parallel_for_each(ctx.dsos, [&](SharedFile<E> *file) {
for (Symbol<E> *sym : file->symbols)
if (sym->file == file && (sym->flags & NEEDS_COPYREL))
for (Symbol<E> *alias : file->find_aliases(sym))
alias->flags |= NEEDS_DYNSYM;
});
// Aggregate dynamic symbols to a single vector.
std::vector<InputFile<E> *> files;
append(files, ctx.objs);
append(files, ctx.dsos);
std::vector<std::vector<Symbol<E> *>> vec(files.size());
tbb::parallel_for((i64)0, (i64)files.size(), [&](i64 i) {
for (Symbol<E> *sym : files[i]->symbols) {
if (!files[i]->is_dso && (sym->is_imported || sym->is_exported))
sym->flags |= NEEDS_DYNSYM;
if (sym->file == files[i] && sym->flags)
vec[i].push_back(sym);
}
});
std::vector<Symbol<E> *> syms = flatten(vec);
ctx.symbol_aux.resize(syms.size());
for (i64 i = 0; i < syms.size(); i++)
syms[i]->aux_idx = i;
// Assign offsets in additional tables for each dynamic symbol.
for (Symbol<E> *sym : syms) {
if (sym->flags & NEEDS_DYNSYM)
ctx.dynsym->add_symbol(ctx, sym);
if (sym->flags & NEEDS_GOT)
ctx.got->add_got_symbol(ctx, sym);
if (sym->flags & NEEDS_PLT) {
if (sym->flags & NEEDS_GOT) {
// If we need to create a canonical PLT, we can't use .plt.got
// because otherwise .plt.got and .got would refer each other,
// resulting in an infinite loop at runtime.
if (!ctx.arg.pic && sym->is_imported)
ctx.plt->add_symbol(ctx, sym);
else
ctx.pltgot->add_symbol(ctx, sym);
} else {
ctx.plt->add_symbol(ctx, sym);
}
}
if (sym->flags & NEEDS_GOTTP)
ctx.got->add_gottp_symbol(ctx, sym);
if (sym->flags & NEEDS_TLSGD)
ctx.got->add_tlsgd_symbol(ctx, sym);
if (sym->flags & NEEDS_TLSDESC)
ctx.got->add_tlsdesc_symbol(ctx, sym);
if (sym->flags & NEEDS_TLSLD)
ctx.got->add_tlsld(ctx);
if (sym->flags & NEEDS_COPYREL) {
assert(sym->file->is_dso);
SharedFile<E> *file = (SharedFile<E> *)sym->file;
sym->copyrel_readonly = file->is_readonly(ctx, sym);
if (sym->copyrel_readonly)
ctx.dynbss_relro->add_symbol(ctx, sym);
else
ctx.dynbss->add_symbol(ctx, sym);
for (Symbol<E> *alias : file->find_aliases(sym)) {
alias->has_copyrel = true;
alias->value = sym->value;
alias->copyrel_readonly = sym->copyrel_readonly;
ctx.dynsym->add_symbol(ctx, alias);
}
}
sym->flags = 0;
}
}
template <typename E>
void apply_version_script(Context<E> &ctx) {
Timer t(ctx, "apply_version_script");
auto to_regex = [](std::span<std::string_view> vec) -> std::string {
switch (vec.size()) {
case 0:
return "";
case 1:
return glob_to_regex(vec[0]);
default:
std::string re = glob_to_regex(vec[0]);
for (std::string_view s : vec.subspan(1))
re += "|" + glob_to_regex(s);
return re;
}
};
for (VersionPattern &elem : ctx.arg.version_patterns) {
std::vector<std::string_view> vec;
for (std::string_view pat : elem.patterns) {
if (pat.find('*') == pat.npos) {
Symbol<E> *sym = intern(ctx, pat);
if (sym->file && !sym->file->is_dso)
sym->ver_idx = elem.ver_idx;
} else {
vec.push_back(pat);
}
}
if (vec.empty() && elem.cpp_patterns.empty())
continue;
auto flags = std::regex_constants::optimize | std::regex_constants::nosubs;
std::regex re(to_regex(vec), flags);
std::regex cpp_re(to_regex(elem.cpp_patterns), flags);
tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
for (Symbol<E> *sym : file->get_global_syms()) {
if (sym->file != file)
continue;
std::string_view name = sym->name();
if (!vec.empty() && std::regex_match(name.begin(), name.end(), re)) {
sym->ver_idx = elem.ver_idx;
continue;
}
if (!elem.cpp_patterns.empty()) {
std::string_view s = demangle(name);
if (std::regex_match(s.begin(), s.end(), cpp_re))
sym->ver_idx = elem.ver_idx;
}
}
});
}
}
template <typename E>
