1
1
mirror of https://github.com/rui314/mold.git synced 2024-11-14 07:18:42 +03:00
mold/object-file.cc
2021-08-27 16:41:34 +09:00

1428 lines
44 KiB
C++

#include "mold.h"
#include <cstring>
#include <regex>
#include <unistd.h>
#include <zlib.h>
template <typename E>
InputFile<E>::InputFile(Context<E> &ctx, MemoryMappedFile<E> *mb)
: mb(mb), filename(mb->name) {
if (mb->size() < sizeof(ElfEhdr<E>))
Fatal(ctx) << *this << ": file too small";
if (memcmp(mb->data(ctx), "\177ELF", 4))
Fatal(ctx) << *this << ": not an ELF file";
ElfEhdr<E> &ehdr = *(ElfEhdr<E> *)mb->data(ctx);
is_dso = (ehdr.e_type == ET_DYN);
ElfShdr<E> *sh_begin = (ElfShdr<E> *)(mb->data(ctx) + ehdr.e_shoff);
// e_shnum contains the total number of sections in an object file.
// Since it is a 16-bit integer field, it's not large enough to
// represent >65535 sections. If an object file contains more than 65535
// sections, the actual number is stored to sh_size field.
i64 num_sections = (ehdr.e_shnum == 0) ? sh_begin->sh_size : ehdr.e_shnum;
if (mb->data(ctx) + mb->size() < (u8 *)(sh_begin + num_sections))
Fatal(ctx) << *this << ": e_shoff or e_shnum corrupted: "
<< mb->size() << " " << num_sections;
elf_sections = {sh_begin, sh_begin + num_sections};
// e_shstrndx is a 16-bit field. If .shstrtab's section index is
// too large, the actual number is stored to sh_link field.
i64 shstrtab_idx = (ehdr.e_shstrndx == SHN_XINDEX)
? sh_begin->sh_link : ehdr.e_shstrndx;
shstrtab = this->get_string(ctx, shstrtab_idx);
}
template <typename E>
ElfShdr<E> *InputFile<E>::find_section(i64 type) {
for (ElfShdr<E> &sec : elf_sections)
if (sec.sh_type == type)
return &sec;
return nullptr;
}
template <typename E>
ObjectFile<E>::ObjectFile(Context<E> &ctx, MemoryMappedFile<E> *mb,
std::string archive_name, bool is_in_lib)
: InputFile<E>(ctx, mb), archive_name(archive_name), is_in_lib(is_in_lib) {
this->is_alive = !is_in_lib;
}
template <typename E>
ObjectFile<E>::ObjectFile() {}
template <typename E>
ObjectFile<E> *
ObjectFile<E>::create(Context<E> &ctx, MemoryMappedFile<E> *mb,
std::string archive_name, bool is_in_lib) {
ObjectFile<E> *obj = new ObjectFile<E>(ctx, mb, archive_name, is_in_lib);
ctx.owning_objs.push_back(std::unique_ptr<ObjectFile<E>>(obj));
return obj;
}
template <typename E>
static bool is_debug_section(const ElfShdr<E> &shdr, std::string_view name) {
return !(shdr.sh_flags & SHF_ALLOC) &&
(name.starts_with(".debug") || name.starts_with(".zdebug"));
}
template <typename E>
u32 ObjectFile<E>::read_note_gnu_property(Context<E> &ctx,
const ElfShdr<E> &shdr) {
std::string_view data = this->get_string(ctx, shdr);
u32 ret = 0;
while (!data.empty()) {
ElfNhdr<E> &hdr = *(ElfNhdr<E> *)data.data();
data = data.substr(sizeof(hdr));
std::string_view name = data.substr(0, hdr.n_namesz - 1);
data = data.substr(align_to(hdr.n_namesz, 4));
std::string_view desc = data.substr(0, hdr.n_descsz);
data = data.substr(align_to(hdr.n_descsz, E::wordsize));
if (hdr.n_type != NT_GNU_PROPERTY_TYPE_0 || name != "GNU")
continue;
while (!desc.empty()) {
u32 type = *(u32 *)desc.data();
u32 size = *(u32 *)(desc.data() + 4);
desc = desc.substr(8);
if (type == GNU_PROPERTY_X86_FEATURE_1_AND)
ret |= *(u32 *)desc.data();
desc = desc.substr(align_to(size, E::wordsize));
}
}
return ret;
}
template <typename E>
std::pair<std::string_view, const ElfShdr<E> *>
ObjectFile<E>::uncompress_contents(Context<E> &ctx, const ElfShdr<E> &shdr,
std::string_view name) {
if (shdr.sh_type == SHT_NOBITS)
return {{}, &shdr};
auto do_uncompress = [&](std::string_view data, u64 size) {
u8 *buf = new u8[size];
ctx.owning_bufs.push_back(std::unique_ptr<u8[]>(buf));
unsigned long size2 = size;
if (uncompress(buf, &size2, (u8 *)&data[0], data.size()) != Z_OK)
Fatal(ctx) << *this << ": " << name << ": uncompress failed";
if (size != size2)
Fatal(ctx) << *this << ": " << name << ": uncompress: invalid size";
return std::string_view((char *)buf, size);
};
auto copy_shdr = [&](const ElfShdr<E> &shdr) {
ElfShdr<E> *ret = new ElfShdr<E>;
ctx.owning_shdrs.push_back(std::unique_ptr<ElfShdr<E>>(ret));
*ret = shdr;
return ret;
};
if (name.starts_with(".zdebug")) {
// Old-style compressed section
std::string_view data = this->get_string(ctx, shdr);
if (!data.starts_with("ZLIB") || data.size() <= 12)
Fatal(ctx) << *this << ": " << name << ": corrupted compressed section";
u64 size = read64be((u8 *)&data[4]);
std::string_view contents = do_uncompress(data.substr(12), size);
ElfShdr<E> *shdr2 = copy_shdr(shdr);
shdr2->sh_size = size;
return {contents, shdr2};
}
if (shdr.sh_flags & SHF_COMPRESSED) {
// New-style compressed section
std::string_view data = this->get_string(ctx, shdr);
if (data.size() < sizeof(ElfChdr<E>))
Fatal(ctx) << *this << ": " << name << ": corrupted compressed section";
ElfChdr<E> &hdr = *(ElfChdr<E> *)&data[0];
data = data.substr(sizeof(ElfChdr<E>));
if (hdr.ch_type != ELFCOMPRESS_ZLIB)
Fatal(ctx) << *this << ": " << name << ": unsupported compression type";
ElfShdr<E> *shdr2 = copy_shdr(shdr);
shdr2->sh_flags &= ~(u64)(SHF_COMPRESSED);
shdr2->sh_size = hdr.ch_size;
shdr2->sh_addralign = hdr.ch_addralign;
std::string_view contents = do_uncompress(data, hdr.ch_size);
return {contents, shdr2};
}
return {this->get_string(ctx, shdr), &shdr};
}
template <typename E>
void ObjectFile<E>::initialize_sections(Context<E> &ctx) {
// Read sections
for (i64 i = 0; i < this->elf_sections.size(); i++) {
const ElfShdr<E> &shdr = this->elf_sections[i];
if ((shdr.sh_flags & SHF_EXCLUDE) && !(shdr.sh_flags & SHF_ALLOC))
continue;
switch (shdr.sh_type) {
case SHT_GROUP: {
// Get the signature of this section group.
