1
1
mirror of https://github.com/rui314/mold.git synced 2024-10-05 09:07:10 +03:00
mold/elf/arch-x86-64.cc

800 lines
24 KiB
C++

#include "mold.h"
namespace mold::elf {
using E = X86_64;
// The compact PLT format is used when `-z now` is given. If the flag
// is given, all PLT symbols are resolved eagerly on startup, so we
// can omit code for lazy symbol resolution from PLT in that case.
static void write_compact_plt(Context<E> &ctx) {
u8 *buf = ctx.buf + ctx.plt->shdr.sh_offset;
static const u8 data[] = {
0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT
0x66, 0x90, // nop
};
for (Symbol<E> *sym : ctx.plt->symbols) {
u8 *ent = buf + sym->get_plt_idx(ctx) * ctx.plt_size;
memcpy(ent, data, sizeof(data));
*(u32 *)(ent + 2) = sym->get_gotplt_addr(ctx) - sym->get_plt_addr(ctx) - 6;
}
}
// The IBTPLT is a security-enhanced version of the regular PLT.
// It uses Indirect Branch Tracking (IBT) feature which is part of
// Intel Control-Flow Enforcement (CET).
//
// Note that our IBTPLT instruction sequence is different from the one
// used in GNU ld. GNU's IBTPLT implementation uses two separate
// sections (.plt and .plt.sec) in which one PLT entry takes 32 bytes
// in total. Our PLT consists of just .plt and each entry is 16 bytes
// long.
//
// Our PLT entry clobbers r11, but that's fine because the resolver
// function (_dl_runtime_resolve) does not preserve r11 anyway.
static void write_ibtplt(Context<E> &ctx) {
u8 *buf = ctx.buf + ctx.plt->shdr.sh_offset;
// Write PLT header
static const u8 plt0[] = {
0xf3, 0x0f, 0x1e, 0xfa, // endbr64
0x41, 0x53, // push %r11
0xff, 0x35, 0, 0, 0, 0, // push GOTPLT+8(%rip)
0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
0x0f, 0x1f, 0x40, 0x00, // nop
0x0f, 0x1f, 0x40, 0x00, // nop
0x0f, 0x1f, 0x40, 0x00, // nop
0x66, 0x90, // nop
};
memcpy(buf, plt0, sizeof(plt0));
*(u32 *)(buf + 8) = ctx.gotplt->shdr.sh_addr - ctx.plt->shdr.sh_addr - 4;
*(u32 *)(buf + 14) = ctx.gotplt->shdr.sh_addr - ctx.plt->shdr.sh_addr - 2;
// Write PLT entries
i64 relplt_idx = 0;
static const u8 data[] = {
0xf3, 0x0f, 0x1e, 0xfa, // endbr64
0x41, 0xbb, 0, 0, 0, 0, // mov $index_in_relplt, %r11d
0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOTPLT
};
for (Symbol<E> *sym : ctx.plt->symbols) {
u8 *ent = buf + ctx.plt_hdr_size + sym->get_plt_idx(ctx) * ctx.plt_size;
memcpy(ent, data, sizeof(data));
*(u32 *)(ent + 6) = relplt_idx++;
*(u32 *)(ent + 12) = sym->get_gotplt_addr(ctx) - sym->get_plt_addr(ctx) - 16;
}
}
// The regular PLT.
