1
1
mirror of https://github.com/rui314/mold.git synced 2024-09-11 13:06:59 +03:00
mold/elf/mold.h
2024-03-28 11:52:33 +09:00

2900 lines
84 KiB
C++

#pragma once
#include "elf.h"
#include "../common/common.h"
#include <atomic>
#include <bitset>
#include <cassert>
#include <cstdint>
#include <fstream>
#include <functional>
#include <iostream>
#include <map>
#include <memory>
#include <mutex>
#include <optional>
#include <span>
#include <sstream>
#include <string>
#include <string_view>
#include <tbb/concurrent_hash_map.h>
#include <tbb/concurrent_unordered_map.h>
#include <tbb/concurrent_vector.h>
#include <tbb/enumerable_thread_specific.h>
#include <tbb/spin_mutex.h>
#include <tbb/task_group.h>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <variant>
#include <vector>
#ifndef _WIN32
# include <unistd.h>
#endif
namespace mold::elf {
template <typename E> class InputFile;
template <typename E> class InputSection;
template <typename E> class MergedSection;
template <typename E> class ObjectFile;
template <typename E> class Chunk;
template <typename E> class OutputSection;
template <typename E> class SharedFile;
template <typename E> class Symbol;
template <typename E> struct CieRecord;
template <typename E> struct Context;
template <typename E> struct FdeRecord;
template <typename E> class RelocSection;
template <typename E>
std::ostream &operator<<(std::ostream &out, const Symbol<E> &sym);
//
// Mergeable section fragments
//
template <typename E>
struct SectionFragment {
SectionFragment(MergedSection<E> *sec, bool is_alive)
: output_section(*sec), is_alive(is_alive) {}
u64 get_addr(Context<E> &ctx) const;
MergedSection<E> &output_section;
u32 offset = -1;
Atomic<u8> p2align = 0;
Atomic<bool> is_alive = false;
};
// Additional class members for dynamic symbols. Because most symbols
// don't need them and we allocate tens of millions of symbol objects
// for large programs, we separate them from `Symbol` class to save
// memory.
template <typename E>
struct SymbolAux {
i32 got_idx = -1;
i32 gottp_idx = -1;
i32 tlsgd_idx = -1;
i32 tlsdesc_idx = -1;
i32 plt_idx = -1;
i32 pltgot_idx = -1;
i32 dynsym_idx = -1;
u32 djb_hash = 0;
};
template <>
struct SymbolAux<PPC64V1> : SymbolAux<X86_64> {
i32 opd_idx = -1;
};
//
// thunks.cc
//
template <typename E>
class Thunk {};
template <needs_thunk E>
class Thunk<E> {
public:
Thunk(OutputSection<E> &osec, i64 offset)
: output_section(osec), offset(offset) {}
i64 size() const { return E::thunk_hdr_size + symbols.size() * E::thunk_size; }
void copy_buf(Context<E> &ctx);
u64 get_addr(i64 idx) const {
return output_section.shdr.sh_addr + offset + E::thunk_hdr_size +
idx * E::thunk_size;
}
static constexpr i64 alignment = 16;
OutputSection<E> &output_section;
i64 offset;
std::mutex mu;
std::vector<Symbol<E> *> symbols;
};
struct ThunkRef {
i16 thunk_idx = -1;
i16 sym_idx = -1;
};
//
// input-sections.cc
//
// .eh_frame section contains CIE and FDE records to teach the runtime
// how to handle exceptions. Usually, a .eh_frame contains one CIE
// followed by as many FDEs as the number of functions defined by the
// file. CIE contains common information for FDEs (it is actually
// short for Common Information Entry). FDE contains the start address
// of a function and its length as well as how to handle exceptions
// for that function.
//
// Unlike other sections, the linker has to parse .eh_frame for optimal
// output for the following reasons:
//
// - Compilers tend to emit the same CIE as long as the programming
// language is the same, so CIEs in input object files are almost
// always identical. We want to merge them to make a resulting
// .eh_frame smaller.
//
// - If we eliminate a function (e.g. when we see two object files
// containing the duplicate definition of an inlined function), we
// want to also eliminate a corresponding FDE so that a resulting
// .eh_frame doesn't contain a dead FDE entry.
//
// - If we need to compare two function definitions for equality for
// ICF, we need to compare not only the function body but also its
// exception handlers.
//
// Note that we assume that the first relocation entry for an FDE
// always points to the function that the FDE is associated to.
template <typename E>
struct CieRecord {
CieRecord(Context<E> &ctx, ObjectFile<E> &file, InputSection<E> &isec,
u32 input_offset, std::span<ElfRel<E>> rels, u32 rel_idx)
: file(file), input_section(isec), input_offset(input_offset),
rel_idx(rel_idx), rels(rels), contents(file.get_string(ctx, isec.shdr())) {}
i64 size() const {
return *(U32<E> *)(contents.data() + input_offset) + 4;
}
std::string_view get_contents() const {
return contents.substr(input_offset, size());
}
std::span<ElfRel<E>> get_rels() const {
i64 end = rel_idx;
while (end < rels.size() && rels[end].r_offset < input_offset + size())
end++;
return rels.subspan(rel_idx, end - rel_idx);
}
bool equals(const CieRecord &other) const;
ObjectFile<E> &file;
InputSection<E> &input_section;
u32 input_offset = -1;
u32 output_offset = -1;
u32 rel_idx = -1;
u32 icf_idx = -1;
bool is_leader = false;
std::span<ElfRel<E>> rels;
std::string_view contents;
};
template <typename E>
struct FdeRecord {
FdeRecord(u32 input_offset, u32 rel_idx)
: input_offset(input_offset), rel_idx(rel_idx) {}
i64 size(ObjectFile<E> &file) const;
std::string_view get_contents(ObjectFile<E> &file) const;
std::span<ElfRel<E>> get_rels(ObjectFile<E> &file) const;
u32 input_offset = -1;
u32 output_offset = -1;
u32 rel_idx = -1;
u16 cie_idx = -1;
Atomic<bool> is_alive = true;
};
// A struct to hold target-dependent input section members.
template <typename E>
struct InputSectionExtras {};
template <needs_thunk E>
struct InputSectionExtras<E> {
std::vector<ThunkRef> thunk_refs;
};
template <is_riscv E>
struct InputSectionExtras<E> {
std::vector<i32> r_deltas;
};
// InputSection represents a section in an input object file.
template <typename E>
class InputSection {
public:
InputSection(Context<E> &ctx, ObjectFile<E> &file, i64 shndx);
void uncompress(Context<E> &ctx);
void uncompress_to(Context<E> &ctx, u8 *buf);
void scan_relocations(Context<E> &ctx);
void write_to(Context<E> &ctx, u8 *buf);
void apply_reloc_alloc(Context<E> &ctx, u8 *base);
void apply_reloc_nonalloc(Context<E> &ctx, u8 *base);
void kill();
std::string_view name() const;
i64 get_priority() const;
u64 get_addr() const;
const ElfShdr<E> &shdr() const;
std::span<ElfRel<E>> get_rels(Context<E> &ctx) const;
std::span<FdeRecord<E>> get_fdes() const;
std::string_view get_func_name(Context<E> &ctx, i64 offset) const;
bool is_relr_reloc(Context<E> &ctx, const ElfRel<E> &rel) const;
bool is_killed_by_icf() const;
bool record_undef_error(Context<E> &ctx, const ElfRel<E> &rel);
ObjectFile<E> &file;
OutputSection<E> *output_section = nullptr;
u64 sh_size = -1;
std::string_view contents;
[[no_unique_address]] InputSectionExtras<E> extra;
i32 fde_begin = -1;
i32 fde_end = -1;
u64 offset = -1;
u32 shndx = -1;
u32 relsec_idx = -1;
u32 reldyn_offset = 0;
bool uncompressed = false;
// For COMDAT de-duplication and garbage collection
std::atomic_bool is_alive = true;
u8 p2align = 0;
// For ICF
Atomic<bool> address_taken = false;
// For garbage collection
Atomic<bool> is_visited = false;
// For ICF
//
// `leader` is the section that this section has been merged with.
// Three kind of values are possible:
// - `leader == nullptr`: This section was not eligible for ICF.
// - `leader == this`: This section was retained.
// - `leader != this`: This section was merged with another identical section.
InputSection<E> *leader = nullptr;
u32 icf_idx = -1;
bool icf_eligible = false;
bool icf_leaf = false;
private:
void scan_pcrel(Context<E> &ctx, Symbol<E> &sym, const ElfRel<E> &rel);
void scan_absrel(Context<E> &ctx, Symbol<E> &sym, const ElfRel<E> &rel);
void scan_dyn_absrel(Context<E> &ctx, Symbol<E> &sym, const ElfRel<E> &rel);
void scan_toc_rel(Context<E> &ctx, Symbol<E> &sym, const ElfRel<E> &rel);
void scan_tlsdesc(Context<E> &ctx, Symbol<E> &sym);
void check_tlsle(Context<E> &ctx, Symbol<E> &sym, const ElfRel<E> &rel);
void apply_dyn_absrel(Context<E> &ctx, Symbol<E> &sym, const ElfRel<E> &rel,
u8 *loc, u64 S, i64 A, u64 P, ElfRel<E> **dynrel);
void apply_toc_rel(Context<E> &ctx, Symbol<E> &sym, const ElfRel<E> &rel,
u8 *loc, u64 S, i64 A, u64 P, ElfRel<E> **dynrel);
void copy_contents_riscv(Context<E> &ctx, u8 *buf);
std::pair<SectionFragment<E> *, i64>
get_fragment(Context<E> &ctx, const ElfRel<E> &rel);
u64 get_thunk_addr(i64 idx);
std::optional<u64> get_tombstone(Symbol<E> &sym, SectionFragment<E> *frag);
};
//
// tls.cc
//
template <typename E> u64 get_tls_begin(Context<E> &);
template <typename E> u64 get_tp_addr(Context<E> &);
template <typename E> u64 get_dtp_addr(Context<E> &);
//
// output-chunks.cc
//
template <typename E>
u64 get_eflags(Context<E> &ctx);
template <typename E>
i64 to_phdr_flags(Context<E> &ctx, Chunk<E> *chunk);
template <typename E>
std::string_view get_output_name(Context<E> &ctx, std::string_view name, u64 flags);
template <typename E>
void write_plt_header(Context<E> &ctx, u8 *buf);
template <typename E>
void write_plt_entry(Context<E> &ctx, u8 *buf, Symbol<E> &sym);
template <typename E>
void write_pltgot_entry(Context<E> &ctx, u8 *buf, Symbol<E> &sym);
// Chunk represents a contiguous region in an output file.
template <typename E>
class Chunk {
public:
virtual ~Chunk() = default;
virtual bool is_header() { return false; }
virtual OutputSection<E> *to_osec() { return nullptr; }
virtual i64 get_reldyn_size(Context<E> &ctx) const { return 0; }
virtual void construct_relr(Context<E> &ctx) {}
virtual void copy_buf(Context<E> &ctx) {}
virtual void write_to(Context<E> &ctx, u8 *buf) { unreachable(); }
virtual void update_shdr(Context<E> &ctx) {}
std::string_view name;
ElfShdr<E> shdr = { .sh_addralign = 1 };
i64 shndx = 0;
bool is_relro = false;
// For --gdb-index
bool is_compressed = false;
std::vector<u8> uncompressed_data;
// Some synethetic sections add local symbols to the output.