if (shdr.sh_info >= elf_syms.size())
Fatal(ctx) << *this << ": invalid symbol index";
const ElfSym<E> &sym = elf_syms[shdr.sh_info];
std::string_view signature = symbol_strtab.data() + sym.st_name;
// Get comdat group members.
std::span<u32> entries = this->template get_data<u32>(ctx, shdr);
if (entries.empty())
Fatal(ctx) << *this << ": empty SHT_GROUP";
if (entries[0] == 0)
continue;
if (entries[0] != GRP_COMDAT)
Fatal(ctx) << *this << ": unsupported SHT_GROUP format";
typename decltype(ctx.comdat_groups)::const_accessor acc;
ctx.comdat_groups.insert(acc, {signature, ComdatGroup()});
ComdatGroup *group = const_cast<ComdatGroup *>(&acc->second);
comdat_groups.push_back({group, entries.subspan(1)});
break;
}
case SHT_SYMTAB_SHNDX:
symtab_shndx_sec = this->template get_data<u32>(ctx, shdr);
break;
case SHT_SYMTAB:
case SHT_STRTAB:
case SHT_REL:
case SHT_RELA:
case SHT_NULL:
break;
default: {
std::string_view name = this->shstrtab.data() + shdr.sh_name;
if (name == ".note.GNU-stack" || name.starts_with(".gnu.warning."))
continue;
if (name == ".note.gnu.property") {
this->features = read_note_gnu_property(ctx, shdr);
continue;
}
if ((ctx.arg.strip_all || ctx.arg.strip_debug) &&
is_debug_section(shdr, name))
continue;
std::string_view contents;
const ElfShdr<E> *shdr2;
std::tie(contents, shdr2) = uncompress_contents(ctx, shdr, name);
this->sections[i] =
std::make_unique<InputSection<E>>(ctx, *this, *shdr2, name,
contents, i);
static Counter counter("regular_sections");
counter++;
break;
}
}
}
// Attach relocation sections to their target sections.
for (i64 i = 0; i < this->elf_sections.size(); i++) {
const ElfShdr<E> &shdr = this->elf_sections[i];
if (shdr.sh_type != (E::is_rel ? SHT_REL : SHT_RELA))
continue;
if (shdr.sh_info >= sections.size())
Fatal(ctx) << *this << ": invalid relocated section index: "
<< (u32)shdr.sh_info;
if (std::unique_ptr<InputSection<E>> &target = sections[shdr.sh_info]) {
ASSERT(target->relsec_idx == -1);
target->relsec_idx = i;
if (target->shdr.sh_flags & SHF_ALLOC) {
i64 size = shdr.sh_size / sizeof(ElfRel<E>);
target->rel_exprs.reset(new u8[size]);
memset(&target->rel_exprs[0], 0, size);
}
}
}
}
template <typename E>
void ObjectFile<E>::initialize_ehframe_sections(Context<E> &ctx) {
for (i64 i = 0; i < sections.size(); i++) {
std::unique_ptr<InputSection<E>> &isec = sections[i];
if (isec && isec->is_alive && isec->name() == ".eh_frame") {
read_ehframe(ctx, *isec);
isec->is_ehframe = true;
isec->is_alive = false;
}
}
for (FdeRecord<E> &fde : fdes)
fde.cie = &cies[fde.cie_idx];
}
// .eh_frame contains data records explaining how to handle exceptions.
// When an exception is thrown, the runtime searches a record from
// .eh_frame with the current program counter as a key. A record that
// covers the current PC explains how to find a handler and how to
// transfer the control ot it.
//
// Unlike the most other sections, linker has to parse .eh_frame contents
// because of the following reasons:
//
// - There's usually only one .eh_frame section for each object file,
// which explains how to handle exceptions for all functions in the same
// object. If we just copy them, the resulting .eh_frame section will
// contain lots of records for dead sections (i.e. de-duplicated inline
// functions). We want to copy only records for live functions.
//
// - .eh_frame contains two types of records: CIE and FDE. There's usually
// only one CIE at beginning of .eh_frame section followed by FDEs.
// Compiler usually emits the identical CIE record for all object files.
// We want to merge identical CIEs in an output .eh_frame section to
// reduce the section size.
//
// - Scanning a .eh_frame section to find a record is an O(n) operation
// where n is the number of records in the section. To reduce it to
// O(log n), linker creates a .eh_frame_hdr section. The section
// contains a sorted list of [an address in .text, an FDE address whose
// coverage starts at the .text address] to make binary search doable.
// In order to create .eh_frame_hdr, linker has to read .eh_frame.