static void write_plt(Context<E> &ctx) {
u8 *buf = ctx.buf + ctx.plt->shdr.sh_offset;
// Write PLT header
static const u8 plt0[] = {
0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
0x0f, 0x1f, 0x40, 0x00, // nop
};
memcpy(buf, plt0, sizeof(plt0));
*(u32 *)(buf + 2) = ctx.gotplt->shdr.sh_addr - ctx.plt->shdr.sh_addr + 2;
*(u32 *)(buf + 8) = ctx.gotplt->shdr.sh_addr - ctx.plt->shdr.sh_addr + 4;
// Write PLT entries
i64 relplt_idx = 0;
static const u8 data[] = {
0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOTPLT
0x68, 0, 0, 0, 0, // push $index_in_relplt
0xe9, 0, 0, 0, 0, // jmp PLT[0]
};
for (Symbol<E> *sym : ctx.plt->symbols) {
u8 *ent = buf + ctx.plt_hdr_size + sym->get_plt_idx(ctx) * ctx.plt_size;
memcpy(ent, data, sizeof(data));
*(u32 *)(ent + 2) = sym->get_gotplt_addr(ctx) - sym->get_plt_addr(ctx) - 6;
*(u32 *)(ent + 7) = relplt_idx++;
*(u32 *)(ent + 12) = ctx.plt->shdr.sh_addr - sym->get_plt_addr(ctx) - 16;
}
}
template <>
void PltSection<E>::copy_buf(Context<E> &ctx) {
if (ctx.arg.z_now)
write_compact_plt(ctx);
else if (ctx.arg.z_ibtplt)
write_ibtplt(ctx);
else
write_plt(ctx);
}
template <>
void PltGotSection<E>::copy_buf(Context<E> &ctx) {
u8 *buf = ctx.buf + this->shdr.sh_offset;
static const u8 data[] = {
0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT
0x66, 0x90, // nop
};
for (Symbol<E> *sym : symbols) {
u8 *ent = buf + sym->get_pltgot_idx(ctx) * X86_64::pltgot_size;
memcpy(ent, data, sizeof(data));
*(u32 *)(ent + 2) = sym->get_got_addr(ctx) - sym->get_plt_addr(ctx) - 6;
}
}
template <>
void EhFrameSection<E>::apply_reloc(Context<E> &ctx, ElfRel<E> &rel,
u64 offset, u64 val) {
u8 *loc = ctx.buf + this->shdr.sh_offset + offset;
switch (rel.r_type) {
case R_X86_64_NONE:
return;
case R_X86_64_32:
*(u32 *)loc = val;
return;
case R_X86_64_64:
*(u64 *)loc = val;
return;
case R_X86_64_PC32:
*(u32 *)loc = val - this->shdr.sh_addr - offset;
return;
case R_X86_64_PC64:
*(u64 *)loc = val - this->shdr.sh_addr - offset;
return;
}
unreachable();
}
static u32 relax_gotpcrelx(u8 *loc) {
switch ((loc[0] << 8) | loc[1]) {
case 0xff15: return 0x90e8; // call *0(%rip) -> call 0
case 0xff25: return 0x90e9; // jmp *0(%rip) -> jmp 0
}
return 0;
}
static u32 relax_rex_gotpcrelx(u8 *loc) {
switch ((loc[0] << 16) | (loc[1] << 8) | loc[2]) {
case 0x488b05: return 0x488d05; // mov 0(%rip), %rax -> lea 0(%rip), %rax
case 0x488b0d: return 0x488d0d; // mov 0(%rip), %rcx -> lea 0(%rip), %rcx
case 0x488b15: return 0x488d15; // mov 0(%rip), %rdx -> lea 0(%rip), %rdx
case 0x488b1d: return 0x488d1d; // mov 0(%rip), %rbx -> lea 0(%rip), %rbx
case 0x488b25: return 0x488d25; // mov 0(%rip), %rsp -> lea 0(%rip), %rsp
case 0x488b2d: return 0x488d2d; // mov 0(%rip), %rbp -> lea 0(%rip), %rbp
case 0x488b35: return 0x488d35; // mov 0(%rip), %rsi -> lea 0(%rip), %rsi
case 0x488b3d: return 0x488d3d; // mov 0(%rip), %rdi -> lea 0(%rip), %rdi
case 0x4c8b05: return 0x4c8d05; // mov 0(%rip), %r8 -> lea 0(%rip), %r8
case 0x4c8b0d: return 0x4c8d0d; // mov 0(%rip), %r9 -> lea 0(%rip), %r9
case 0x4c8b15: return 0x4c8d15; // mov 0(%rip), %r10 -> lea 0(%rip), %r10
case 0x4c8b1d: return 0x4c8d1d; // mov 0(%rip), %r11 -> lea 0(%rip), %r11
case 0x4c8b25: return 0x4c8d25; // mov 0(%rip), %r12 -> lea 0(%rip), %r12