void parse_symbol_version(Context<E> &ctx) {
if (!ctx.arg.shared)
return;
Timer t(ctx, "parse_symbol_version");
std::unordered_map<std::string_view, u16> verdefs;
for (i64 i = 0; i < ctx.arg.version_definitions.size(); i++)
verdefs[ctx.arg.version_definitions[i]] = i + VER_NDX_LAST_RESERVED + 1;
tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
for (i64 i = 0; i < file->symbols.size() - file->first_global; i++) {
if (!file->symvers[i])
continue;
Symbol<E> *sym = file->symbols[i + file->first_global];
if (sym->file != file)
continue;
std::string_view ver = file->symvers[i];
bool is_default = false;
if (ver.starts_with('@')) {
is_default = true;
ver = ver.substr(1);
}
auto it = verdefs.find(ver);
if (it == verdefs.end()) {
Error(ctx) << *file << ": symbol " << *sym << " has undefined version "
<< ver;
continue;
}
sym->ver_idx = it->second;
if (!is_default)
sym->ver_idx |= VERSYM_HIDDEN;
}
});
}
template <typename E>
void compute_import_export(Context<E> &ctx) {
Timer t(ctx, "compute_import_export");
// Export symbols referenced by DSOs.
if (!ctx.arg.shared) {
tbb::parallel_for_each(ctx.dsos, [&](SharedFile<E> *file) {
for (Symbol<E> *sym : file->globals) {
if (sym->file && !sym->file->is_dso && sym->visibility != STV_HIDDEN) {
std::lock_guard lock(sym->mu);
sym->is_exported = true;
}
}
});
}
// Global symbols are exported from DSO by default.
if (ctx.arg.shared || ctx.arg.export_dynamic) {
tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
for (Symbol<E> *sym : file->get_global_syms()) {
if (sym->file != file)
continue;
if (sym->visibility == STV_HIDDEN || sym->ver_idx == VER_NDX_LOCAL)
continue;
sym->is_exported = true;
if (ctx.arg.shared && sym->visibility != STV_PROTECTED &&
!ctx.arg.Bsymbolic &&
!(ctx.arg.Bsymbolic_functions && sym->get_type() == STT_FUNC))
sym->is_imported = true;
}
});
}
}
template <typename E>
void clear_padding(Context<E> &ctx) {
Timer t(ctx, "clear_padding");
auto zero = [&](Chunk<E> *chunk, i64 next_start) {
i64 pos = chunk->shdr.sh_offset;
if (chunk->shdr.sh_type != SHT_NOBITS)
pos += chunk->shdr.sh_size;
memset(ctx.buf + pos, 0, next_start - pos);
};
for (i64 i = 1; i < ctx.chunks.size(); i++)
zero(ctx.chunks[i - 1], ctx.chunks[i]->shdr.sh_offset);
zero(ctx.chunks.back(), ctx.output_file->filesize);
}
// We want to sort output chunks in the following order.
//
// ELF header
// program header
// .interp
// note
// alloc readonly data
// alloc readonly code
// alloc writable tdata
// alloc writable tbss
// alloc writable RELRO data
// alloc writable RELRO bss
// alloc writable non-RELRO data
// alloc writable non-RELRO bss
// nonalloc
// section header
template <typename E>
i64 get_section_rank(Context<E> &ctx, Chunk<E> *chunk) {
u64 type = chunk->shdr.sh_type;
u64 flags = chunk->shdr.sh_flags;
if (chunk == ctx.ehdr.get())
return -4;
if (chunk == ctx.phdr.get())
return -3;
if (chunk == ctx.interp.get())
return -2;
if (type == SHT_NOTE && (flags & SHF_ALLOC))
return -1;
if (chunk == ctx.shdr.get())
return 1 << 6;
if (!(flags & SHF_ALLOC))
return 1 << 5;
bool writable = (flags & SHF_WRITE);
bool exec = (flags & SHF_EXECINSTR);
bool tls = (flags & SHF_TLS);
bool relro = is_relro(ctx, chunk);
bool is_bss = (type == SHT_NOBITS);
return (writable << 4) | (exec << 3) | (!tls << 2) |
(!relro << 1) | is_bss;
}
// Returns the smallest number n such that
// n >= val and n % align == skew.
inline u64 align_with_skew(u64 val, u64 align, u64 skew) {
return align_to(val + align - skew, align) - align + skew;
}
// Assign virtual addresses and file offsets to output sections.