//
// This function parses an input .eh_frame section.
template <typename E>
void ObjectFile<E>::read_ehframe(Context<E> &ctx, InputSection<E> &isec) {
std::span<ElfRel<E>> rels = isec.get_rels(ctx);
i64 cies_begin = cies.size();
i64 fdes_begin = fdes.size();
// Verify relocations.
for (i64 i = 1; i < rels.size(); i++)
if (rels[i].r_type != E::R_NONE &&
rels[i].r_offset <= rels[i - 1].r_offset)
Fatal(ctx) << isec << ": relocation offsets must increase monotonically";
// Read CIEs and FDEs until empty.
std::string_view contents = this->get_string(ctx, isec.shdr);
i64 rel_idx = 0;
for (std::string_view data = contents; !data.empty();) {
i64 size = *(u32 *)data.data();
if (size == 0) {
if (data.size() != 4)
Fatal(ctx) << isec << ": garbage at end of section";
break;
}
i64 begin_offset = data.data() - contents.data();
i64 end_offset = begin_offset + size + 4;
i64 id = *(u32 *)(data.data() + 4);
data = data.substr(size + 4);
i64 rel_begin = rel_idx;
while (rel_idx < rels.size() && rels[rel_idx].r_offset < end_offset)
rel_idx++;
ASSERT(rel_idx == rels.size() || begin_offset <= rels[rel_begin].r_offset);
if (id == 0) {
// This is CIE.
cies.push_back(CieRecord<E>(ctx, *this, isec, begin_offset, rel_begin));
} else {
// This is FDE.
if (rel_begin == rel_idx) {
// FDE has no valid relocation, which means FDE is dead from
// the beginning. Compilers usually don't create such FDE, but
// `ld -r` tend to generate such dead FDEs.
continue;
}
if (rels[rel_begin].r_offset - begin_offset != 8)
Fatal(ctx) << isec << ": FDE's first relocation should have offset 8";
fdes.push_back(FdeRecord<E>(begin_offset, rel_begin));
}
}
// Associate CIEs to FDEs.
auto find_cie = [&](i64 offset) {
for (i64 i = cies_begin; i < cies.size(); i++)
if (cies[i].input_offset == offset)
return i;
Fatal(ctx) << isec << ": bad FDE pointer";
};
for (i64 i = fdes_begin; i < fdes.size(); i++) {
i64 cie_offset = *(i32 *)(contents.data() + fdes[i].input_offset + 4);
fdes[i].cie_idx = find_cie(fdes[i].input_offset + 4 - cie_offset);
}
auto get_isec = [&](const FdeRecord<E> &fde) -> InputSection<E> * {
return get_section(elf_syms[rels[fde.rel_idx].r_sym]);
};
// We assume that FDEs for the same input sections are contiguous
// in `fdes` vector.
std::stable_sort(fdes.begin() + fdes_begin, fdes.end(),
[&](const FdeRecord<E> &a, const FdeRecord<E> &b) {
return get_isec(a)->get_priority() < get_isec(b)->get_priority();
});
// Associate FDEs to input sections.
for (i64 i = fdes_begin; i < fdes.size();) {
InputSection<E> *isec = get_isec(fdes[i]);
ASSERT(isec->fde_begin == -1);
isec->fde_begin = i++;
while (i < fdes.size() && isec == get_isec(fdes[i]))
i++;
isec->fde_end = i;
}
}
template <typename E>
static bool should_write_to_local_symtab(Context<E> &ctx, Symbol<E> &sym) {
if (ctx.arg.discard_all || ctx.arg.strip_all || ctx.arg.retain_symbols_file)
return false;
if (sym.get_type() == STT_SECTION)
return false;
// Local symbols are discarded if --discard-local is given or they
// are not in a mergeable section. I *believe* we exclude symbols in
// mergeable sections because (1) they are too many and (2) they are
// merged, so their origins shouldn't matter, but I dont' really
// know the rationale. Anyway, this is the behavior of the
// traditional linkers.
if (sym.name().starts_with(".L")) {
if (ctx.arg.discard_locals)
return false;
if (InputSection<E> *isec = sym.input_section)
if (isec->shdr.sh_flags & SHF_MERGE)
return false;
}
return true;
}
// Returns a symbol object for a given key. This function handles
// the -wrap option.
template <typename E>
static Symbol<E> *insert_symbol(Context<E> &ctx, const ElfSym<E> &esym,
std::string_view key, std::string_view name) {
if (esym.is_undef() && name.starts_with("__real_") &&
ctx.arg.wrap.count(name.substr(7))) {
return Symbol<E>::intern(ctx, key.substr(7), name.substr(7));
}
Symbol<E> *sym = Symbol<E>::intern(ctx, key, name);
if (esym.is_undef() && sym->wrap) {
key = save_string(ctx, "__wrap_" + std::string(key));
name = save_string(ctx, "__wrap_" + std::string(name));
return Symbol<E>::intern(ctx, key, name);
}
return sym;
}
template <typename E>
void ObjectFile<E>::initialize_symbols(Context<E> &ctx) {
if (!symtab_sec)
return;
static Counter counter("all_syms");
counter += elf_syms.size();
// Initialize local symbols
this->local_syms.reset(new Symbol<E>[first_global]);
new (&this->local_syms[0]) Symbol<E>;
for (i64 i = 1; i < first_global; i++) {
const ElfSym<E> &esym = elf_syms[i];
std::string_view name = symbol_strtab.data() + esym.st_name;
if (name.empty() && esym.st_type == STT_SECTION)
if (InputSection<E> *sec = get_section(esym))
name = sec->name();
Symbol<E> &sym = this->local_syms[i];
new (&sym) Symbol<E>(name);
sym.file = this;
sym.value = esym.st_value;
sym.sym_idx = i;
if (!esym.is_abs()) {
if (esym.is_common())
Fatal(ctx) << *this << ": common local symbol?";
sym.input_section = get_section(esym);
}
if (should_write_to_local_symtab(ctx, sym)) {
sym.write_to_symtab = true;
strtab_size += sym.name().size() + 1;
num_local_symtab++;
}
}
this->symbols.resize(elf_syms.size());
i64 num_globals = elf_syms.size() - first_global;
sym_fragments.resize(elf_syms.size());
symvers.resize(num_globals);
for (i64 i = 0; i < first_global; i++)
this->symbols[i] = &this->local_syms[i];
// Initialize global symbols
for (i64 i = first_global; i < elf_syms.size(); i++) {
const ElfSym<E> &esym = elf_syms[i];
// Get a symbol name
std::string_view key = symbol_strtab.data() + esym.st_name;
std::string_view name = key;
// Parse symbol version after atsign
if (i64 pos = name.find('@'); pos != name.npos) {
std::string_view ver = name.substr(pos + 1);
name = name.substr(0, pos);
if (!ver.empty() && ver != "@") {
if (ver.starts_with('@'))
key = name;
if (esym.is_defined())
symvers[i - first_global] = ver.data();
}
}
this->symbols[i] = insert_symbol(ctx, esym, key, name);
if (esym.is_common())
has_common_symbol = true;
}
}
static size_t find_null(std::string_view data, u64 entsize) {
if (entsize == 1)
return data.find('\0');
for (i64 i = 0; i <= data.size() - entsize; i += entsize)
if (data.substr(i, i + entsize).find_first_not_of('\0') == data.npos)
return i;
return data.npos;
}
// Mergeable sections (sections with SHF_MERGE bit) typically contain
// string literals. Linker is expected to split the section contents
// into null-terminated strings, merge them with mergeable strings
// from other object files, and emit uniquified strings to an output
// file.