case 0x4c8b2d: return 0x4c8d2d; // mov 0(%rip), %r13 -> lea 0(%rip), %r13
case 0x4c8b35: return 0x4c8d35; // mov 0(%rip), %r14 -> lea 0(%rip), %r14
case 0x4c8b3d: return 0x4c8d3d; // mov 0(%rip), %r15 -> lea 0(%rip), %r15
}
return 0;
}
static u32 relax_gottpoff(u8 *loc) {
switch ((loc[0] << 16) | (loc[1] << 8) | loc[2]) {
case 0x488b05: return 0x48c7c0; // mov 0(%rip), %rax -> mov $0, %rax
case 0x488b0d: return 0x48c7c1; // mov 0(%rip), %rcx -> mov $0, %rcx
case 0x488b15: return 0x48c7c2; // mov 0(%rip), %rdx -> mov $0, %rdx
case 0x488b1d: return 0x48c7c3; // mov 0(%rip), %rbx -> mov $0, %rbx
case 0x488b25: return 0x48c7c4; // mov 0(%rip), %rsp -> mov $0, %rsp
case 0x488b2d: return 0x48c7c5; // mov 0(%rip), %rbp -> mov $0, %rbp
case 0x488b35: return 0x48c7c6; // mov 0(%rip), %rsi -> mov $0, %rsi
case 0x488b3d: return 0x48c7c7; // mov 0(%rip), %rdi -> mov $0, %rdi
case 0x4c8b05: return 0x49c7c0; // mov 0(%rip), %r8 -> mov $0, %r8
case 0x4c8b0d: return 0x49c7c1; // mov 0(%rip), %r9 -> mov $0, %r9
case 0x4c8b15: return 0x49c7c2; // mov 0(%rip), %r10 -> mov $0, %r10
case 0x4c8b1d: return 0x49c7c3; // mov 0(%rip), %r11 -> mov $0, %r11
case 0x4c8b25: return 0x49c7c4; // mov 0(%rip), %r12 -> mov $0, %r12
case 0x4c8b2d: return 0x49c7c5; // mov 0(%rip), %r13 -> mov $0, %r13
case 0x4c8b35: return 0x49c7c6; // mov 0(%rip), %r14 -> mov $0, %r14
case 0x4c8b3d: return 0x49c7c7; // mov 0(%rip), %r15 -> mov $0, %r15
}
return 0;
}
// Apply relocations to SHF_ALLOC sections (i.e. sections that are
// mapped to memory at runtime) based on the result of
// scan_relocations().
template <>
void InputSection<E>::apply_reloc_alloc(Context<E> &ctx, u8 *base) {
ElfRel<E> *dynrel = nullptr;
std::span<ElfRel<E>> rels = get_rels(ctx);
i64 frag_idx = 0;
if (ctx.reldyn)
dynrel = (ElfRel<E> *)(ctx.buf + ctx.reldyn->shdr.sh_offset +
file.reldyn_offset + this->reldyn_offset);
for (i64 i = 0; i < rels.size(); i++) {
const ElfRel<E> &rel = rels[i];
if (rel.r_type == R_X86_64_NONE)
continue;
Symbol<E> &sym = *file.symbols[rel.r_sym];
u8 *loc = base + rel.r_offset;
const SectionFragmentRef<E> *frag_ref = nullptr;
if (rel_fragments && rel_fragments[frag_idx].idx == i)
frag_ref = &rel_fragments[frag_idx++];
auto overflow_check = [&](i64 val, i64 lo, i64 hi) {
if (val < lo || hi <= val)
Error(ctx) << *this << ": relocation " << rel << " against "
<< sym << " out of range: " << val << " is not in ["
<< lo << ", " << hi << ")";
};
auto write8 = [&](u64 val) {
overflow_check(val, 0, 1 << 8);
*loc = val;
};
auto write8s = [&](u64 val) {
overflow_check(val, -(1 << 7), 1 << 7);
*loc = val;
};
auto write16 = [&](u64 val) {
overflow_check(val, 0, 1 << 16);
*(u16 *)loc = val;
};
auto write16s = [&](u64 val) {
overflow_check(val, -(1 << 15), 1 << 15);
*(u16 *)loc = val;
};
auto write32 = [&](u64 val) {
overflow_check(val, 0, (i64)1 << 32);
*(u32 *)loc = val;
};
auto write32s = [&](u64 val) {
overflow_check(val, -((i64)1 << 31), (i64)1 << 31);
*(u32 *)loc = val;
};
auto write64 = [&](u64 val) {
*(u64 *)loc = val;
};
#define S (frag_ref ? frag_ref->frag->get_addr(ctx) : sym.get_addr(ctx))
#define A (frag_ref ? frag_ref->addend : rel.r_addend)
#define P (output_section->shdr.sh_addr + offset + rel.r_offset)