// For example, range extension thunks adds function_name@thunk
// symbol for each thunk entry. The following members are used
// for such synthesizing symbols.
virtual void compute_symtab_size(Context<E> &ctx) {};
virtual void populate_symtab(Context<E> &ctx) {};
i64 local_symtab_idx = 0;
i64 num_local_symtab = 0;
i64 strtab_size = 0;
i64 strtab_offset = 0;
// Offset in .rel.dyn
i64 reldyn_offset = 0;
// For --section-order
i64 sect_order = 0;
// For --pack-dyn-relocs=relr
std::vector<u64> relr;
};
// ELF header
template <typename E>
class OutputEhdr : public Chunk<E> {
public:
OutputEhdr(u32 sh_flags) {
this->name = "EHDR";
this->shdr.sh_flags = sh_flags;
this->shdr.sh_size = sizeof(ElfEhdr<E>);
this->shdr.sh_addralign = sizeof(Word<E>);
}
bool is_header() override { return true; }
void copy_buf(Context<E> &ctx) override;
};
// Section header
template <typename E>
class OutputShdr : public Chunk<E> {
public:
OutputShdr() {
this->name = "SHDR";
this->shdr.sh_size = 1;
this->shdr.sh_addralign = sizeof(Word<E>);
}
bool is_header() override { return true; }
void copy_buf(Context<E> &ctx) override;
};
// Program header
template <typename E>
class OutputPhdr : public Chunk<E> {
public:
OutputPhdr(u32 sh_flags) {
this->name = "PHDR";
this->shdr.sh_flags = sh_flags;
this->shdr.sh_addralign = sizeof(Word<E>);
}
bool is_header() override { return true; }
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
std::vector<ElfPhdr<E>> phdrs;
};
template <typename E>
class InterpSection : public Chunk<E> {
public:
InterpSection() {
this->name = ".interp";
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
// Sections
template <typename E>
class OutputSection : public Chunk<E> {
public:
OutputSection(std::string_view name, u32 type) {
this->name = name;
this->shdr.sh_type = type;
}
OutputSection<E> *to_osec() override { return this; }
void construct_relr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
void write_to(Context<E> &ctx, u8 *buf) override;
void compute_symtab_size(Context<E> &ctx) override;
void populate_symtab(Context<E> &ctx) override;
void create_range_extension_thunks(Context<E> &ctx);
std::vector<InputSection<E> *> members;
std::vector<std::unique_ptr<Thunk<E>>> thunks;
std::unique_ptr<RelocSection<E>> reloc_sec;
Atomic<u32> sh_flags;
};
template <typename E>
class GotSection : public Chunk<E> {
public:
GotSection() {
this->name = ".got";
this->is_relro = true;
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
this->shdr.sh_addralign = sizeof(Word<E>);
// We always create a .got so that _GLOBAL_OFFSET_TABLE_ has
// something to point to. s390x psABI define GOT[1] as a
// reserved slot, so we allocate one more for them.
this->shdr.sh_size = (is_s390x<E> ? 2 : 1) * sizeof(Word<E>);
}
void add_got_symbol(Context<E> &ctx, Symbol<E> *sym);
void add_gottp_symbol(Context<E> &ctx, Symbol<E> *sym);
void add_tlsgd_symbol(Context<E> &ctx, Symbol<E> *sym);
void add_tlsdesc_symbol(Context<E> &ctx, Symbol<E> *sym);
void add_tlsld(Context<E> &ctx);
u64 get_tlsld_addr(Context<E> &ctx) const;
bool has_tlsld(Context<E> &ctx) const { return tlsld_idx != -1; }
i64 get_reldyn_size(Context<E> &ctx) const override;
void copy_buf(Context<E> &ctx) override;
void construct_relr(Context<E> &ctx) override;
void compute_symtab_size(Context<E> &ctx) override;
void populate_symtab(Context<E> &ctx) override;
std::vector<Symbol<E> *> got_syms;
std::vector<Symbol<E> *> tlsgd_syms;
std::vector<Symbol<E> *> tlsdesc_syms;
std::vector<Symbol<E> *> gottp_syms;
u32 tlsld_idx = -1;
};
template <typename E>
class GotPltSection : public Chunk<E> {
public:
GotPltSection(Context<E> &ctx) {
this->name = ".got.plt";
this->is_relro = ctx.arg.z_now;
this->shdr.sh_type = is_ppc64<E> ? SHT_NOBITS : SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
this->shdr.sh_addralign = sizeof(Word<E>);
this->shdr.sh_size = HDR_SIZE;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
static constexpr i64 HDR_SIZE = (is_ppc64v2<E> ? 2 : 3) * sizeof(Word<E>);
static constexpr i64 ENTRY_SIZE = (is_ppc64v1<E> ? 3 : 1) * sizeof(Word<E>);
};
template <typename E>
class PltSection : public Chunk<E> {
public:
PltSection() {
this->name = ".plt";
this->shdr.sh_type = SHT_PROGBITS;
if constexpr (is_sparc<E>) {
this->shdr.sh_flags = SHF_ALLOC | SHF_EXECINSTR | SHF_WRITE;
this->shdr.sh_addralign = 256;
} else {
this->shdr.sh_flags = SHF_ALLOC | SHF_EXECINSTR;
this->shdr.sh_addralign = 16;
}
}
void add_symbol(Context<E> &ctx, Symbol<E> *sym);
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
void compute_symtab_size(Context<E> &ctx) override;
void populate_symtab(Context<E> &ctx) override;
std::vector<Symbol<E> *> symbols;
};
template <typename E>
class PltGotSection : public Chunk<E> {
public:
PltGotSection() {
this->name = ".plt.got";
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC | SHF_EXECINSTR;
this->shdr.sh_addralign = 16;
}
void add_symbol(Context<E> &ctx, Symbol<E> *sym);
void copy_buf(Context<E> &ctx) override;
void compute_symtab_size(Context<E> &ctx) override;
void populate_symtab(Context<E> &ctx) override;
std::vector<Symbol<E> *> symbols;
};
template <typename E>
class RelPltSection : public Chunk<E> {
public:
RelPltSection() {
this->name = E::is_rela ? ".rela.plt" : ".rel.plt";
this->shdr.sh_type = E::is_rela ? SHT_RELA : SHT_REL;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_entsize = sizeof(ElfRel<E>);
this->shdr.sh_addralign = sizeof(Word<E>);
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
class RelDynSection : public Chunk<E> {
public:
RelDynSection() {
this->name = E::is_rela ? ".rela.dyn" : ".rel.dyn";
this->shdr.sh_type = E::is_rela ? SHT_RELA : SHT_REL;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_entsize = sizeof(ElfRel<E>);
this->shdr.sh_addralign = sizeof(Word<E>);
}
void update_shdr(Context<E> &ctx) override;
void sort(Context<E> &ctx);
};
template <typename E>
class RelrDynSection : public Chunk<E> {
public:
RelrDynSection() {
this->name = ".relr.dyn";
this->shdr.sh_type = SHT_RELR;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_entsize = sizeof(Word<E>);
this->shdr.sh_addralign = sizeof(Word<E>);
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
class StrtabSection : public Chunk<E> {
public:
StrtabSection() {
this->name = ".strtab";
this->shdr.sh_type = SHT_STRTAB;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
// Offsets in .strtab for ARM32 mapping symbols
static constexpr i64 ARM = 1;
static constexpr i64 THUMB = 4;
static constexpr i64 DATA = 7;
};
template <typename E>
class ShstrtabSection : public Chunk<E> {
public:
ShstrtabSection() {
this->name = ".shstrtab";
this->shdr.sh_type = SHT_STRTAB;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
class DynstrSection : public Chunk<E> {
public:
DynstrSection() {
this->name = ".dynstr";
this->shdr.sh_type = SHT_STRTAB;
this->shdr.sh_flags = SHF_ALLOC;
}
i64 add_string(std::string_view str);
i64 find_string(std::string_view str);
void copy_buf(Context<E> &ctx) override;
i64 dynsym_offset = -1;
private:
std::unordered_map<std::string_view, i64> strings;
};
template <typename E>
class DynamicSection : public Chunk<E> {
public:
DynamicSection() {
this->name = ".dynamic";
this->is_relro = true;
this->shdr.sh_type = SHT_DYNAMIC;
this->shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
this->shdr.sh_addralign = sizeof(Word<E>);
this->shdr.sh_entsize = sizeof(ElfDyn<E>);
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
ElfSym<E> to_output_esym(Context<E> &ctx, Symbol<E> &sym, u32 st_name,
U32<E> *shndx);
template <typename E>
class SymtabSection : public Chunk<E> {
public:
SymtabSection() {
this->name = ".symtab";
this->shdr.sh_type = SHT_SYMTAB;
this->shdr.sh_entsize = sizeof(ElfSym<E>);
this->shdr.sh_addralign = sizeof(Word<E>);
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
class SymtabShndxSection : public Chunk<E> {
public:
SymtabShndxSection() {
this->name = ".symtab_shndx";
this->shdr.sh_type = SHT_SYMTAB_SHNDX;
this->shdr.sh_entsize = 4;
this->shdr.sh_addralign = 4;
}
};
template <typename E>
class DynsymSection : public Chunk<E> {
public:
DynsymSection() {
this->name = ".dynsym";
this->shdr.sh_type = SHT_DYNSYM;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_entsize = sizeof(ElfSym<E>);
this->shdr.sh_addralign = sizeof(Word<E>);
}
void add_symbol(Context<E> &ctx, Symbol<E> *sym);
void finalize(Context<E> &ctx);
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
std::vector<Symbol<E> *> symbols;
bool finalized = false;
};
template <typename E>
class HashSection : public Chunk<E> {
public:
HashSection() {
this->name = ".hash";
this->shdr.sh_type = SHT_HASH;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_entsize = 4;
this->shdr.sh_addralign = 4;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
class GnuHashSection : public Chunk<E> {
public:
GnuHashSection() {
this->name = ".gnu.hash";
this->shdr.sh_type = SHT_GNU_HASH;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_addralign = sizeof(Word<E>);
}
std::span<Symbol<E> *> get_exported_symbols(Context<E> &ctx);
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
static constexpr i64 LOAD_FACTOR = 8;
static constexpr i64 HEADER_SIZE = 16;
static constexpr i64 BLOOM_SHIFT = 26;
u32 num_buckets = -1;
u32 num_bloom = 1;
};
template <typename E>
class MergedSection : public Chunk<E> {
public:
static MergedSection<E> *
get_instance(Context<E> &ctx, std::string_view name, i64 type, i64 flags,
i64 entsize, i64 addralign);
SectionFragment<E> *insert(Context<E> &ctx, std::string_view data,
u64 hash, i64 p2align);
void assign_offsets(Context<E> &ctx);
void copy_buf(Context<E> &ctx) override;
void write_to(Context<E> &ctx, u8 *buf) override;
void print_stats(Context<E> &ctx);
HyperLogLog estimator;
private:
MergedSection(std::string_view name, i64 flags, i64 type, i64 entsize);
ConcurrentMap<SectionFragment<E>> map;
std::vector<i64> shard_offsets;
std::once_flag once_flag;
};
template <typename E>
class EhFrameSection : public Chunk<E> {
public:
EhFrameSection() {
this->name = ".eh_frame";
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_addralign = sizeof(Word<E>);
}
void construct(Context<E> &ctx);
void apply_eh_reloc(Context<E> &ctx, const ElfRel<E> &rel, u64 offset, u64 val);
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
class EhFrameHdrSection : public Chunk<E> {