//
// This mechanism reduces the size of an output file. If two source
// files happen to contain the same string literal, the output will
// contain only a single copy of it.
//
// It is less common than string literals, but mergeable sections can
// contain fixed-sized read-only records too.
//
// This function splits the section contents into small pieces that we
// call "section fragments". Section fragment is a unit of merging.
//
// We do not support mergeable sections that have relocations.
template <typename E>
static std::unique_ptr<MergeableSection<E>>
split_section(Context<E> &ctx, InputSection<E> &sec) {
std::unique_ptr<MergeableSection<E>> rec(new MergeableSection<E>);
rec->parent = MergedSection<E>::get_instance(ctx, sec.name(), sec.shdr.sh_type,
sec.shdr.sh_flags);
rec->shdr = sec.shdr;
std::string_view data = sec.contents;
const char *begin = data.data();
u64 entsize = sec.shdr.sh_entsize;
HyperLogLog estimator;
static_assert(sizeof(SectionFragment<E>::alignment) == 2);
if (sec.shdr.sh_addralign >= UINT16_MAX)
Fatal(ctx) << sec << ": alignment too large";
if (sec.shdr.sh_flags & SHF_STRINGS) {
while (!data.empty()) {
size_t end = find_null(data, entsize);
if (end == data.npos)
Fatal(ctx) << sec << ": string is not null terminated";
std::string_view substr = data.substr(0, end + entsize);
data = data.substr(end + entsize);
rec->strings.push_back(substr);
rec->frag_offsets.push_back(substr.data() - begin);
u64 hash = hash_string(substr);
rec->hashes.push_back(hash);
estimator.insert(hash);
}
} else {
if (data.size() % entsize)
Fatal(ctx) << sec << ": section size is not multiple of sh_entsize";
while (!data.empty()) {
std::string_view substr = data.substr(0, entsize);
data = data.substr(entsize);
rec->strings.push_back(substr);
rec->frag_offsets.push_back(substr.data() - begin);
u64 hash = hash_string(substr);
rec->hashes.push_back(hash);
estimator.insert(hash);
}
}
rec->parent->estimator.merge(estimator);
static Counter counter("string_fragments");
counter += rec->fragments.size();
return rec;
}
// Usually a section is an atomic unit of inclusion and exclusion.
// the Linker doesn't care its contents. However, if a section is a
// mergeable section (a section with SHF_MERGE bit set), the linker
// is expected split it into smaller pieces and merge each piece with
// other pieces from different object files. In mold, we call the
// atomic unit of mergeable section "section pieces".
//
// This feature is typically used for string literals. String literals
// are usually put into a mergeable section by a compiler. If the same
// string literal happen to occur in two different translation units,
// a linker merges them into a single instance of a string, so that
// a linker's output doens't contain duplicate string literals.
//
// Handling relocations referring mergeable sections is a bit tricky.
// Assume that we have a mergeable section with the following contents
// and symbols:
//
//
// Hello world\0foo bar\0
// ^ ^
// .rodata .L.str1
// .L.str0
//
// '\0' represents a NUL byte. This mergeable section contains two
// section pieces, "Hello world" and "foo bar". The first string is
// referred by two symbols, .rodata and .L.str0, and the second by
// .L.str1. .rodata is a section symbol and therefore a local symbol
// and refers the begining of the section.
//
// In this example, there are actually two different ways to point to
// string "foo bar", because .rodata+12 and .L.str1+0 refer the same
// place in the section. This kind of "out-of-bound" reference occurs
// only when a symbol is a section symbol. In other words, compiler
// may use an offset from the beginning of a section to refer any
// section piece in a section, but it doesn't do for any other types
// of symbols.
//
// In mold, we attach section pieces to either relocations or symbols.
// If a relocation refers a section symbol whose section is a
// mergeable section, a section piece is attached to the relocation.
// If a non-section symbol refers a section piece, the section piece
// is attached to the symbol.
template <typename E>
void ObjectFile<E>::initialize_mergeable_sections(Context<E> &ctx) {
mergeable_sections.resize(sections.size());
for (i64 i = 0; i < sections.size(); i++) {
std::unique_ptr<InputSection<E>> &isec = sections[i];
if (isec && isec->is_alive && (isec->shdr.sh_flags & SHF_MERGE) &&
isec->relsec_idx == -1) {
mergeable_sections[i] = split_section(ctx, *isec);
isec->is_alive = false;
}
}
}
template <typename E>
void ObjectFile<E>::register_section_pieces(Context<E> &ctx) {
for (std::unique_ptr<MergeableSection<E>> &m : mergeable_sections)
if (m)
for (i64 i = 0; i < m->strings.size(); i++)
m->fragments.push_back(m->parent->insert(m->strings[i], m->hashes[i],
m->shdr.sh_addralign));
// Initialize rel_fragments
for (std::unique_ptr<InputSection<E>> &isec : sections) {
if (!isec || !isec->is_alive)
continue;
std::span<ElfRel<E>> rels = isec->get_rels(ctx);
if (rels.empty())
continue;
// Compute the size of rel_fragments.