#define G (sym.get_got_addr(ctx) - ctx.gotplt->shdr.sh_addr)
#define GOT ctx.gotplt->shdr.sh_addr
switch (rel.r_type) {
case R_X86_64_8:
write8(S + A);
continue;
case R_X86_64_16:
write16(S + A);
continue;
case R_X86_64_32:
write32(S + A);
continue;
case R_X86_64_32S:
write32s(S + A);
continue;
case R_X86_64_64:
if (sym.is_absolute() || !ctx.arg.pic) {
write64(S + A);
} else if (sym.is_imported) {
*dynrel++ = {P, R_X86_64_64, (u32)sym.get_dynsym_idx(ctx), A};
write64(A);
} else {
if (!is_relr_reloc(ctx, rel))
*dynrel++ = {P, R_X86_64_RELATIVE, 0, (i64)(S + A)};
write64(S + A);
}
continue;
case R_X86_64_PC8:
write8s(S + A - P);
continue;
case R_X86_64_PC16:
write16s(S + A - P);
continue;
case R_X86_64_PC32:
write32s(S + A - P);
continue;
case R_X86_64_PC64:
if (sym.is_absolute() || !sym.is_imported || !ctx.arg.shared) {
write64(S + A - P);
} else {
*dynrel++ = {P, R_X86_64_64, (u32)sym.get_dynsym_idx(ctx), A};
write64(A);
}
continue;
case R_X86_64_PLT32:
write32s(S + A - P);
continue;
case R_X86_64_PLTOFF64:
write64(S + A - GOT);
break;
case R_X86_64_GOT32:
write32s(G + A);
continue;
case R_X86_64_GOT64:
write64(G + A);
continue;
case R_X86_64_GOTOFF64:
write64(S + A - GOT);
continue;
case R_X86_64_GOTPC32:
write32s(GOT + A - P);
continue;
case R_X86_64_GOTPC64:
write64(GOT + A - P);
continue;
case R_X86_64_GOTPCREL:
write32s(G + GOT + A - P);
continue;
case R_X86_64_GOTPCREL64:
write64(G + GOT + A - P);
continue;
case R_X86_64_GOTPCRELX:
if (sym.get_got_idx(ctx) == -1) {
u32 insn = relax_gotpcrelx(loc - 2);
loc[-2] = insn >> 8;
loc[-1] = insn;
write32s(S + A - P);
} else {
write32s(G + GOT + A - P);
}
continue;
case R_X86_64_REX_GOTPCRELX:
if (sym.get_got_idx(ctx) == -1) {
u32 insn = relax_rex_gotpcrelx(loc - 3);
loc[-3] = insn >> 16;
loc[-2] = insn >> 8;
loc[-1] = insn;
write32s(S + A - P);
} else {
write32s(G + GOT + A - P);
}
continue;
case R_X86_64_TLSGD:
if (sym.get_tlsgd_idx(ctx) == -1) {
// Relax GD to LE
i64 val = S - ctx.tls_end + A + 4;
overflow_check(val, -((i64)1 << 31), (i64)1 << 31);
switch (rels[i + 1].r_type) {
case R_X86_64_PLT32:
case R_X86_64_GOTPCREL:
case R_X86_64_GOTPCRELX: {
static const u8 insn[] = {
0x64, 0x48, 0x8b, 0x04, 0x25, 0, 0, 0, 0, // mov %fs:0, %rax
0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea 0(%rax), %rax
};
memcpy(loc - 4, insn, sizeof(insn));
*(u32 *)(loc + 8) = val;
break;
}
case R_X86_64_PLTOFF64: {
static const u8 insn[] = {
0x64, 0x48, 0x8b, 0x04, 0x25, 0, 0, 0, 0, // mov %fs:0, %rax
0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea 0(%rax), %rax
0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, // nop
};
memcpy(loc - 3, insn, sizeof(insn));
*(u32 *)(loc + 9) = val;
break;
}
default:
unreachable();
}
i++;
} else {
write32s(sym.get_tlsgd_addr(ctx) + A - P);
}
continue;
case R_X86_64_TLSLD:
if (ctx.got->tlsld_idx == -1) {
// Relax LD to LE
switch (rels[i + 1].r_type) {
case R_X86_64_PLT32: {
static const u8 insn[] = {
0x66, 0x66, 0x66, // (padding)
0x64, 0x48, 0x8b, 0x04, 0x25, 0, 0, 0, 0, // mov %fs:0, %rax
};
memcpy(loc - 3, insn, sizeof(insn));
break;
}
case R_X86_64_GOTPCREL:
case R_X86_64_GOTPCRELX: {
static const u8 insn[] = {
0x66, 0x66, 0x66, // (padding)
0x64, 0x48, 0x8b, 0x04, 0x25, 0, 0, 0, 0, // mov %fs:0, %rax