public:
EhFrameHdrSection() {
this->name = ".eh_frame_hdr";
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_addralign = 4;
this->shdr.sh_size = HEADER_SIZE;
}
static constexpr i64 HEADER_SIZE = 12;
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
u32 num_fdes = 0;
};
template <typename E>
class EhFrameRelocSection : public Chunk<E> {
public:
EhFrameRelocSection() {
this->name = E::is_rela ? ".rela.eh_frame" : ".rel.eh_frame";
this->shdr.sh_type = E::is_rela ? SHT_RELA : SHT_REL;
this->shdr.sh_flags = SHF_INFO_LINK;
this->shdr.sh_addralign = sizeof(Word<E>);
this->shdr.sh_entsize = sizeof(ElfRel<E>);
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
class CopyrelSection : public Chunk<E> {
public:
CopyrelSection(bool is_relro) {
this->name = is_relro ? ".copyrel.rel.ro" : ".copyrel";
this->is_relro = is_relro;
this->shdr.sh_type = SHT_NOBITS;
this->shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
}
void add_symbol(Context<E> &ctx, Symbol<E> *sym);
void update_shdr(Context<E> &ctx) override;
i64 get_reldyn_size(Context<E> &ctx) const override { return symbols.size(); }
void copy_buf(Context<E> &ctx) override;
std::vector<Symbol<E> *> symbols;
};
template <typename E>
class VersymSection : public Chunk<E> {
public:
VersymSection() {
this->name = ".gnu.version";
this->shdr.sh_type = SHT_GNU_VERSYM;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_entsize = 2;
this->shdr.sh_addralign = 2;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
std::vector<U16<E>> contents;
};
template <typename E>
class VerneedSection : public Chunk<E> {
public:
VerneedSection() {
this->name = ".gnu.version_r";
this->shdr.sh_type = SHT_GNU_VERNEED;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_addralign = sizeof(Word<E>);
}
void construct(Context<E> &ctx);
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
std::vector<u8> contents;
};
template <typename E>
class VerdefSection : public Chunk<E> {
public:
VerdefSection() {
this->name = ".gnu.version_d";
this->shdr.sh_type = SHT_GNU_VERDEF;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_addralign = 8;
}
void construct(Context<E> &ctx);
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
std::vector<u8> contents;
};
template <typename E>
class BuildIdSection : public Chunk<E> {
public:
BuildIdSection() {
this->name = ".note.gnu.build-id";
this->shdr.sh_type = SHT_NOTE;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_addralign = 4;
this->shdr.sh_size = 1;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
void write_buildid(Context<E> &ctx);
static constexpr i64 HEADER_SIZE = 16;
};
template <typename E>
class NotePackageSection : public Chunk<E> {
public:
NotePackageSection() {
this->name = ".note.package";
this->shdr.sh_type = SHT_NOTE;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_addralign = 4;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
class NotePropertySection : public Chunk<E> {
public:
NotePropertySection() {
this->name = ".note.gnu.property";
this->shdr.sh_type = SHT_NOTE;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_addralign = sizeof(Word<E>);
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
private:
static constexpr i64 ENTRY_SIZE = E::is_64 ? 16 : 12;
std::map<u32, u32> properties;
};
template <typename E>
class GdbIndexSection : public Chunk<E> {
public:
GdbIndexSection() {
this->name = ".gdb_index";
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_addralign = 4;
}
};
template <typename E>
class CompressedSection : public Chunk<E> {
public:
CompressedSection(Context<E> &ctx, Chunk<E> &chunk);
void copy_buf(Context<E> &ctx) override;
private:
ElfChdr<E> chdr = {};
std::unique_ptr<Compressor> compressor;
};
template <typename E>
class RelocSection : public Chunk<E> {
public:
RelocSection(Context<E> &ctx, OutputSection<E> &osec);
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
private:
OutputSection<E> &output_section;
std::vector<i64> offsets;
};
// PT_GNU_RELRO works on page granularity. We want to align its end to
// a page boundary. We append this section at end of a segment so that
// the segment always ends at a page boundary.
template <typename E>
class RelroPaddingSection : public Chunk<E> {
public:
RelroPaddingSection() {
this->name = ".relro_padding";
this->is_relro = true;
this->shdr.sh_type = SHT_NOBITS;
this->shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
this->shdr.sh_addralign = 1;
this->shdr.sh_size = 1;
}
};
template <typename E>
class ComdatGroupSection : public Chunk<E> {
public:
ComdatGroupSection(Symbol<E> &sym, std::vector<Chunk<E> *> members)
: sym(sym), members(std::move(members)) {
this->name = ".group";
this->shdr.sh_type = SHT_GROUP;
this->shdr.sh_entsize = 4;
this->shdr.sh_addralign = 4;
this->shdr.sh_size = this->members.size() * 4 + 4;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
private:
Symbol<E> &sym;
std::vector<Chunk<E> *> members;
};
//
// gdb-index.cc
//
template <typename E> void write_gdb_index(Context<E> &ctx);
//
// input-files.cc
//
// A comdat section typically represents an inline function,
// which are de-duplicated by the linker.
//
// For each inline function, there's one comdat section, which
// contains section indices of the function code and its data such as
// string literals, if any.
//
// Comdat sections are identified by its signature. If two comdat
// sections have the same signature, the linker picks up one and
// discards the other by eliminating all sections that the other
// comdat section refers to.
struct ComdatGroup {
// The file priority of the owner file of this comdat section.
Atomic<u32> owner = -1;
};
template <typename E>
struct ComdatGroupRef {
ComdatGroup *group;
u32 sect_idx;
std::span<U32<E>> members;
};
template <typename E>
struct MergeableSection {
std::pair<SectionFragment<E> *, i64> get_fragment(i64 offset);
MergedSection<E> *parent;
u8 p2align = 0;
std::vector<std::string_view> strings;
std::vector<u64> hashes;
std::vector<u32> frag_offsets;
std::vector<SectionFragment<E> *> fragments;
};
// InputFile is the base class of ObjectFile and SharedFile.
template <typename E>
class InputFile {
public:
InputFile(Context<E> &ctx, MappedFile *mf);
InputFile() : filename("<internal>") {}
virtual ~InputFile() = default;
template <typename T>
std::span<T> get_data(Context<E> &ctx, const ElfShdr<E> &shdr);
template <typename T>
std::span<T> get_data(Context<E> &ctx, i64 idx);
std::string_view get_string(Context<E> &ctx, const ElfShdr<E> &shdr);
std::string_view get_string(Context<E> &ctx, i64 idx);
ElfEhdr<E> &get_ehdr() { return *(ElfEhdr<E> *)mf->data; }
std::span<ElfPhdr<E>> get_phdrs();
ElfShdr<E> *find_section(i64 type);
virtual void resolve_symbols(Context<E> &ctx) = 0;
void clear_symbols();
virtual void
mark_live_objects(Context<E> &ctx,
std::function<void(InputFile<E> *)> feeder) = 0;
std::span<Symbol<E> *> get_global_syms();
std::string_view get_source_name() const;
MappedFile *mf = nullptr;
std::span<ElfShdr<E>> elf_sections;
std::span<ElfSym<E>> elf_syms;
std::vector<Symbol<E> *> symbols;
i64 first_global = 0;
std::string filename;
bool is_dso = false;
u32 priority;
Atomic<bool> is_alive = false;
std::string_view shstrtab;
std::string_view symbol_strtab;
// To create an output .symtab
u64 local_symtab_idx = 0;
u64 global_symtab_idx = 0;
u64 num_local_symtab = 0;
u64 num_global_symtab = 0;
u64 strtab_offset = 0;
u64 strtab_size = 0;
// For --emit-relocs
std::vector<i32> output_sym_indices;
protected:
std::vector<Symbol<E>> local_syms;
std::vector<Symbol<E>> frag_syms;
};
template <typename E> struct ObjectFileExtras {};
template <is_riscv E>
struct ObjectFileExtras<E> {
std::optional<i64> stack_align;
std::optional<std::string_view> arch;
bool unaligned_access = false;
};
template <>
struct ObjectFileExtras<PPC32> {
InputSection<PPC32> *got2 = nullptr;
};
// ObjectFile represents an input .o file.
template <typename E>
class ObjectFile : public InputFile<E> {
public:
ObjectFile() = default;
static ObjectFile<E> *create(Context<E> &ctx, MappedFile *mf,
std::string archive_name, bool is_in_lib);
void parse(Context<E> &ctx);
void initialize_symbols(Context<E> &ctx);
void initialize_mergeable_sections(Context<E> &ctx);
void resolve_section_pieces(Context<E> &ctx);
void resolve_symbols(Context<E> &ctx) override;
void mark_live_objects(Context<E> &ctx,
std::function<void(InputFile<E> *)> feeder) override;
void convert_undefined_weak_symbols(Context<E> &ctx);
void scan_relocations(Context<E> &ctx);
void convert_common_symbols(Context<E> &ctx);
void compute_symtab_size(Context<E> &ctx);
void populate_symtab(Context<E> &ctx);
i64 get_shndx(const ElfSym<E> &esym);
InputSection<E> *get_section(const ElfSym<E> &esym);
std::string archive_name;
std::vector<std::unique_ptr<InputSection<E>>> sections;
std::vector<std::unique_ptr<MergeableSection<E>>> mergeable_sections;
bool is_in_lib = false;
std::vector<ElfShdr<E>> elf_sections2;
std::vector<CieRecord<E>> cies;
std::vector<FdeRecord<E>> fdes;
BitVector has_symver;
std::vector<ComdatGroupRef<E>> comdat_groups;
std::vector<InputSection<E> *> eh_frame_sections;
bool exclude_libs = false;
std::map<u32, u32> gnu_properties;
bool needs_executable_stack = false;
bool is_lto_obj = false;
bool is_gcc_offload_obj = false;
bool is_rust_obj = false;
i64 num_dynrel = 0;
i64 reldyn_offset = 0;
i64 fde_idx = 0;
i64 fde_offset = 0;
i64 fde_size = 0;
// For ICF
std::unique_ptr<InputSection<E>> llvm_addrsig;
// For .gdb_index
InputSection<E> *debug_info = nullptr;
InputSection<E> *debug_pubnames = nullptr;
InputSection<E> *debug_pubtypes = nullptr;
// For LTO
std::vector<ElfSym<E>> lto_elf_syms;
// Target-specific member
[[no_unique_address]] ObjectFileExtras<E> extra;
private:
ObjectFile(Context<E> &ctx, MappedFile *mf,
std::string archive_name, bool is_in_lib);
void initialize_sections(Context<E> &ctx);
void sort_relocations(Context<E> &ctx);
void initialize_ehframe_sections(Context<E> &ctx);
void parse_note_gnu_property(Context <E> &ctx, const ElfShdr <E> &shdr);
void parse_ehframe(Context<E> &ctx);
void override_symbol(Context<E> &ctx, Symbol<E> &sym,
const ElfSym<E> &esym, i64 symidx);
void merge_visibility(Context<E> &ctx, Symbol<E> &sym, u8 visibility);
bool has_common_symbol = false;
const ElfShdr<E> *symtab_sec;
std::span<U32<E>> symtab_shndx_sec;
};
// SharedFile represents an input .so file.