i64 len = 0;
for (i64 i = 0; i < rels.size(); i++) {
const ElfRel<E> &rel = rels[i];
const ElfSym<E> &esym = elf_syms[rel.r_sym];
if (esym.st_type == STT_SECTION && mergeable_sections[get_shndx(esym)])
len++;
}
if (len == 0)
continue;
isec->rel_fragments.reset(new SectionFragmentRef<E>[len + 1]);
i64 frag_idx = 0;
// Fill rel_fragments contents.
for (i64 i = 0; i < rels.size(); i++) {
const ElfRel<E> &rel = rels[i];
const ElfSym<E> &esym = elf_syms[rel.r_sym];
if (esym.st_type != STT_SECTION)
continue;
std::unique_ptr<MergeableSection<E>> &m =
mergeable_sections[get_shndx(esym)];
if (!m)
continue;
i64 offset = esym.st_value + isec->get_addend(rel);
std::span<u32> offsets = m->frag_offsets;
auto it = std::upper_bound(offsets.begin(), offsets.end(), offset);
if (it == offsets.begin())
Fatal(ctx) << *this << ": bad relocation at " << rel.r_sym;
i64 idx = it - 1 - offsets.begin();
isec->rel_fragments[frag_idx++] = {m->fragments[idx], (i32)i,
(i32)(offset - offsets[idx])};
}
isec->rel_fragments[frag_idx++] = {nullptr, -1, -1};
}
// Initialize sym_fragments
for (i64 i = 0; i < elf_syms.size(); i++) {
const ElfSym<E> &esym = elf_syms[i];
if (esym.is_abs() || esym.is_common() || esym.is_undef())
continue;
std::unique_ptr<MergeableSection<E>> &m =
mergeable_sections[get_shndx(esym)];
if (!m)
continue;
std::span<u32> offsets = m->frag_offsets;
auto it = std::upper_bound(offsets.begin(), offsets.end(), esym.st_value);
if (it == offsets.begin())
Fatal(ctx) << *this << ": bad symbol value: " << esym.st_value;
i64 idx = it - 1 - offsets.begin();
if (i < first_global)
this->symbols[i]->value = esym.st_value - offsets[idx];
sym_fragments[i].frag = m->fragments[idx];
sym_fragments[i].addend = esym.st_value - offsets[idx];
}
for (std::unique_ptr<MergeableSection<E>> &m : mergeable_sections)
if (m)
fragments.insert(fragments.end(), m->fragments.begin(), m->fragments.end());
}
template <typename E>
void ObjectFile<E>::parse(Context<E> &ctx) {
sections.resize(this->elf_sections.size());
symtab_sec = this->find_section(SHT_SYMTAB);
if (symtab_sec) {
first_global = symtab_sec->sh_info;
elf_syms = this->template get_data<ElfSym<E>>(ctx, *symtab_sec);
symbol_strtab = this->get_string(ctx, symtab_sec->sh_link);
}
initialize_sections(ctx);
initialize_symbols(ctx);
initialize_mergeable_sections(ctx);
initialize_ehframe_sections(ctx);
}
// Symbols with higher priorities overwrites symbols with lower priorities.
// Here is the list of priorities, from the highest to the lowest.
//
// 1. Strong defined symbol
// 2. Weak defined symbol
// 3. Strong defined symbol in a DSO
// 4. Weak defined symbol in a DSO
// 5. Strong or weak defined symbol in an archive
// 6. Common symbol
// 7. Unclaimed (nonexistent) symbol
//
// Ties are broken by file priority.
template <typename E>
static u64 get_rank(InputFile<E> *file, const ElfSym<E> &esym, bool is_lazy) {
if (esym.is_common())
return (6 << 24) + file->priority;
if (is_lazy)
return (5 << 24) + file->priority;
if (file->is_dso) {
if (esym.is_weak())
return (4 << 24) + file->priority;
return (3 << 24) + file->priority;
}
if (esym.is_weak())
return (2 << 24) + file->priority;
return (1 << 24) + file->priority;
}
template <typename E>
static u64 get_rank(const Symbol<E> &sym) {
if (!sym.file)
return 7 << 24;
return get_rank(sym.file, sym.esym(), sym.is_lazy);
}
template <typename E>
void ObjectFile<E>::override_symbol(Context<E> &ctx, Symbol<E> &sym,
const ElfSym<E> &esym, i64 symidx) {
sym.file = this;
sym.input_section = esym.is_abs() ? nullptr : get_section(esym);
if (SectionFragmentRef<E> &ref = sym_fragments[symidx]; ref.frag)
sym.value = ref.addend;
else
sym.value = esym.st_value;
sym.sym_idx = symidx;
sym.ver_idx = ctx.arg.default_version;
sym.is_lazy = false;
sym.is_weak = esym.is_weak();
sym.is_imported = false;
sym.is_exported = false;
}
template <typename E>
void ObjectFile<E>::merge_visibility(Context<E> &ctx, Symbol<E> &sym,
u8 visibility) {
// Canonicalize visibility
if (visibility == STV_INTERNAL)
visibility = STV_HIDDEN;
auto priority = [&](u8 visibility) {
switch (visibility) {
case STV_HIDDEN:
return 1;
case STV_PROTECTED:
return 2;
case STV_DEFAULT:
return 3;
}
Fatal(ctx) << *this << ": unknown symbol visibility: " << sym;
};
u8 val = sym.visibility;
while (priority(visibility) < priority(val))
if (sym.visibility.compare_exchange_weak(val, visibility))