0x90, // nop
};
memcpy(loc - 3, insn, sizeof(insn));
break;
}
case R_X86_64_PLTOFF64: {
static const u8 insn[] = {
0x66, 0x66, 0x66, // (padding)
0x64, 0x48, 0x8b, 0x04, 0x25, 0, 0, 0, 0, // mov %fs:0, %rax
0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00, // nop
};
memcpy(loc - 3, insn, sizeof(insn));
break;
}
default:
unreachable();
}
i++;
} else {
write32s(ctx.got->get_tlsld_addr(ctx) + A - P);
}
continue;
case R_X86_64_DTPOFF32:
if (ctx.arg.relax && !ctx.arg.shared)
write32s(S + A - ctx.tls_end);
else
write32s(S + A - ctx.tls_begin);
continue;
case R_X86_64_DTPOFF64:
if (ctx.arg.relax && !ctx.arg.shared)
write64(S + A - ctx.tls_end);
else
write64(S + A - ctx.tls_begin);
continue;
case R_X86_64_TPOFF32:
write32s(S + A - ctx.tls_end);
continue;
case R_X86_64_TPOFF64:
write64(S + A - ctx.tls_end);
continue;
case R_X86_64_GOTTPOFF:
if (sym.get_gottp_idx(ctx) == -1) {
u32 insn = relax_gottpoff(loc - 3);
loc[-3] = insn >> 16;
loc[-2] = insn >> 8;
loc[-1] = insn;
write32s(S + A - ctx.tls_end + 4);
} else {
write32s(sym.get_gottp_addr(ctx) + A - P);
}
continue;
case R_X86_64_GOTPC32_TLSDESC:
if (sym.get_tlsdesc_idx(ctx) == -1) {
static const u8 insn[] = {
0x48, 0xc7, 0xc0, 0, 0, 0, 0, // mov $0, %rax
};
memcpy(loc - 3, insn, sizeof(insn));
write32s(S + A - ctx.tls_end + 4);
} else {
write32s(sym.get_tlsdesc_addr(ctx) + A - P);
}
continue;
case R_X86_64_SIZE32:
write32(sym.esym().st_size + A);
continue;
case R_X86_64_SIZE64:
write64(sym.esym().st_size + A);
continue;
case R_X86_64_TLSDESC_CALL:
if (sym.get_tlsdesc_idx(ctx) == -1) {
// call *(%rax) -> nop
loc[0] = 0x66;
loc[1] = 0x90;
}
continue;
default:
unreachable();
}
#undef S
#undef A
#undef P
#undef G
#undef GOT
}
}
// This function is responsible for applying relocations against
// non-SHF_ALLOC sections (i.e. sections that are not mapped to memory
// at runtime).
//
// Relocations against non-SHF_ALLOC sections are much easier to
// handle than that against SHF_ALLOC sections. It is because, since
// they are not mapped to memory, they don't contain any variable or
// function and never need PLT or GOT. Non-SHF_ALLOC sections are
// mostly debug info sections.
//
// Relocations against non-SHF_ALLOC sections are not scanned by
// scan_relocations.
template <>
void InputSection<E>::apply_reloc_nonalloc(Context<E> &ctx, u8 *base) {
std::span<ElfRel<E>> rels = get_rels(ctx);
for (i64 i = 0; i < rels.size(); i++) {
const ElfRel<E> &rel = rels[i];
if (rel.r_type == R_X86_64_NONE)
continue;
Symbol<E> &sym = *file.symbols[rel.r_sym];
u8 *loc = base + rel.r_offset;
if (!sym.file) {
report_undef(ctx, file, sym);
continue;
}
SectionFragment<E> *frag;
i64 addend;
std::tie(frag, addend) = get_fragment(ctx, rel);
auto overflow_check = [&](i64 val, i64 lo, i64 hi) {
if (val < lo || hi <= val)
Error(ctx) << *this << ": relocation " << rel << " against "
<< sym << " out of range: " << val << " is not in ["
<< lo << ", " << hi << ")";
};
auto write8 = [&](u64 val) {
overflow_check(val, 0, 1 << 8);
*loc = val;
};
auto write16 = [&](u64 val) {
overflow_check(val, 0, 1 << 16);
*(u16 *)loc = val;
};
auto write32 = [&](u64 val) {
overflow_check(val, 0, (i64)1 << 32);
*(u32 *)loc = val;
};
auto write32s = [&](u64 val) {