template <typename E>
class SharedFile : public InputFile<E> {
public:
static SharedFile<E> *create(Context<E> &ctx, MappedFile *mf);
void parse(Context<E> &ctx);
void resolve_symbols(Context<E> &ctx) override;
std::span<Symbol<E> *> find_aliases(Symbol<E> *sym);
i64 get_alignment(Symbol<E> *sym);
bool is_readonly(Symbol<E> *sym);
void mark_live_objects(Context<E> &ctx,
std::function<void(InputFile<E> *)> feeder) override;
void compute_symtab_size(Context<E> &ctx);
void populate_symtab(Context<E> &ctx);
std::string soname;
std::vector<std::string_view> version_strings;
std::vector<ElfSym<E>> elf_syms2;
private:
SharedFile(Context<E> &ctx, MappedFile *mf);
std::string get_soname(Context<E> &ctx);
void maybe_override_symbol(Symbol<E> &sym, const ElfSym<E> &esym);
std::vector<std::string_view> read_verdef(Context<E> &ctx);
std::vector<u16> versyms;
const ElfShdr<E> *symtab_sec;
// Used by find_aliases()
std::once_flag init_aliases;
std::vector<Symbol<E> *> aliases;
};
//
// linker-script.cc
//
template <typename E>
void parse_linker_script(Context<E> &ctx, MappedFile *mf);
template <typename E>
std::string_view
get_script_output_type(Context<E> &ctx, MappedFile *mf);
template <typename E>
void parse_version_script(Context<E> &ctx, MappedFile *mf);
struct DynamicPattern {
std::string_view pattern;
std::string_view source;
bool is_cpp = false;
};
template <typename E>
std::vector<DynamicPattern>
parse_dynamic_list(Context<E> &ctx, std::string_view path);
//
// lto.cc
//
template <typename E>
ObjectFile<E> *read_lto_object(Context<E> &ctx, MappedFile *mb);
template <typename E>
std::vector<ObjectFile<E> *> do_lto(Context<E> &ctx);
template <typename E>
void lto_cleanup(Context<E> &ctx);
//
// gc-sections.cc
//
template <typename E>
void gc_sections(Context<E> &ctx);
//
// icf.cc
//
template <typename E>
void icf_sections(Context<E> &ctx);
//
// relocatable.cc
//
template <typename E>
void combine_objects(Context<E> &ctx);
//
// mapfile.cc
//
template <typename E>
void print_map(Context<E> &ctx);
//
// subprocess.cc
//
std::function<void()> fork_child();
template <typename E>
[[noreturn]]
void process_run_subcommand(Context<E> &ctx, int argc, char **argv);
//
// cmdline.cc
//
template <typename E>
std::vector<std::string_view> expand_response_files(Context<E> &ctx, char **argv);
template <typename E>
std::vector<std::string> parse_nonpositional_args(Context<E> &ctx);
//
// passes.cc
//
template <typename E> int redo_main(Context<E> &, int argc, char **argv);
template <typename E> void create_internal_file(Context<E> &);
template <typename E> void apply_exclude_libs(Context<E> &);
template <typename E> void create_synthetic_sections(Context<E> &);
template <typename E> void set_file_priority(Context<E> &);
template <typename E> void resolve_symbols(Context<E> &);
template <typename E> void kill_eh_frame_sections(Context<E> &);
template <typename E> void resolve_section_pieces(Context<E> &);
template <typename E> void convert_common_symbols(Context<E> &);
template <typename E> void compute_merged_section_sizes(Context<E> &);
template <typename E> void create_output_sections(Context<E> &);
template <typename E> void add_synthetic_symbols(Context<E> &);
template <typename E> void check_cet_errors(Context<E> &);
template <typename E> void print_dependencies(Context<E> &);
template <typename E> void write_repro_file(Context<E> &);
template <typename E> void check_duplicate_symbols(Context<E> &);
template <typename E> void check_symbol_types(Context<E> &);
template <typename E> void sort_init_fini(Context<E> &);
template <typename E> void sort_ctor_dtor(Context<E> &);
template <typename E> void fixup_ctors_in_init_array(Context<E> &);
template <typename E> void shuffle_sections(Context<E> &);
template <typename E> void compute_section_sizes(Context<E> &);
template <typename E> void sort_output_sections(Context<E> &);
template <typename E> void claim_unresolved_symbols(Context<E> &);
template <typename E> void scan_relocations(Context<E> &);
template <typename E> void compute_imported_symbol_weakness(Context<E> &);
template <typename E> void construct_relr(Context<E> &);
template <typename E> void create_output_symtab(Context<E> &);
template <typename E> void report_undef_errors(Context<E> &);
template <typename E> void create_reloc_sections(Context<E> &);
template <typename E> void copy_chunks(Context<E> &);
template <typename E> void rewrite_endbr(Context<E> &);
template <typename E> void apply_version_script(Context<E> &);
template <typename E> void parse_symbol_version(Context<E> &);
template <typename E> void compute_import_export(Context<E> &);
template <typename E> void compute_address_significance(Context<E> &);
template <typename E> void clear_padding(Context<E> &);
template <typename E> void compute_section_headers(Context<E> &);
template <typename E> i64 set_osec_offsets(Context<E> &);
template <typename E> void fix_synthetic_symbols(Context<E> &);
template <typename E> i64 compress_debug_sections(Context<E> &);
template <typename E> void write_dependency_file(Context<E> &);
template <typename E> void show_stats(Context<E> &);
//
// arch-arm32.cc
//
template <> u64 get_eflags(Context<ARM32> &ctx);
void fixup_arm_exidx_section(Context<ARM32> &ctx);
//
// arch-riscv.cc
//
template <is_riscv E>
class RiscvAttributesSection : public Chunk<E> {
public:
RiscvAttributesSection() {
this->name = ".riscv.attributes";
this->shdr.sh_type = SHT_RISCV_ATTRIBUTES;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
std::vector<u8> contents;
};
template <is_riscv E>
u64 get_eflags(Context<E> &ctx);
template <is_riscv E>
i64 riscv_resize_sections(Context<E> &ctx);
//
// arch-ppc64v1.cc
//
void ppc64v1_rewrite_opd(Context<PPC64V1> &ctx);
void ppc64v1_scan_symbols(Context<PPC64V1> &ctx);
class PPC64OpdSection : public Chunk<PPC64V1> {
public:
PPC64OpdSection() {
this->name = ".opd";
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
this->shdr.sh_addralign = 8;
}
void add_symbol(Context<PPC64V1> &ctx, Symbol<PPC64V1> *sym);
i64 get_reldyn_size(Context<PPC64V1> &ctx) const override;
void copy_buf(Context<PPC64V1> &ctx) override;
static constexpr i64 ENTRY_SIZE = sizeof(Word<PPC64V1>) * 3;
std::vector<Symbol<PPC64V1> *> symbols;
};
//
// arch-ppc64v2.cc
//
extern const std::vector<std::pair<std::string_view, u32>>
ppc64_save_restore_insns;
class PPC64SaveRestoreSection : public Chunk<PPC64V2> {
public:
PPC64SaveRestoreSection() {
this->name = ".save_restore_gprs";
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC | SHF_EXECINSTR;
this->shdr.sh_addralign = 16;
this->shdr.sh_size = ppc64_save_restore_insns.size() * 4;
}
void copy_buf(Context<PPC64V2> &ctx) override;
};
template <> u64 get_eflags(Context<PPC64V2> &ctx);
//
// arch-sparc.cc
//
class SparcTlsGetAddrSection : public Chunk<SPARC64> {
public:
SparcTlsGetAddrSection() {
this->name = ".tls_get_addr";
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC | SHF_EXECINSTR;
this->shdr.sh_addralign = 4;
this->shdr.sh_size = 24;
}
void copy_buf(Context<SPARC64> &ctx) override;
};
//
// arch-alpha.cc
//
class AlphaGotSection : public Chunk<ALPHA> {
public:
AlphaGotSection() {
this->name = ".alpha_got";
this->is_relro = true;
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
this->shdr.sh_addralign = 8;
}
void add_symbol(Symbol<ALPHA> &sym, i64 addend);
void finalize();
u64 get_addr(Symbol<ALPHA> &sym, i64 addend);
i64 get_reldyn_size(Context<ALPHA> &ctx) const override;
void copy_buf(Context<ALPHA> &ctx) override;
struct Entry {
bool operator==(const Entry &) const = default;
Symbol<ALPHA> *sym;
i64 addend;
};
private:
std::vector<Entry> entries;
std::mutex mu;
};
//
// main.cc
//
struct BuildId {
i64 size() const;
enum { NONE, HEX, HASH, UUID } kind = NONE;
std::vector<u8> value;
i64 hash_size = 0;
};
typedef enum { COMPRESS_NONE, COMPRESS_ZLIB, COMPRESS_ZSTD } CompressKind;
typedef enum {
UNRESOLVED_ERROR,
UNRESOLVED_WARN,
UNRESOLVED_IGNORE,
} UnresolvedKind;
typedef enum {
SEPARATE_LOADABLE_SEGMENTS,
SEPARATE_CODE,
NOSEPARATE_CODE,
} SeparateCodeKind;
typedef enum {
CET_REPORT_NONE,
CET_REPORT_WARNING,
CET_REPORT_ERROR,
} CetReportKind;
typedef enum {
SHUFFLE_SECTIONS_NONE,
SHUFFLE_SECTIONS_SHUFFLE,
SHUFFLE_SECTIONS_REVERSE,
} ShuffleSectionsKind;
struct VersionPattern {
std::string_view pattern;
std::string_view source;
std::string_view ver_str;
u16 ver_idx = -1;
bool is_cpp = false;
};
struct SectionOrder {
enum { NONE, SECTION, GROUP, ADDR, ALIGN, SYMBOL } type = NONE;
std::string name;
u64 value = 0;
};
// Target-specific context members
template <typename E>
struct ContextExtras {};
template <is_riscv E>
struct ContextExtras<E> {
RiscvAttributesSection<E> *riscv_attributes = nullptr;
};
template <>
struct ContextExtras<PPC32> {
Symbol<PPC32> *_SDA_BASE_ = nullptr;
};
template <>
struct ContextExtras<PPC64V1> {
PPC64OpdSection *opd = nullptr;
Symbol<PPC64V1> *TOC = nullptr;
};
template <>
struct ContextExtras<PPC64V2> {
PPC64SaveRestoreSection *save_restore = nullptr;
Symbol<PPC64V2> *TOC = nullptr;
Atomic<bool> is_power10 = false;
};
template <>
struct ContextExtras<SPARC64> {
SparcTlsGetAddrSection *tls_get_addr_sec = nullptr;
Symbol<SPARC64> *tls_get_addr_sym = nullptr;
};
template <>
struct ContextExtras<ALPHA> {
AlphaGotSection *got = nullptr;
};
// Context represents a context object for each invocation of the linker.