template <typename E>
i64 set_osec_offsets(Context<E> &ctx) {
Timer t(ctx, "osec_offset");
u64 fileoff = 0;
u64 vaddr = ctx.arg.image_base;
i64 i = 0;
i64 end = 0;
while (ctx.chunks[end]->shdr.sh_flags & SHF_ALLOC)
end++;
while (i < end) {
fileoff = align_with_skew(fileoff, COMMON_PAGE_SIZE, vaddr % COMMON_PAGE_SIZE);
// Each group consists of zero or more non-BSS sections followed
// by zero or more BSS sections. Virtual addresses of non-BSS
// sections need to be congruent to file offsets modulo the page size.
// BSS sections don't increment file offsets.
for (; i < end && ctx.chunks[i]->shdr.sh_type != SHT_NOBITS; i++) {
Chunk<E> &chunk = *ctx.chunks[i];
u64 prev_vaddr = vaddr;
if (chunk.new_page)
vaddr = align_to(vaddr, COMMON_PAGE_SIZE);
vaddr = align_to(vaddr, chunk.shdr.sh_addralign);
fileoff += vaddr - prev_vaddr;
chunk.shdr.sh_addr = vaddr;
vaddr += chunk.shdr.sh_size;
chunk.shdr.sh_offset = fileoff;
fileoff += chunk.shdr.sh_size;
}
for (; i < end && ctx.chunks[i]->shdr.sh_type == SHT_NOBITS; i++) {
Chunk<E> &chunk = *ctx.chunks[i];
if (chunk.new_page)
vaddr = align_to(vaddr, COMMON_PAGE_SIZE);
vaddr = align_to(vaddr, chunk.shdr.sh_addralign);
fileoff = align_with_skew(fileoff, COMMON_PAGE_SIZE, vaddr % COMMON_PAGE_SIZE);
chunk.shdr.sh_addr = vaddr;
chunk.shdr.sh_offset = fileoff;
if (!(chunk.shdr.sh_flags & SHF_TLS))
vaddr += chunk.shdr.sh_size;
}
}
for (; i < ctx.chunks.size(); i++) {
Chunk<E> &chunk = *ctx.chunks[i];
assert(!(chunk.shdr.sh_flags & SHF_ALLOC));
fileoff = align_to(fileoff, chunk.shdr.sh_addralign);
chunk.shdr.sh_offset = fileoff;
fileoff += chunk.shdr.sh_size;
}
return fileoff;
}
template <typename E>
static i64 get_num_irelative_relocs(Context<E> &ctx) {
i64 n = 0;
for (Symbol<E> *sym : ctx.got->got_syms)
if (sym->get_type() == STT_GNU_IFUNC)
n++;
return n;
}
template <typename E>
void fix_synthetic_symbols(Context<E> &ctx) {
auto start = [](Symbol<E> *sym, auto &chunk) {
if (sym && chunk) {
sym->shndx = chunk->shndx;
sym->value = chunk->shdr.sh_addr;
}
};
auto stop = [](Symbol<E> *sym, auto &chunk) {
if (sym && chunk) {
sym->shndx = chunk->shndx;
sym->value = chunk->shdr.sh_addr + chunk->shdr.sh_size;
}
};
// __bss_start
for (Chunk<E> *chunk : ctx.chunks) {
if (chunk->kind == Chunk<E>::REGULAR && chunk->name == ".bss") {
start(ctx.__bss_start, chunk);
break;
}
}
// __ehdr_start and __executable_start
for (Chunk<E> *chunk : ctx.chunks) {
if (chunk->shndx == 1) {
ctx.__ehdr_start->shndx = 1;
ctx.__ehdr_start->value = ctx.ehdr->shdr.sh_addr;
ctx.__executable_start->shndx = 1;
ctx.__executable_start->value = ctx.ehdr->shdr.sh_addr;
break;
}
}
// __rel_iplt_start
start(ctx.__rel_iplt_start, ctx.reldyn);
// __rel_iplt_end
ctx.__rel_iplt_end->shndx = ctx.reldyn->shndx;
ctx.__rel_iplt_end->value = ctx.reldyn->shdr.sh_addr +
get_num_irelative_relocs(ctx) * sizeof(ElfRel<E>);
// __{init,fini}_array_{start,end}
for (Chunk<E> *chunk : ctx.chunks) {
switch (chunk->shdr.sh_type) {
case SHT_INIT_ARRAY:
start(ctx.__init_array_start, chunk);
stop(ctx.__init_array_end, chunk);
break;
case SHT_FINI_ARRAY:
start(ctx.__fini_array_start, chunk);
stop(ctx.__fini_array_end, chunk);
break;
}
}
// _end, _etext, _edata and the like