break;
}
template <typename E>
void ObjectFile<E>::resolve_lazy_symbols(Context<E> &ctx) {
ASSERT(is_in_lib);
for (i64 i = first_global; i < this->symbols.size(); i++) {
Symbol<E> &sym = *this->symbols[i];
const ElfSym<E> &esym = elf_syms[i];
if (esym.is_undef() || esym.is_common())
continue;
std::lock_guard lock(sym.mu);
if (get_rank(this, esym, true) < get_rank(sym)) {
sym.file = this;
sym.sym_idx = i;
sym.is_lazy = true;
sym.is_weak = false;
if (sym.traced)
SyncOut(ctx) << "trace-symbol: " << *this
<< ": lazy definition of " << sym;
}
}
}
template <typename E>
void ObjectFile<E>::resolve_regular_symbols(Context<E> &ctx) {
ASSERT(!is_in_lib);
for (i64 i = first_global; i < this->symbols.size(); i++) {
Symbol<E> &sym = *this->symbols[i];
const ElfSym<E> &esym = elf_syms[i];
if (esym.is_undef() || esym.is_common())
continue;
std::lock_guard lock(sym.mu);
if (get_rank(this, esym, false) < get_rank(sym))
override_symbol(ctx, sym, esym, i);
}
}
template <typename E>
void
ObjectFile<E>::mark_live_objects(Context<E> &ctx,
std::function<void(ObjectFile<E> *)> feeder) {
ASSERT(this->is_alive);
for (i64 i = first_global; i < this->symbols.size(); i++) {
const ElfSym<E> &esym = elf_syms[i];
Symbol<E> &sym = *this->symbols[i];
merge_visibility(ctx, sym, exclude_libs ? STV_HIDDEN : esym.st_visibility);
if (sym.traced) {
if (esym.is_defined())
SyncOut(ctx) << "trace-symbol: " << *this << ": definition of " << sym;
else if (esym.is_weak())
SyncOut(ctx) << "trace-symbol: " << *this << ": weak reference to " << sym;
else
SyncOut(ctx) << "trace-symbol: " << *this << ": reference to " << sym;
}
std::lock_guard lock(sym.mu);
if (esym.is_undef() || esym.is_common()) {
if (!esym.is_weak() && sym.file && !sym.file->is_alive.exchange(true)) {
feeder((ObjectFile<E> *)sym.file);
if (sym.traced)
SyncOut(ctx) << "trace-symbol: " << *this << " keeps " << *sym.file
<< " for " << sym;
}
continue;
}
if (get_rank(this, esym, false) < get_rank(sym))
override_symbol(ctx, sym, esym, i);
}
}
template <typename E>
void ObjectFile<E>::resolve_common_symbols(Context<E> &ctx) {
if (!has_common_symbol)
return;
for (i64 i = first_global; i < this->symbols.size(); i++) {
const ElfSym<E> &esym = elf_syms[i];
if (!esym.is_common())
continue;
Symbol<E> &sym = *this->symbols[i];
std::lock_guard lock(sym.mu);
if (get_rank(this, esym, false) < get_rank(sym)) {
sym.file = this;
sym.input_section = nullptr;
sym.value = esym.st_value;
sym.sym_idx = i;
sym.ver_idx = ctx.arg.default_version;
sym.is_lazy = false;
sym.is_weak = false;
sym.is_imported = false;
sym.is_exported = false;
if (sym.traced)
SyncOut(ctx) << "trace-symbol: " << *this
<< ": common definition of " << sym;
}
}
}
template <typename E>
void ObjectFile<E>::resolve_comdat_groups() {
for (auto &pair : comdat_groups) {
ComdatGroup *group = pair.first;
u32 cur = group->owner;
while (cur == -1 || cur > this->priority)
if (group->owner.compare_exchange_weak(cur, this->priority))
break;
}
}
template <typename E>
void ObjectFile<E>::eliminate_duplicate_comdat_groups() {
for (auto &pair : comdat_groups) {
ComdatGroup *group = pair.first;
if (group->owner == this->priority)
continue;
std::span<u32> entries = pair.second;
for (u32 i : entries)
if (sections[i])
sections[i]->kill();
}
}
template <typename E>
void ObjectFile<E>::claim_unresolved_symbols(Context<E> &ctx) {
if (!this->is_alive)
return;
bool claim_all = ctx.arg.shared && !ctx.arg.z_defs;
for (i64 i = first_global; i < this->symbols.size(); i++) {
const ElfSym<E> &esym = elf_syms[i];
Symbol<E> &sym = *this->symbols[i];
if (!esym.is_undef())
continue;
std::lock_guard lock(sym.mu);
auto claim = [&](bool is_imported) {
sym.file = this;
sym.input_section = nullptr;
sym.value = 0;
sym.sym_idx = i;
sym.ver_idx = ctx.arg.default_version;
sym.is_lazy = false;
sym.is_weak = false;
sym.is_imported = is_imported;
sym.is_exported = false;
};
if (!sym.file ||
(sym.esym().is_undef() && sym.file->priority < this->priority)) {
if (claim_all) {
// Convert remaining undefined symbols to dynamic symbols.
claim(!ctx.arg.is_static);
if (sym.traced)
SyncOut(ctx) << "trace-symbol: " << *this << ": unresolved"
<< (esym.is_weak() ? " weak" : "")
<< " symbol " << sym;
} else if (ctx.arg.unresolved_symbols != UnresolvedKind::ERROR ||
esym.is_undef_weak()) {
// Convert remaining undefined symbols to absolute symbols with
// value 0.