// It contains command line flags, pointers to singleton objects
// (such as linker-synthesized output sections), unique_ptrs for
// resource management, and other miscellaneous objects.
template <typename E>
struct Context {
Context() {
arg.entry = get_symbol(*this, "_start");
arg.fini = get_symbol(*this, "_fini");
arg.init = get_symbol(*this, "_init");
}
Context(const Context<E> &) = delete;
void checkpoint() {
if (has_error) {
cleanup();
_exit(1);
}
}
// Command-line arguments
struct {
BuildId build_id;
CetReportKind z_cet_report = CET_REPORT_NONE;
CompressKind compress_debug_sections = COMPRESS_NONE;
SeparateCodeKind z_separate_code = NOSEPARATE_CODE;
ShuffleSectionsKind shuffle_sections = SHUFFLE_SECTIONS_NONE;
Symbol<E> *entry = nullptr;
Symbol<E> *fini = nullptr;
Symbol<E> *init = nullptr;
UnresolvedKind unresolved_symbols = UNRESOLVED_ERROR;
bool Bsymbolic = false;
bool Bsymbolic_functions = false;
bool allow_multiple_definition = false;
bool apply_dynamic_relocs = true;
bool color_diagnostics = false;
bool default_symver = false;
bool demangle = true;
bool discard_all = false;
bool discard_locals = false;
bool eh_frame_hdr = true;
bool emit_relocs = false;
bool enable_new_dtags = true;
bool execute_only = false;
bool export_dynamic = false;
bool fatal_warnings = false;
bool fork = true;
bool gc_sections = false;
bool gdb_index = false;
bool hash_style_gnu = true;
bool hash_style_sysv = true;
bool icf = false;
bool icf_all = false;
bool ignore_data_address_equality = false;
bool is_static = false;
bool lto_pass2 = false;
bool nmagic = false;
bool noinhibit_exec = false;
bool oformat_binary = false;
bool omagic = false;
bool pack_dyn_relocs_relr = false;
bool perf = false;
bool pic = false;
bool pie = false;
bool print_dependencies = false;
bool print_gc_sections = false;
bool print_icf_sections = false;
bool print_map = false;
bool quick_exit = true;
bool relax = true;
bool relocatable = false;
bool relocatable_merge_sections = false;
bool repro = false;
bool rosegment = true;
bool shared = false;
bool start_stop = false;
bool stats = false;
bool strip_all = false;
bool strip_debug = false;
bool suppress_warnings = false;
bool trace = false;
bool undefined_version = false;
bool warn_common = false;
bool warn_once = false;
bool warn_textrel = false;
bool z_copyreloc = true;
bool z_defs = false;
bool z_delete = true;
bool z_dlopen = true;
bool z_dump = true;
bool z_dynamic_undefined_weak = true;
bool z_execstack = false;
bool z_execstack_if_needed = false;
bool z_ibt = false;
bool z_initfirst = false;
bool z_interpose = false;
bool z_keep_text_section_prefix = false;
bool z_nodefaultlib = false;
bool z_now = false;
bool z_origin = false;
bool z_relro = true;
bool z_rewrite_endbr = false;
bool z_sectionheader = true;
bool z_shstk = false;
bool z_text = false;
i64 filler = -1;
i64 spare_dynamic_tags = 5;
i64 spare_program_headers = 0;
i64 thread_count = 0;
i64 z_stack_size = 0;
u64 shuffle_sections_seed;
std::string_view emulation;
std::optional<Glob> unique;
std::optional<u64> physical_image_base;
std::string Map;
std::string chroot;
std::string dependency_file;
std::string directory;
std::string dynamic_linker;
std::string output = "a.out";
std::string package_metadata;
std::string plugin;
std::string rpaths;
std::string soname;
std::string sysroot;
std::unique_ptr<std::unordered_set<std::string_view>> retain_symbols_file;
std::unordered_map<std::string_view, u64> section_align;
std::unordered_map<std::string_view, u64> section_start;
std::unordered_set<std::string_view> ignore_ir_file;
std::unordered_set<std::string_view> wrap;
std::vector<SectionOrder> section_order;
std::vector<Symbol<E> *> require_defined;
std::vector<Symbol<E> *> undefined;
std::vector<std::pair<Symbol<E> *, std::variant<Symbol<E> *, u64>>> defsyms;
std::vector<std::string> library_paths;
std::vector<std::string> plugin_opt;
std::vector<std::string> version_definitions;
std::vector<std::string_view> auxiliary;
std::vector<std::string_view> exclude_libs;
std::vector<std::string_view> filter;
std::vector<std::string_view> trace_symbol;
u64 image_base = 0x200000;
} arg;
std::vector<VersionPattern> version_patterns;
std::vector<DynamicPattern> dynamic_list_patterns;
i64 default_version = VER_NDX_UNSPECIFIED;
i64 page_size = E::page_size;
// Reader context
bool as_needed = false;
bool whole_archive = false;
bool is_static;
bool in_lib = false;
i64 file_priority = 10000;
MappedFile *script_file = nullptr;
std::unordered_set<std::string_view> visited;
tbb::task_group tg;
bool has_error = false;
Atomic<bool> has_init_array = false;
Atomic<bool> has_ctors = false;
// Symbol table
tbb::concurrent_hash_map<std::string_view, Symbol<E>, HashCmp> symbol_map;
tbb::concurrent_hash_map<std::string_view, ComdatGroup, HashCmp> comdat_groups;
tbb::concurrent_vector<std::unique_ptr<MergedSection<E>>> merged_sections;
tbb::concurrent_vector<std::unique_ptr<TimerRecord>> timer_records;
tbb::concurrent_vector<std::function<void()>> on_exit;
tbb::concurrent_vector<std::unique_ptr<ObjectFile<E>>> obj_pool;
tbb::concurrent_vector<std::unique_ptr<SharedFile<E>>> dso_pool;
tbb::concurrent_vector<std::unique_ptr<u8[]>> string_pool;
tbb::concurrent_vector<std::unique_ptr<MappedFile>> mf_pool;
tbb::concurrent_vector<std::unique_ptr<Chunk<E>>> chunk_pool;
tbb::concurrent_vector<std::unique_ptr<OutputSection<E>>> osec_pool;
// Symbol auxiliary data
std::vector<SymbolAux<E>> symbol_aux;
// Fully-expanded command line args
std::vector<std::string_view> cmdline_args;
// Input files
std::vector<ObjectFile<E> *> objs;
std::vector<SharedFile<E> *> dsos;
ObjectFile<E> *internal_obj = nullptr;
std::vector<ElfSym<E>> internal_esyms;
// Output buffer
std::unique_ptr<OutputFile<Context<E>>> output_file;
u8 *buf = nullptr;
bool overwrite_output_file = true;
std::vector<Chunk<E> *> chunks;
Atomic<bool> needs_tlsld = false;
Atomic<bool> has_textrel = false;
Atomic<u32> num_ifunc_dynrels = 0;
tbb::concurrent_hash_map<Symbol<E> *, std::vector<std::string>> undef_errors;
// Output chunks
OutputEhdr<E> *ehdr = nullptr;
OutputShdr<E> *shdr = nullptr;
OutputPhdr<E> *phdr = nullptr;
InterpSection<E> *interp = nullptr;
GotSection<E> *got = nullptr;
GotPltSection<E> *gotplt = nullptr;
RelPltSection<E> *relplt = nullptr;
RelDynSection<E> *reldyn = nullptr;
RelrDynSection<E> *relrdyn = nullptr;
DynamicSection<E> *dynamic = nullptr;
StrtabSection<E> *strtab = nullptr;
DynstrSection<E> *dynstr = nullptr;
HashSection<E> *hash = nullptr;
GnuHashSection<E> *gnu_hash = nullptr;
ShstrtabSection<E> *shstrtab = nullptr;
PltSection<E> *plt = nullptr;
PltGotSection<E> *pltgot = nullptr;
SymtabSection<E> *symtab = nullptr;
SymtabShndxSection<E> *symtab_shndx = nullptr;
DynsymSection<E> *dynsym = nullptr;
EhFrameSection<E> *eh_frame = nullptr;
EhFrameHdrSection<E> *eh_frame_hdr = nullptr;
EhFrameRelocSection<E> *eh_frame_reloc = nullptr;
CopyrelSection<E> *copyrel = nullptr;
CopyrelSection<E> *copyrel_relro = nullptr;
VersymSection<E> *versym = nullptr;
VerneedSection<E> *verneed = nullptr;
VerdefSection<E> *verdef = nullptr;
BuildIdSection<E> *buildid = nullptr;
NotePackageSection<E> *note_package = nullptr;
NotePropertySection<E> *note_property = nullptr;
GdbIndexSection<E> *gdb_index = nullptr;
RelroPaddingSection<E> *relro_padding = nullptr;
[[no_unique_address]] ContextExtras<E> extra;
// For --gdb-index
std::span<u8> debug_info;
std::span<u8> debug_abbrev;
std::span<u8> debug_ranges;
std::span<u8> debug_addr;
std::span<u8> debug_rnglists;
// For thread-local variables
u64 tls_begin = 0;
u64 tp_addr = 0;
u64 dtp_addr = 0;
// Linker-synthesized symbols
Symbol<E> *_DYNAMIC = nullptr;
Symbol<E> *_GLOBAL_OFFSET_TABLE_ = nullptr;
Symbol<E> *_PROCEDURE_LINKAGE_TABLE_ = nullptr;
Symbol<E> *_TLS_MODULE_BASE_ = nullptr;
Symbol<E> *__GNU_EH_FRAME_HDR = nullptr;
Symbol<E> *__bss_start = nullptr;
Symbol<E> *__dso_handle = nullptr;
Symbol<E> *__ehdr_start = nullptr;
Symbol<E> *__executable_start = nullptr;
Symbol<E> *__exidx_end = nullptr;
Symbol<E> *__exidx_start = nullptr;
Symbol<E> *__fini_array_end = nullptr;
Symbol<E> *__fini_array_start = nullptr;
Symbol<E> *__global_pointer = nullptr;
Symbol<E> *__init_array_end = nullptr;
Symbol<E> *__init_array_start = nullptr;
Symbol<E> *__preinit_array_end = nullptr;
Symbol<E> *__preinit_array_start = nullptr;
Symbol<E> *__rel_iplt_end = nullptr;
Symbol<E> *__rel_iplt_start = nullptr;
Symbol<E> *_edata = nullptr;
Symbol<E> *_end = nullptr;
Symbol<E> *_etext = nullptr;
Symbol<E> *edata = nullptr;
Symbol<E> *end = nullptr;
Symbol<E> *etext = nullptr;
};
template <typename E>
std::string_view get_machine_type(Context<E> &ctx, MappedFile *mf);
template <typename E>
MappedFile *open_library(Context<E> &ctx, std::string path);
template <typename E>
MappedFile *find_library(Context<E> &ctx, std::string path);
template <typename E>
void read_file(Context<E> &ctx, MappedFile *mf);
template <typename E>
int elf_main(int argc, char **argv);
int main(int argc, char **argv);
template <typename E>
std::ostream &operator<<(std::ostream &out, const InputFile<E> &file);
//
// Symbol
//
enum {
NEEDS_GOT = 1 << 0,
NEEDS_PLT = 1 << 1,
NEEDS_CPLT = 1 << 2,
NEEDS_GOTTP = 1 << 3,
NEEDS_TLSGD = 1 << 4,
NEEDS_COPYREL = 1 << 5,
NEEDS_TLSDESC = 1 << 6,
NEEDS_PPC_OPD = 1 << 7, // for PPCv1
};
// A struct to hold target-dependent symbol members.
template <typename E>
struct SymbolExtras {};
template <needs_thunk E>
struct SymbolExtras<E> {
// For range extension thunks
i16 thunk_idx = -1;
i16 thunk_sym_idx = -1;
};
// Flags for Symbol<E>::get_addr()
enum {
NO_PLT = 1 << 0, // Request an address other than .plt
NO_OPD = 1 << 1, // Request an address other than .opd (PPC64V1 only)
};
// Symbol class represents a defined symbol.