for (Chunk<E> *chunk : ctx.chunks) {
if (chunk->kind == Chunk<E>::HEADER)
continue;
if (chunk->shdr.sh_flags & SHF_ALLOC) {
stop(ctx._end, chunk);
stop(ctx.end, chunk);
}
if (chunk->shdr.sh_flags & SHF_EXECINSTR) {
stop(ctx._etext, chunk);
stop(ctx.etext, chunk);
}
if (chunk->shdr.sh_type != SHT_NOBITS &&
(chunk->shdr.sh_flags & SHF_ALLOC)) {
stop(ctx._edata, chunk);
stop(ctx.edata, chunk);
}
}
// _DYNAMIC
start(ctx._DYNAMIC, ctx.dynamic);
// _GLOBAL_OFFSET_TABLE_
if (E::e_machine == EM_X86_64 || E::e_machine == EM_386)
start(ctx._GLOBAL_OFFSET_TABLE_, ctx.gotplt);
else if (E::e_machine == EM_AARCH64)
start(ctx._GLOBAL_OFFSET_TABLE_, ctx.got);
else
unreachable();
// __GNU_EH_FRAME_HDR
start(ctx.__GNU_EH_FRAME_HDR, ctx.eh_frame_hdr);
// __start_ and __stop_ symbols
for (Chunk<E> *chunk : ctx.chunks) {
if (is_c_identifier(chunk->name)) {
std::string_view sym1 =
save_string(ctx, "__start_" + std::string(chunk->name));
std::string_view sym2 =
save_string(ctx, "__stop_" + std::string(chunk->name));
start(intern(ctx, sym1), chunk);
stop(intern(ctx, sym2), chunk);
}
}
}
template <typename E>
void compress_debug_sections(Context<E> &ctx) {
Timer t(ctx, "compress_debug_sections");
tbb::parallel_for((i64)0, (i64)ctx.chunks.size(), [&](i64 i) {
Chunk<E> &chunk = *ctx.chunks[i];
if ((chunk.shdr.sh_flags & SHF_ALLOC) || chunk.shdr.sh_size == 0 ||
!chunk.name.starts_with(".debug"))
return;
Chunk<E> *comp = nullptr;
if (ctx.arg.compress_debug_sections == COMPRESS_GABI)
comp = new GabiCompressedSection<E>(ctx, chunk);
else if (ctx.arg.compress_debug_sections == COMPRESS_GNU)
comp = new GnuCompressedSection<E>(ctx, chunk);
assert(comp);
ctx.output_chunks.push_back(std::unique_ptr<Chunk<E>>(comp));
ctx.chunks[i] = comp;
});
ctx.shstrtab->update_shdr(ctx);
ctx.ehdr->update_shdr(ctx);
ctx.shdr->update_shdr(ctx);
}
#define INSTANTIATE(E) \
template void apply_exclude_libs(Context<E> &ctx); \
template void create_synthetic_sections(Context<E> &ctx); \
template void resolve_symbols(Context<E> &ctx); \
template void eliminate_comdats(Context<E> &ctx); \
template void convert_common_symbols(Context<E> &ctx); \
template void compute_merged_section_sizes(Context<E> &ctx); \
template void bin_sections(Context<E> &ctx); \
template ObjectFile<E> *create_internal_file(Context<E> &ctx); \
template void check_duplicate_symbols(Context<E> &ctx); \
template void sort_init_fini(Context<E> &ctx); \
template std::vector<Chunk<E> *> collect_output_sections(Context<E> &ctx); \
template void compute_section_sizes(Context<E> &ctx); \
template void claim_unresolved_symbols(Context<E> &ctx); \
template void scan_rels(Context<E> &ctx); \
template void apply_version_script(Context<E> &ctx); \
template void parse_symbol_version(Context<E> &ctx); \
template void compute_import_export(Context<E> &ctx); \
template void clear_padding(Context<E> &ctx); \
template i64 get_section_rank(Context<E> &ctx, Chunk<E> *chunk); \
template i64 set_osec_offsets(Context<E> &ctx); \
template void fix_synthetic_symbols(Context<E> &ctx); \
template void compress_debug_sections(Context<E> &ctx);
INSTANTIATE(X86_64);
INSTANTIATE(I386);
INSTANTIATE(ARM64);
} // namespace mold::elf