claim(false);
if (ctx.arg.unresolved_symbols == UnresolvedKind::WARN)
Warn(ctx) << "undefined symbol: " << *this << ": " << sym;
}
}
}
}
template <typename E>
void ObjectFile<E>::scan_relocations(Context<E> &ctx) {
// Scan relocations against seciton contents
for (std::unique_ptr<InputSection<E>> &isec : sections)
if (isec && isec->is_alive && (isec->shdr.sh_flags & SHF_ALLOC))
isec->scan_relocations(ctx);
// Scan relocations against exception frames
for (CieRecord<E> &cie : cies) {
for (ElfRel<E> &rel : cie.get_rels()) {
Symbol<E> &sym = *this->symbols[rel.r_sym];
if (sym.is_imported) {
if (sym.get_type() != STT_FUNC)
Fatal(ctx) << *this << ": " << sym
<< ": .eh_frame CIE record with an external data reference"
<< " is not supported";
sym.flags |= NEEDS_PLT;
}
}
}
}
template <typename E>
void ObjectFile<E>::convert_common_symbols(Context<E> &ctx) {
if (!has_common_symbol)
return;
OutputSection<E> *osec =
OutputSection<E>::get_instance(ctx, ".common", SHT_NOBITS,
SHF_WRITE | SHF_ALLOC);
for (i64 i = first_global; i < elf_syms.size(); i++) {
if (!elf_syms[i].is_common())
continue;
Symbol<E> &sym = *this->symbols[i];
if (sym.file != this) {
if (ctx.arg.warn_common)
Warn(ctx) << *this << ": multiple common symbols: " << sym;
continue;
}
auto *shdr = new ElfShdr<E>;
ctx.owning_shdrs.push_back(std::unique_ptr<ElfShdr<E>>(shdr));
memset(shdr, 0, sizeof(*shdr));
shdr->sh_flags = SHF_ALLOC;
shdr->sh_type = SHT_NOBITS;
shdr->sh_size = elf_syms[i].st_size;
shdr->sh_addralign = elf_syms[i].st_value;
std::unique_ptr<InputSection<E>> isec =
std::make_unique<InputSection<E>>(ctx, *this, *shdr, ".common",
std::string_view(), sections.size());
isec->output_section = osec;
sym.file = this;
sym.input_section = isec.get();
sym.value = 0;
sym.sym_idx = i;
sym.ver_idx = ctx.arg.default_version;
sym.is_lazy = false;
sym.is_weak = false;
sym.is_imported = false;
sym.is_exported = false;
sections.push_back(std::move(isec));
}
}
template <typename E>
static bool should_write_to_global_symtab(Symbol<E> &sym) {
return sym.get_type() != STT_SECTION && sym.is_alive();
}
template <typename E>
void ObjectFile<E>::compute_symtab(Context<E> &ctx) {
if (ctx.arg.retain_symbols_file) {
std::span<Symbol<E> *> syms(this->symbols);
for (Symbol<E> *sym : syms.subspan(first_global)) {
if (sym->file == this && sym->write_to_symtab) {
strtab_size += sym->name().size() + 1;
num_global_symtab++;
}
}
return;
}
if (ctx.arg.strip_all)
return;
if (ctx.arg.gc_sections && !ctx.arg.discard_all) {
// Detect symbols pointing to sections discarded by -gc-sections
// to not copy them to symtab.
for (i64 i = 1; i < first_global; i++) {
Symbol<E> &sym = *this->symbols[i];
if (sym.write_to_symtab && !sym.is_alive()) {
strtab_size -= sym.name().size() + 1;
num_local_symtab--;
sym.write_to_symtab = false;
}
}
}
// Compute the size of global symbols.
for (i64 i = first_global; i < this->symbols.size(); i++) {
Symbol<E> &sym = *this->symbols[i];
if (sym.file == this && should_write_to_global_symtab(sym)) {
strtab_size += sym.name().size() + 1;
sym.write_to_symtab = true;
num_global_symtab++;
}
}
}
template <typename E>
void ObjectFile<E>::write_symtab(Context<E> &ctx) {
u8 *symtab_base = ctx.buf + ctx.symtab->shdr.sh_offset;
u8 *strtab_base = ctx.buf + ctx.strtab->shdr.sh_offset;
i64 strtab_off = strtab_offset;
i64 symtab_off;
auto write_sym = [&](Symbol<E> &sym) {
ElfSym<E> &esym = *(ElfSym<E> *)(symtab_base + symtab_off);
symtab_off += sizeof(esym);
esym = sym.esym();
esym.st_name = strtab_off;
if (sym.get_type() == STT_TLS)
esym.st_value = sym.get_addr(ctx) - ctx.tls_begin;
else
esym.st_value = sym.get_addr(ctx);
if (sym.input_section)
esym.st_shndx = sym.input_section->output_section->shndx;
else if (sym.shndx)
esym.st_shndx = sym.shndx;
else if (esym.is_undef())
esym.st_shndx = SHN_UNDEF;
else
esym.st_shndx = SHN_ABS;
write_string(strtab_base + strtab_off, sym.name());
strtab_off += sym.name().size() + 1;
};
symtab_off = local_symtab_offset;
for (i64 i = 1; i < first_global; i++) {
Symbol<E> &sym = *this->symbols[i];
if (sym.write_to_symtab)
write_sym(sym);
}
symtab_off = global_symtab_offset;
for (i64 i = first_global; i < elf_syms.size(); i++) {
Symbol<E> &sym = *this->symbols[i];
if (sym.file == this && sym.write_to_symtab)
write_sym(sym);
}
}
bool is_c_identifier(std::string_view name) {
static std::regex re("[a-zA-Z_][a-zA-Z0-9_]*",
std::regex_constants::optimize);
return std::regex_match(name.begin(), name.end(), re);
}
template <typename E>
std::ostream &operator<<(std::ostream &out, const InputFile<E> &file) {
if (file.is_dso) {
out << path_clean(file.filename);
return out;
}
ObjectFile<E> *obj = (ObjectFile<E> *)&file;
if (obj->archive_name == "")
out << path_clean(obj->filename);
else
out << path_clean(obj->archive_name) << "(" << obj->filename + ")";
return out;
}
template <typename E>
SharedFile<E> *
SharedFile<E>::create(Context<E> &ctx, MemoryMappedFile<E> *mb) {
SharedFile<E> *obj = new SharedFile(ctx, mb);
ctx.owning_dsos.push_back(std::unique_ptr<SharedFile<E>>(obj));
return obj;
}
template <typename E>
SharedFile<E>::SharedFile(Context<E> &ctx, MemoryMappedFile<E> *mb)
: InputFile<E>(ctx, mb) {
this->is_alive = !ctx.as_needed;
}
template <typename E>
std::string_view SharedFile<E>::get_soname(Context<E> &ctx) {
if (ElfShdr<E> *sec = this->find_section(SHT_DYNAMIC))
for (ElfDyn<E> &dyn : this->template get_data<ElfDyn<E>>(ctx, *sec))
if (dyn.d_tag == DT_SONAME)
return symbol_strtab.data() + dyn.d_val;
if (this->mb->given_fullpath)
return this->filename;
return path_filename(this->filename);
}
template <typename E>
void SharedFile<E>::parse(Context<E> &ctx) {
symtab_sec = this->find_section(SHT_DYNSYM);
if (!symtab_sec)
return;
symbol_strtab = this->get_string(ctx, symtab_sec->sh_link);
soname = get_soname(ctx);
version_strings = read_verdef(ctx);
// Read a symbol table.