//
// A symbol has not only one but several different addresses if it
// has PLT or GOT entries. This class provides various functions to
// compute different addresses.
template <typename E>
class Symbol {
public:
Symbol() = default;
Symbol(std::string_view name) : nameptr(name.data()), namelen(name.size()) {}
Symbol(const Symbol<E> &other) : Symbol(other.name()) {}
u64 get_addr(Context<E> &ctx, i64 flags = 0) const;
u64 get_got_addr(Context<E> &ctx) const;
u64 get_gotplt_addr(Context<E> &ctx) const;
u64 get_gottp_addr(Context<E> &ctx) const;
u64 get_tlsgd_addr(Context<E> &ctx) const;
u64 get_tlsdesc_addr(Context<E> &ctx) const;
u64 get_plt_addr(Context<E> &ctx) const;
u64 get_opd_addr(Context<E> &ctx) const;
u64 get_got_pltgot_addr(Context<E> &ctx) const;
void set_got_idx(Context<E> &ctx, i32 idx);
void set_gottp_idx(Context<E> &ctx, i32 idx);
void set_tlsgd_idx(Context<E> &ctx, i32 idx);
void set_tlsdesc_idx(Context<E> &ctx, i32 idx);
void set_plt_idx(Context<E> &ctx, i32 idx);
void set_pltgot_idx(Context<E> &ctx, i32 idx);
void set_opd_idx(Context<E> &ctx, i32 idx);
void set_dynsym_idx(Context<E> &ctx, i32 idx);
i32 get_got_idx(Context<E> &ctx) const;
i32 get_gottp_idx(Context<E> &ctx) const;
i32 get_tlsgd_idx(Context<E> &ctx) const;
i32 get_tlsdesc_idx(Context<E> &ctx) const;
i32 get_plt_idx(Context<E> &ctx) const;
i32 get_pltgot_idx(Context<E> &ctx) const;
i32 get_opd_idx(Context<E> &ctx) const;
i32 get_dynsym_idx(Context<E> &ctx) const;
bool has_plt(Context<E> &ctx) const;
bool has_got(Context<E> &ctx) const { return get_got_idx(ctx) != -1; }
bool has_gottp(Context<E> &ctx) const { return get_gottp_idx(ctx) != -1; }
bool has_tlsgd(Context<E> &ctx) const { return get_tlsgd_idx(ctx) != -1; }
bool has_tlsdesc(Context<E> &ctx) const { return get_tlsdesc_idx(ctx) != -1; }
bool has_opd(Context<E> &ctx) const { return get_opd_idx(ctx) != -1; }
u32 get_djb_hash(Context<E> &ctx) const;
void set_djb_hash(Context<E> &ctx, u32 hash);
bool is_absolute() const;
bool is_relative() const { return !is_absolute(); }
bool is_local(Context<E> &ctx) const;
bool is_ifunc() const { return get_type() == STT_GNU_IFUNC; }
bool is_pde_ifunc(Context<E> &ctx) const;
bool is_remaining_undef_weak() const;
bool is_pcrel_linktime_const(Context<E> &ctx) const;
bool is_tprel_linktime_const(Context<E> &ctx) const;
bool is_tprel_runtime_const(Context<E> &ctx) const;
InputSection<E> *get_input_section() const;
Chunk<E> *get_output_section() const;
SectionFragment<E> *get_frag() const;
void set_input_section(InputSection<E> *);
void set_output_section(Chunk<E> *);
void set_frag(SectionFragment<E> *);
void set_name(std::string_view);
std::string_view name() const;
u32 get_type() const;
std::string_view get_version() const;
i64 get_output_sym_idx(Context<E> &ctx) const;
const ElfSym<E> &esym() const;
void add_aux(Context<E> &ctx);
// A symbol is owned by a file. If two or more files define the
// same symbol, the one with the strongest definition owns the symbol.
// If `file` is null, the symbol is equivalent to nonexistent.
InputFile<E> *file = nullptr;
// A symbol usually belongs to an input section, but it can belong
// to a section fragment, an output section or nothing
// (i.e. absolute symbol). `origin` holds one of them. We use the
// least significant two bits to distinguish type.
enum : uintptr_t {
TAG_ABS = 0b00,
TAG_ISEC = 0b01,
TAG_OSEC = 0b10,
TAG_FRAG = 0b11,
TAG_MASK = 0b11,
};
static_assert(alignof(InputSection<E>) >= 4);
static_assert(alignof(Chunk<E>) >= 4);
static_assert(alignof(SectionFragment<E>) >= 4);
uintptr_t origin = 0;
// `value` contains symbol value. If it's an absolute symbol, it is
// equivalent to its address. If it belongs to an input section or a
// section fragment, value is added to the base of the input section
// to yield an address.
u64 value = 0;
const char *nameptr = nullptr;
i32 namelen = 0;
// Index into the symbol table of the owner file.
i32 sym_idx = -1;
i32 aux_idx = -1;
u16 ver_idx = VER_NDX_UNSPECIFIED;
// `flags` has NEEDS_ flags.
Atomic<u8> flags = 0;
tbb::spin_mutex mu;
Atomic<u8> visibility = STV_DEFAULT;
bool is_weak : 1 = false;
bool write_to_symtab : 1 = false; // for --strip-all and the like
bool is_traced : 1 = false; // for --trace-symbol
bool is_wrapped : 1 = false; // for --wrap
// If a symbol can be resolved to a symbol in a different ELF file at
// runtime, `is_imported` is true. If a symbol is a dynamic symbol and
// can be used by other ELF file at runtime, `is_exported` is true.
//
// Note that both can be true at the same time. Such symbol represents
// a function or data exported from this ELF file which can be
// imported by other definition at runtime. That is actually a usual
// exported symbol when creating a DSO. In other words, a dynamic
// symbol exported by a DSO is usually imported by itself.
//
// If is_imported is true and is_exported is false, it is a dynamic
// symbol just imported from other DSO.
//
// If is_imported is false and is_exported is true, there are two
// possible cases. If we are creating an executable, we know that
// exported symbols cannot be intercepted by any DSO (because the
// dynamic loader searches a dynamic symbol from an executable before
// examining any DSOs), so any exported symbol is export-only in an
// executable. If we are creating a DSO, export-only symbols
// represent a protected symbol (i.e. a symbol whose visibility is
// STV_PROTECTED).
bool is_imported : 1 = false;
bool is_exported : 1 = false;
// `is_canonical` is true if this symbol represents a "canonical" PLT.
// Here is the explanation as to what the canonical PLT is.
//
// In C/C++, the process-wide function pointer equality is guaranteed.
// That is, if you take an address of a function `foo`, it's always
// evaluated to the same address wherever you do that.
//
// For the sake of explanation, assume that `libx.so` exports a
// function symbol `foo`, and there's a program that uses `libx.so`.
// Both `libx.so` and the main executable take the address of `foo`,
// which must be evaluated to the same address because of the above
// guarantee.
//
// If the main executable is position-independent code (PIC), `foo` is
// evaluated to the beginning of the function code, as you would have
// expected. The address of `foo` is stored to GOTs, and the machine
// code that takes the address of `foo` reads the GOT entries at
// runtime.
//
// However, if it's not PIC, the main executable's code was compiled
// to not use GOT (note that shared objects are always PIC, only
// executables can be non-PIC). It instead assumes that `foo` (and any
// other global variables/functions) has an address that is fixed at
// link-time. This assumption is correct if `foo` is in the same
// position-dependent executable, but it's not if `foo` is imported
// from some other DSO at runtime.
//
// In this case, we use the address of the `foo`'s PLT entry in the
// main executable (whose address is fixed at link-time) as its
// address. In order to guarantee pointer equality, we also need to
// fill foo's GOT entries in DSOs with the addres of the foo's PLT
// entry instead of `foo`'s real address. We can do that by setting a
// symbol value to `foo`'s dynamic symbol. If a symbol value is set,
// the dynamic loader initialize `foo`'s GOT entries with that value
// instead of the symbol's real address.
//
// We call such PLT entry in the main executable as "canonical".
// If `foo` has a canonical PLT, its address is evaluated to its
// canonical PLT's address. Otherwise, it's evaluated to `foo`'s
// address.
//
// Only non-PIC main executables may have canonical PLTs. PIC
// executables and shared objects never have a canonical PLT.
//
// This bit manages if we need to make this symbol's PLT canonical.
// This bit is meaningful only when the symbol has a PLT entry.
bool is_canonical : 1 = false;
// If an input object file is not compiled with -fPIC (or with
// -fno-PIC), the file not position independent. That means the
// machine code included in the object file does not use GOT to access
// global variables. Instead, it assumes that addresses of global
// variables are known at link-time.
//
// Let's say `libx.so` exports a global variable `foo`, and a main
// executable uses the variable. If the executable is not compiled
// with -fPIC, we can't simply apply a relocation that refers `foo`
// because `foo`'s address is not known at link-time.
//
// In this case, we could print out the "recompile with -fPIC" error
// message, but there's a way to workaround.
//
// The loader supports a feature so-called "copy relocations".
// A copy relocation instructs the loader to copy data from a DSO to a
// specified location in the main executable. By using this feature,
// we can copy `foo`'s data to a BSS region at runtime. With that,
// we can apply relocations agianst `foo` as if `foo` existed in the
// main executable's BSS area, whose address is known at link-time.
//
// Copy relocations are used only by position-dependent executables.
// Position-independent executables and DSOs don't need them because
// they use GOT to access global variables.
//
// `has_copyrel` is true if we need to emit a copy relocation for this
// symbol. If the original symbol in a DSO is in a read-only memory
// region, `is_copyrel_readonly` is set to true so that the copied data
// will become read-only at run-time.
bool has_copyrel : 1 = false;
bool is_copyrel_readonly : 1 = false;
// For LTO. True if the symbol is referenced by a regular object (as
// opposed to IR object).
bool referenced_by_regular_obj : 1 = false;
// For `-z rewrite-endbr`
bool address_taken : 1 = false;
// Target-dependent extra members.