i64 first_global = symtab_sec->sh_info;
std::span<ElfSym<E>> esyms =
this->template get_data<ElfSym<E>>(ctx, *symtab_sec);
std::span<u16> vers;
if (ElfShdr<E> *sec = this->find_section(SHT_GNU_VERSYM))
vers = this->template get_data<u16>(ctx, *sec);
for (i64 i = first_global; i < esyms.size(); i++) {
std::string_view name = symbol_strtab.data() + esyms[i].st_name;
globals.push_back(Symbol<E>::intern(ctx, name));
if (esyms[i].is_undef())
continue;
if (vers.empty()) {
elf_syms.push_back(&esyms[i]);
versyms.push_back(VER_NDX_GLOBAL);
this->symbols.push_back(Symbol<E>::intern(ctx, name));
} else {
u16 ver = vers[i] & ~VERSYM_HIDDEN;
if (ver == VER_NDX_LOCAL)
continue;
elf_syms.push_back(&esyms[i]);
versyms.push_back(ver);
if (vers[i] & VERSYM_HIDDEN) {
std::string_view mangled_name = save_string(
ctx, std::string(name) + "@" + std::string(version_strings[ver]));
this->symbols.push_back(Symbol<E>::intern(ctx, mangled_name, name));
} else {
this->symbols.push_back(Symbol<E>::intern(ctx, name));
}
}
}
static Counter counter("dso_syms");
counter += elf_syms.size();
}
template <typename E>
std::vector<std::string_view> SharedFile<E>::read_verdef(Context<E> &ctx) {
std::vector<std::string_view> ret(VER_NDX_LAST_RESERVED + 1);
ElfShdr<E> *verdef_sec = this->find_section(SHT_GNU_VERDEF);
if (!verdef_sec)
return ret;
std::string_view verdef = this->get_string(ctx, *verdef_sec);
std::string_view strtab = this->get_string(ctx, verdef_sec->sh_link);
ElfVerdef<E> *ver = (ElfVerdef<E> *)verdef.data();
for (;;) {
if (ret.size() <= ver->vd_ndx)
ret.resize(ver->vd_ndx + 1);
ElfVerdaux<E> *aux = (ElfVerdaux<E> *)((u8 *)ver + ver->vd_aux);
ret[ver->vd_ndx] = strtab.data() + aux->vda_name;
if (!ver->vd_next)
break;
ver = (ElfVerdef<E> *)((u8 *)ver + ver->vd_next);
}
return ret;
}
template <typename E>
void SharedFile<E>::resolve_dso_symbols(Context<E> &ctx) {
for (i64 i = 0; i < this->symbols.size(); i++) {
Symbol<E> &sym = *this->symbols[i];
const ElfSym<E> &esym = *elf_syms[i];
std::lock_guard lock(sym.mu);
if (!sym.file || this->priority < sym.file->priority) {
sym.file = this;
sym.input_section = nullptr;
sym.value = esym.st_value;
sym.sym_idx = i;
sym.ver_idx = versyms[i];
sym.is_weak = true;
sym.is_imported = true;
sym.is_exported = false;
if (sym.traced)
SyncOut(ctx) << "trace-symbol: " << *sym.file << ": definition of "
<< sym;
}
}
}
template <typename E>
std::vector<Symbol<E> *> SharedFile<E>::find_aliases(Symbol<E> *sym) {
ASSERT(sym->file == this);
std::vector<Symbol<E> *> vec;
for (Symbol<E> *sym2 : this->symbols)
if (sym2->file == this && sym != sym2 &&
sym->esym().st_value == sym2->esym().st_value)
vec.push_back(sym2);
return vec;
}
template <typename E>
bool SharedFile<E>::is_readonly(Context<E> &ctx, Symbol<E> *sym) {
ElfEhdr<E> *ehdr = (ElfEhdr<E> *)this->mb->data(ctx);
ElfPhdr<E> *phdr = (ElfPhdr<E> *)(this->mb->data(ctx) + ehdr->e_phoff);
u64 val = sym->esym().st_value;
for (i64 i = 0; i < ehdr->e_phnum; i++)
if (phdr[i].p_type == PT_LOAD && !(phdr[i].p_flags & PF_W) &&
phdr[i].p_vaddr <= val && val < phdr[i].p_vaddr + phdr[i].p_memsz)
return true;
return false;
}
template <typename E>
i64 FdeRecord<E>::size() const {
return *(u32 *)(cie->contents.data() + input_offset) + 4;
}
template <typename E>
std::string_view FdeRecord<E>::get_contents() const {
return cie->contents.substr(input_offset, size());
}
template <typename E>
std::span<ElfRel<E>> FdeRecord<E>::get_rels() const {
std::span<ElfRel<E>> rels = cie->rels;
i64 size = get_contents().size();
i64 end = rel_idx;
while (end < rels.size() && rels[end].r_offset < input_offset + size)
end++;
return rels.subspan(rel_idx, end - rel_idx);
}
template <typename E>
i64 CieRecord<E>::size() const {
return *(u32 *)(contents.data() + input_offset) + 4;
}
template <typename E>
std::string_view CieRecord<E>::get_contents() const {
return contents.substr(input_offset, size());
}
template <typename E>
std::span<ElfRel<E>> CieRecord<E>::get_rels() const {
i64 size = get_contents().size();
i64 end = rel_idx;
while (end < rels.size() && rels[end].r_offset < input_offset + size)
end++;
return rels.subspan(rel_idx, end - rel_idx);
}
template <typename E>
bool CieRecord<E>::equals(const CieRecord<E> &other) const {
if (get_contents() != other.get_contents())
return false;
std::span<ElfRel<E>> x = get_rels();
std::span<ElfRel<E>> y = other.get_rels();
if (x.size() != y.size())
return false;
for (i64 i = 0; i < x.size(); i++) {
if (x[i].r_offset - input_offset != y[i].r_offset - other.input_offset ||
x[i].r_type != y[i].r_type ||
file.symbols[x[i].r_sym] != other.file.symbols[y[i].r_sym] ||
input_section.get_addend(x[i]) != other.input_section.get_addend(y[i]))
return false;
}
return true;
}
#define INSTANTIATE(E) \
template class ObjectFile<E>; \
template class SharedFile<E>; \
template class CieRecord<E>; \
template class FdeRecord<E>; \
template std::ostream &operator<<(std::ostream &, const InputFile<E> &)
INSTANTIATE(X86_64);
INSTANTIATE(I386);
INSTANTIATE(AARCH64);