[[no_unique_address]] SymbolExtras<E> extra;
};
template <typename E>
Symbol<E> *get_symbol(Context<E> &ctx, std::string_view key,
std::string_view name);
template <typename E>
Symbol<E> *get_symbol(Context<E> &ctx, std::string_view name);
template <typename E>
std::string_view demangle(const Symbol<E> &sym);
template <typename E>
std::ostream &operator<<(std::ostream &out, const Symbol<E> &sym) {
if (opt_demangle)
out << demangle(sym);
else
out << sym.name();
return out;
}
//
// Inline objects and functions
//
template <typename E>
inline i64 FdeRecord<E>::size(ObjectFile<E> &file) const {
return *(U32<E> *)(file.cies[cie_idx].contents.data() + input_offset) + 4;
}
template <typename E>
inline std::string_view FdeRecord<E>::get_contents(ObjectFile<E> &file) const {
return file.cies[cie_idx].contents.substr(input_offset, size(file));
}
template <typename E>
inline std::span<ElfRel<E>>
FdeRecord<E>::get_rels(ObjectFile<E> &file) const {
std::span<ElfRel<E>> rels = file.cies[cie_idx].rels;
i64 end = rel_idx;
while (end < rels.size() && rels[end].r_offset < input_offset + size(file))
end++;
return rels.subspan(rel_idx, end - rel_idx);
}
template <typename E>
inline std::ostream &
operator<<(std::ostream &out, const InputSection<E> &isec) {
out << isec.file << ":(" << isec.name() << ")";
return out;
}
template <typename E>
inline u64 SectionFragment<E>::get_addr(Context<E> &ctx) const {
return output_section.shdr.sh_addr + offset;
}
template <typename E>
inline void InputSection<E>::kill() {
if (is_alive.exchange(false))
for (FdeRecord<E> &fde : get_fdes())
fde.is_alive = false;
}
template <typename E>
inline u64 InputSection<E>::get_addr() const {
return output_section->shdr.sh_addr + offset;
}
template <typename E>
inline std::string_view InputSection<E>::name() const {
if (file.elf_sections.size() <= shndx)
return (shdr().sh_flags & SHF_TLS) ? ".tls_common" : ".common";
return file.shstrtab.data() + file.elf_sections[shndx].sh_name;
}
template <typename E>
inline i64 InputSection<E>::get_priority() const {
return ((i64)file.priority << 32) | shndx;
}
template <typename E>
i64 get_addend(u8 *loc, const ElfRel<E> &rel);
template <typename E> requires E::is_rela && (!is_sh4<E>)
inline i64 get_addend(u8 *loc, const ElfRel<E> &rel) {
return rel.r_addend;
}
template <typename E>
i64 get_addend(InputSection<E> &isec, const ElfRel<E> &rel) {
return get_addend((u8 *)isec.contents.data() + rel.r_offset, rel);
}
template <typename E>
void write_addend(u8 *loc, i64 val, const ElfRel<E> &rel);
template <typename E> requires E::is_rela
void write_addend(u8 *loc, i64 val, const ElfRel<E> &rel) {}
template <typename E>
inline const ElfShdr<E> &InputSection<E>::shdr() const {
if (shndx < file.elf_sections.size())
return file.elf_sections[shndx];
return file.elf_sections2[shndx - file.elf_sections.size()];
}
template <typename E>
inline std::span<ElfRel<E>> InputSection<E>::get_rels(Context<E> &ctx) const {
if (relsec_idx == -1)
return {};
return file.template get_data<ElfRel<E>>(ctx, file.elf_sections[relsec_idx]);
}
template <typename E>
inline std::span<FdeRecord<E>> InputSection<E>::get_fdes() const {
if (fde_begin == -1)
return {};
std::span<FdeRecord<E>> span(file.fdes);
return span.subspan(fde_begin, fde_end - fde_begin);
}
template <typename E>
std::pair<SectionFragment<E> *, i64>
InputSection<E>::get_fragment(Context<E> &ctx, const ElfRel<E> &rel) {
assert(!(shdr().sh_flags & SHF_ALLOC));
const ElfSym<E> &esym = file.elf_syms[rel.r_sym];
if (esym.st_type == STT_SECTION)
if (std::unique_ptr<MergeableSection<E>> &m =
file.mergeable_sections[file.get_shndx(esym)])
return m->get_fragment(esym.st_value + get_addend(*this, rel));
return {nullptr, 0};
}
template <typename E>
u64 InputSection<E>::get_thunk_addr(i64 idx) {
if constexpr (needs_thunk<E>) {
ThunkRef ref = extra.thunk_refs[idx];
assert(ref.thunk_idx != -1);
return output_section->thunks[ref.thunk_idx]->get_addr(ref.sym_idx);
}
unreachable();
}
// Input object files may contain duplicate code for inline functions
// and such. Linkers de-duplicate them at link-time. However, linkers
// generaly don't remove debug info for de-duplicated functions because
// doing that requires parsing the entire debug section.
//
// Instead, linkers write "tombstone" values to dead debug info records
// instead of bogus values so that debuggers can skip them.
//
// This function returns a tombstone value for the symbol if the symbol
// refers a dead debug info section.
template <typename E>
inline std::optional<u64>
InputSection<E>::get_tombstone(Symbol<E> &sym, SectionFragment<E> *frag) {
if (frag)
return {};
InputSection<E> *isec = sym.get_input_section();
// Setting a tombstone is a special feature for a dead debug section.
if (!isec || isec->is_alive)
return {};
std::string_view s = name();
if (!s.starts_with(".debug"))
return {};
// If the section was dead due to ICF, we don't want to emit debug
// info for that section but want to set real values to .debug_line so
// that users can set a breakpoint inside a merged section.
if (isec->is_killed_by_icf() && s == ".debug_line")
return {};
// 0 is an invalid value in most debug info sections, so we use it
// as a tombstone value. .debug_loc and .debug_ranges reserve 0 as
// the terminator marker, so we use 1 if that's the case.
return (s == ".debug_loc" || s == ".debug_ranges") ? 1 : 0;
}
template <typename E>
inline bool
InputSection<E>::is_relr_reloc(Context<E> &ctx, const ElfRel<E> &rel) const {
return ctx.arg.pack_dyn_relocs_relr &&
!(shdr().sh_flags & SHF_EXECINSTR) &&
(shdr().sh_addralign % sizeof(Word<E>)) == 0 &&
(rel.r_offset % sizeof(Word<E>)) == 0;
}
template <typename E>
inline bool InputSection<E>::is_killed_by_icf() const {
return this->leader && this->leader != this;
}
template <typename E>
std::pair<SectionFragment<E> *, i64>
MergeableSection<E>::get_fragment(i64 offset) {
std::vector<u32> &vec = frag_offsets;
auto it = std::upper_bound(vec.begin(), vec.end(), offset);
i64 idx = it - 1 - vec.begin();
return {fragments[idx], offset - vec[idx]};
}
template <typename E>
template <typename T>
inline std::span<T>
InputFile<E>::get_data(Context<E> &ctx, const ElfShdr<E> &shdr) {
std::string_view view = this->get_string(ctx, shdr);
if (view.size() % sizeof(T))
Fatal(ctx) << *this << ": corrupted section";
return {(T *)view.data(), view.size() / sizeof(T)};
}
template <typename E>
template <typename T>
inline std::span<T> InputFile<E>::get_data(Context<E> &ctx, i64 idx) {
if (elf_sections.size() <= idx)
Fatal(ctx) << *this << ": invalid section index";
return this->template get_data<T>(elf_sections[idx]);
}
template <typename E>
inline std::string_view
InputFile<E>::get_string(Context<E> &ctx, const ElfShdr<E> &shdr) {
u8 *begin = mf->data + shdr.sh_offset;
u8 *end = begin + shdr.sh_size;
if (mf->data + mf->size < end)
Fatal(ctx) << *this << ": section header is out of range: " << shdr.sh_offset;
return {(char *)begin, (size_t)(end - begin)};
}
template <typename E>
inline std::string_view InputFile<E>::get_string(Context<E> &ctx, i64 idx) {
if (elf_sections.size() <= idx)
Fatal(ctx) << *this << ": invalid section index: " << idx;
return this->get_string(ctx, elf_sections[idx]);
}
template <typename E>
inline std::span<Symbol<E> *> InputFile<E>::get_global_syms() {
return std::span<Symbol<E> *>(this->symbols).subspan(this->first_global);
}
template <typename E>
inline i64 ObjectFile<E>::get_shndx(const ElfSym<E> &esym) {
assert(&this->elf_syms[0] <= &esym);
assert(&esym <= &this->elf_syms[this->elf_syms.size() - 1]);
if (esym.st_shndx == SHN_XINDEX)
return symtab_shndx_sec[&esym - &this->elf_syms[0]];
return esym.st_shndx;
}
template <typename E>
inline InputSection<E> *ObjectFile<E>::get_section(const ElfSym<E> &esym) {
return sections[get_shndx(esym)].get();
}
template <typename E>
OutputSection<E> *find_section(Context<E> &ctx, u32 sh_type) {
for (Chunk<E> *chunk : ctx.chunks)
if (OutputSection<E> *osec = chunk->to_osec())
if (osec->shdr.sh_type == sh_type)
return osec;
return nullptr;
}
template <typename E>
OutputSection<E> *find_section(Context<E> &ctx, std::string_view name) {
for (Chunk<E> *chunk : ctx.chunks)
if (OutputSection<E> *osec = chunk->to_osec())
if (osec->name == name)
return osec;
return nullptr;
}
template <typename E>
u64 Symbol<E>::get_addr(Context<E> &ctx, i64 flags) const {
if (SectionFragment<E> *frag = get_frag()) {
if (!frag->is_alive) {
// This condition is met if a non-alloc section refers an
// alloc section and if the referenced piece of data is
// garbage-collected. Typically, this condition occurs if a
// debug info section refers a string constant in .rodata.
return 0;
}
return frag->get_addr(ctx) + value;
}
if (has_copyrel) {
return is_copyrel_readonly
? ctx.copyrel_relro->shdr.sh_addr + value
: ctx.copyrel->shdr.sh_addr + value;
}
if constexpr (is_ppc64v1<E>)
if (!(flags & NO_OPD) && has_opd(ctx))
return get_opd_addr(ctx);
if (!(flags & NO_PLT) && has_plt(ctx)) {
assert(is_imported || is_ifunc());
return get_plt_addr(ctx);
}
InputSection<E> *isec = get_input_section();
if (!isec)
return value; // absolute symbol
if (!isec->is_alive) {
if (isec->is_killed_by_icf())
return isec->leader->get_addr() + value;
if (isec->name() == ".eh_frame") {
// .eh_frame contents are parsed and reconstructed by the linker,
// so pointing to a specific location in a source .eh_frame
// section doesn't make much sense. However, CRT files contain
// symbols pointing to the very beginning and ending of the section.
//
// If LTO is enabled, GCC may add `.lto_priv.<whatever>` as a symbol
// suffix. That's why we use starts_with() instead of `==` here.
if (name().starts_with("__EH_FRAME_BEGIN__") ||
name().starts_with("__EH_FRAME_LIST__") ||
name().starts_with(".eh_frame_seg") ||
esym().st_type == STT_SECTION)
return ctx.eh_frame->shdr.sh_addr;
if (name().starts_with("__FRAME_END__") ||
name().starts_with("__EH_FRAME_LIST_END__"))
return ctx.eh_frame->shdr.sh_addr + ctx.eh_frame->shdr.sh_size;
// ARM object files contain "$d" local symbol at the beginning
// of data sections. Their values are not significant for .eh_frame,
// so we just treat them as offset 0.
if (name() == "$d" || name().starts_with("$d."))
return ctx.eh_frame->shdr.sh_addr;
Fatal(ctx) << "symbol referring to .eh_frame is not supported: "
<< *this << " " << *file;
}
// The control can reach here if there's a relocation that refers
// a local symbol belonging to a comdat group section. This is a
// violation of the spec, as all relocations should use only global
// symbols of comdat members. However, .eh_frame tends to have such
// relocations.
return 0;
}
return isec->get_addr() + value;
}
template <typename E>
inline u64 Symbol<E>::get_got_addr(Context<E> &ctx) const {
return ctx.got->shdr.sh_addr + get_got_idx(ctx) * sizeof(Word<E>);
}
template <typename E>
inline u64 Symbol<E>::get_gotplt_addr(Context<E> &ctx) const {
assert(get_plt_idx(ctx) != -1);
return ctx.gotplt->shdr.sh_addr + GotPltSection<E>::HDR_SIZE +
get_plt_idx(ctx) * GotPltSection<E>::ENTRY_SIZE;
}
template <typename E>
inline u64 Symbol<E>::get_gottp_addr(Context<E> &ctx) const {
assert(get_gottp_idx(ctx) != -1);
return ctx.got->shdr.sh_addr + get_gottp_idx(ctx) * sizeof(Word<E>);
}
template <typename E>
inline u64 Symbol<E>::get_tlsgd_addr(Context<E> &ctx) const {
assert(get_tlsgd_idx(ctx) != -1);
return ctx.got->shdr.sh_addr + get_tlsgd_idx(ctx) * sizeof(Word<E>);
}
template <typename E>
inline u64 Symbol<E>::get_tlsdesc_addr(Context<E> &ctx) const {
assert(get_tlsdesc_idx(ctx) != -1);
return ctx.got->shdr.sh_addr + get_tlsdesc_idx(ctx) * sizeof(Word<E>);
}
template <typename E>
inline u64 to_plt_offset(i32 pltidx) {
if constexpr (is_ppc64v1<E>) {
// The PPC64 ELFv1 ABI requires PLT entries to vary in size
// depending on their indices. For entries whose PLT index is
// less than 32768, the entry size is 8 bytes. Other entries are
// 12 bytes long.
if (pltidx < 0x8000)
return E::plt_hdr_size + pltidx * 8;
return E::plt_hdr_size + 0x8000 * 8 + (pltidx - 0x8000) * 12;
} else {
return E::plt_hdr_size + pltidx * E::plt_size;
}
}
template <typename E>
inline u64 Symbol<E>::get_plt_addr(Context<E> &ctx) const {
if (i32 idx = get_plt_idx(ctx); idx != -1)
return ctx.plt->shdr.sh_addr + to_plt_offset<E>(idx);
return ctx.pltgot->shdr.sh_addr + get_pltgot_idx(ctx) * E::pltgot_size;
}
template <typename E>
inline u64 Symbol<E>::get_opd_addr(Context<E> &ctx) const {
assert(get_opd_idx(ctx) != -1);
return ctx.extra.opd->shdr.sh_addr +
get_opd_idx(ctx) * PPC64OpdSection::ENTRY_SIZE;
}
template <typename E>
inline u64 Symbol<E>::get_got_pltgot_addr(Context<E> &ctx) const {
// An ifunc symbol occupies two consecutive GOT slots in a
// position-dependent executable (PDE). The first slot contains the
// symbol's PLT address, and the second slot holds the resolved
// address. A PDE uses the ifunc symbol's PLT entry as the address
// for the symbol, akin to a canonical PLT.
//
// This function returns the address that the PLT entry should use
// to jump to the resolved address.
//
// Note that we don't use this function for PPC64. In PPC64, symbols
// are always accessed through the TOC table regardless of the
// -fno-PIE setting. We don't need canonical PLTs on the psABIs too.
if (is_pde_ifunc(ctx))
return get_got_addr(ctx) + sizeof(Word<E>);
return get_got_addr(ctx);
}
template <typename E>
inline void Symbol<E>::set_got_idx(Context<E> &ctx, i32 idx) {
assert(aux_idx != -1);
assert(ctx.symbol_aux[aux_idx].got_idx < 0);
ctx.symbol_aux[aux_idx].got_idx = idx;
}
template <typename E>
inline void Symbol<E>::set_gottp_idx(Context<E> &ctx, i32 idx) {
assert(aux_idx != -1);
assert(ctx.symbol_aux[aux_idx].gottp_idx < 0);
ctx.symbol_aux[aux_idx].gottp_idx = idx;
}
template <typename E>
inline void Symbol<E>::set_tlsgd_idx(Context<E> &ctx, i32 idx) {
assert(aux_idx != -1);
assert(ctx.symbol_aux[aux_idx].tlsgd_idx < 0);
ctx.symbol_aux[aux_idx].tlsgd_idx = idx;
}
template <typename E>
inline void Symbol<E>::set_tlsdesc_idx(Context<E> &ctx, i32 idx) {
assert(aux_idx != -1);
assert(ctx.symbol_aux[aux_idx].tlsdesc_idx < 0);
ctx.symbol_aux[aux_idx].tlsdesc_idx = idx;
}
template <typename E>
inline void Symbol<E>::set_plt_idx(Context<E> &ctx, i32 idx) {
assert(aux_idx != -1);
assert(ctx.symbol_aux[aux_idx].plt_idx < 0);
ctx.symbol_aux[aux_idx].plt_idx = idx;
}
template <typename E>
inline void Symbol<E>::set_pltgot_idx(Context<E> &ctx, i32 idx) {
assert(aux_idx != -1);
assert(ctx.symbol_aux[aux_idx].pltgot_idx < 0);
ctx.symbol_aux[aux_idx].pltgot_idx = idx;
}
template <typename E>
inline void Symbol<E>::set_opd_idx(Context<E> &ctx, i32 idx) {
assert(aux_idx != -1);
assert(ctx.symbol_aux[aux_idx].opd_idx < 0);
ctx.symbol_aux[aux_idx].opd_idx = idx;
}
template <typename E>
inline void Symbol<E>::set_dynsym_idx(Context<E> &ctx, i32 idx) {
assert(aux_idx != -1);
ctx.symbol_aux[aux_idx].dynsym_idx = idx;
}
template <typename E>
inline i32 Symbol<E>::get_got_idx(Context<E> &ctx) const {
return (aux_idx == -1) ? -1 : ctx.symbol_aux[aux_idx].got_idx;
}
template <typename E>
inline i32 Symbol<E>::get_gottp_idx(Context<E> &ctx) const {
return (aux_idx == -1) ? -1 : ctx.symbol_aux[aux_idx].gottp_idx;
}
template <typename E>
inline i32 Symbol<E>::get_tlsgd_idx(Context<E> &ctx) const {
return (aux_idx == -1) ? -1 : ctx.symbol_aux[aux_idx].tlsgd_idx;
}
template <typename E>
inline i32 Symbol<E>::get_tlsdesc_idx(Context<E> &ctx) const {
return (aux_idx == -1) ? -1 : ctx.symbol_aux[aux_idx].tlsdesc_idx;
}
template <typename E>
inline i32 Symbol<E>::get_plt_idx(Context<E> &ctx) const {
return (aux_idx == -1) ? -1 : ctx.symbol_aux[aux_idx].plt_idx;
}
template <typename E>
inline i32 Symbol<E>::get_pltgot_idx(Context<E> &ctx) const {
return (aux_idx == -1) ? -1 : ctx.symbol_aux[aux_idx].pltgot_idx;
}
template <typename E>
inline i32 Symbol<E>::get_opd_idx(Context<E> &ctx) const {
return (aux_idx == -1) ? -1 : ctx.symbol_aux[aux_idx].opd_idx;
}
template <typename E>
inline i32 Symbol<E>::get_dynsym_idx(Context<E> &ctx) const {
return (aux_idx == -1) ? -1 : ctx.symbol_aux[aux_idx].dynsym_idx;
}
template <typename E>
inline u32 Symbol<E>::get_djb_hash(Context<E> &ctx) const {
assert(aux_idx != -1);
return ctx.symbol_aux[aux_idx].djb_hash;
}
template <typename E>
inline void Symbol<E>::set_djb_hash(Context<E> &ctx, u32 hash) {
assert(aux_idx != -1);
ctx.symbol_aux[aux_idx].djb_hash = hash;
}
template <typename E>
inline bool Symbol<E>::has_plt(Context<E> &ctx) const {
return get_plt_idx(ctx) != -1 || get_pltgot_idx(ctx) != -1;
}
template <typename E>
inline bool Symbol<E>::is_absolute() const {
return !is_imported && !get_frag() && !get_input_section() &&
!get_output_section();
}
template <typename E>
inline bool Symbol<E>::is_local(Context<E> &ctx) const {
if (ctx.arg.relocatable)
return esym().st_bind == STB_LOCAL;
return !is_imported && !is_exported;
}
template <typename E>
inline bool Symbol<E>::is_pde_ifunc(Context<E> &ctx) const {
// Returns true if this is an ifunc tha uses two GOT slots
return is_ifunc() && !ctx.arg.pic && !is_ppc64<E>;
}
// A remaining weak undefined symbol is promoted to a dynamic symbol
// in DSO and resolved to 0 in an executable. This function returns
// true if it's latter.
template <typename E>
inline bool Symbol<E>::is_remaining_undef_weak() const {
return !is_imported && esym().is_undef_weak();
}
// Returns true if the symbol's PC-relative address is known at link-time.
template <typename E>
inline bool Symbol<E>::is_pcrel_linktime_const(Context<E> &ctx) const {
return !is_imported && !is_ifunc() && (is_relative() || !ctx.arg.pic);
}
// Returns true if the symbol's Thread Pointer-relative address is
// known at link-time.
template <typename E>
inline bool Symbol<E>::is_tprel_linktime_const(Context<E> &ctx) const {
assert(get_type() == STT_TLS);
return !ctx.arg.shared && !is_imported;
}
// Returns true if the symbol's Thread Pointer-relative address is
// known at load-time.
template <typename E>
inline bool Symbol<E>::is_tprel_runtime_const(Context<E> &ctx) const {
// Returns true unless we are creating a dlopen'able DSO.
assert(get_type() == STT_TLS);
return !(ctx.arg.shared && ctx.arg.z_dlopen);
}
template <typename E>
inline InputSection<E> *Symbol<E>::get_input_section() const {
if ((origin & TAG_MASK) == TAG_ISEC)
return (InputSection<E> *)(origin & ~TAG_MASK);
return nullptr;
}
template <typename E>
inline Chunk<E> *Symbol<E>::get_output_section() const {
if ((origin & TAG_MASK) == TAG_OSEC)
return (Chunk<E> *)(origin & ~TAG_MASK);
return nullptr;
}
template <typename E>
inline SectionFragment<E> *Symbol<E>::get_frag() const {
if ((origin & TAG_MASK) == TAG_FRAG)
return (SectionFragment<E> *)(origin & ~TAG_MASK);
return nullptr;
}
template <typename E>
inline void Symbol<E>::set_input_section(InputSection<E> *isec) {
uintptr_t addr = (uintptr_t)isec;
assert((addr & TAG_MASK) == 0);
origin = addr | TAG_ISEC;
}
template <typename E>
inline void Symbol<E>::set_output_section(Chunk<E> *osec) {
uintptr_t addr = (uintptr_t)osec;
assert((addr & TAG_MASK) == 0);
origin = addr | TAG_OSEC;
}
template <typename E>
inline void Symbol<E>::set_frag(SectionFragment<E> *frag) {
uintptr_t addr = (uintptr_t)frag;
assert((addr & TAG_MASK) == 0);
origin = addr | TAG_FRAG;
}
template <typename E>
inline u32 Symbol<E>::get_type() const {
if (esym().st_type == STT_GNU_IFUNC && file->is_dso)
return STT_FUNC;
return esym().st_type;
}
template <typename E>
inline std::string_view Symbol<E>::get_version() const {
if (file->is_dso)
return ((SharedFile<E> *)file)->version_strings[ver_idx];
return "";
}
template <typename E>
inline i64 Symbol<E>::get_output_sym_idx(Context<E> &ctx) const {
i64 i = file->output_sym_indices[sym_idx];
assert(i != -1);
if (is_local(ctx))
return file->local_symtab_idx + i;
return file->global_symtab_idx + i;
}
template <typename E>
inline const ElfSym<E> &Symbol<E>::esym() const {
return file->elf_syms[sym_idx];
}
template <typename E>
inline void Symbol<E>::set_name(std::string_view name) {
nameptr = name.data();
namelen = name.size();
}
template <typename E>
inline std::string_view Symbol<E>::name() const {
return {nameptr, (size_t)namelen};
}
template <typename E>
inline void Symbol<E>::add_aux(Context<E> &ctx) {
if (aux_idx == -1) {
aux_idx = ctx.symbol_aux.size();
ctx.symbol_aux.resize(aux_idx + 1);
}
}
inline bool is_c_identifier(std::string_view s) {
if (s.empty())
return false;
auto is_alpha = [](char c) {
return c == '_' || ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z');
};
auto is_alnum = [&](char c) {
return is_alpha(c) || ('0' <= c && c <= '9');
};
if (!is_alpha(s[0]))
return false;
for (i64 i = 1; i < s.size(); i++)
if (!is_alnum(s[i]))
return false;
return true;
}
} // namespace mold::elf