overflow_check(val, -((i64)1 << 31), (i64)1 << 31);
*(u32 *)loc = val;
};
#define S (frag ? frag->get_addr(ctx) : sym.get_addr(ctx))
#define A (frag ? addend : rel.r_addend)
switch (rel.r_type) {
case R_X86_64_8:
write8(S + A);
break;
case R_X86_64_16:
write16(S + A);
break;
case R_X86_64_32:
write32(S + A);
break;
case R_X86_64_32S:
write32s(S + A);
break;
case R_X86_64_64:
*(u64 *)loc = S + A;
break;
case R_X86_64_DTPOFF32:
write32s(S + A - ctx.tls_begin);
break;
case R_X86_64_DTPOFF64:
*(u64 *)loc = S + A - ctx.tls_begin;
break;
case R_X86_64_SIZE32:
write32(sym.esym().st_size + A);
break;
case R_X86_64_SIZE64:
*(u64 *)loc = sym.esym().st_size + A;
break;
default:
Fatal(ctx) << *this << ": invalid relocation for non-allocated sections: "
<< rel;
break;
}
#undef S
#undef A
}
}
// Linker has to create data structures in an output file to apply
// some type of relocations. For example, if a relocation refers a GOT
// or a PLT entry of a symbol, linker has to create an entry in .got
// or in .plt for that symbol. In order to fix the file layout, we
// need to scan relocations.
template <>
void InputSection<E>::scan_relocations(Context<E> &ctx) {
assert(shdr().sh_flags & SHF_ALLOC);
this->reldyn_offset = file.num_dynrel * sizeof(ElfRel<E>);
std::span<ElfRel<E>> rels = get_rels(ctx);
// Scan relocations
for (i64 i = 0; i < rels.size(); i++) {
const ElfRel<E> &rel = rels[i];
if (rel.r_type == R_X86_64_NONE)
continue;
Symbol<E> &sym = *file.symbols[rel.r_sym];
u8 *loc = (u8 *)(contents.data() + rel.r_offset);
if (!sym.file) {
report_undef(ctx, file, sym);
continue;
}
if (sym.get_type() == STT_GNU_IFUNC) {
sym.flags |= NEEDS_GOT;
sym.flags |= NEEDS_PLT;
}
switch (rel.r_type) {
case R_X86_64_8:
case R_X86_64_16:
case R_X86_64_32:
case R_X86_64_32S: {
// Dynamic linker does not support 8, 16 or 32-bit dynamic
// relocations for these types of relocations. We report an
// error if we cannot relocate them even at load-time.
Action table[][4] = {
// Absolute Local Imported data Imported code
{ NONE, ERROR, ERROR, ERROR }, // DSO
{ NONE, ERROR, ERROR, ERROR }, // PIE
{ NONE, NONE, COPYREL, PLT }, // PDE
};
dispatch(ctx, table, i, rel, sym);
break;
}
case R_X86_64_64: {
// Unlike the above, we can use R_X86_64_RELATIVE and R_86_64_64
// relocations.
Action table[][4] = {
// Absolute Local Imported data Imported code
{ NONE, BASEREL, DYNREL, DYNREL }, // DSO
{ NONE, BASEREL, DYNREL, DYNREL }, // PIE
{ NONE, NONE, COPYREL, PLT }, // PDE
};
dispatch(ctx, table, i, rel, sym);
break;
}
case R_X86_64_PC8:
case R_X86_64_PC16:
case R_X86_64_PC32: {
Action table[][4] = {
// Absolute Local Imported data Imported code
{ ERROR, NONE, ERROR, ERROR }, // DSO
{ ERROR, NONE, COPYREL, PLT }, // PIE
{ NONE, NONE, COPYREL, PLT }, // PDE
};
dispatch(ctx, table, i, rel, sym);
break;
}
case R_X86_64_PC64: {
Action table[][4] = {
// Absolute Local Imported data Imported code
{ ERROR, NONE, DYNREL, DYNREL }, // DSO
{ ERROR, NONE, COPYREL, PLT }, // PIE
{ NONE, NONE, COPYREL, PLT }, // PDE
};
dispatch(ctx, table, i, rel, sym);
break;
}
case R_X86_64_GOT32:
case R_X86_64_GOT64:
case R_X86_64_GOTPC32:
case R_X86_64_GOTPC64:
case R_X86_64_GOTPCREL:
case R_X86_64_GOTPCREL64:
sym.flags |= NEEDS_GOT;
break;
case R_X86_64_GOTPCRELX: {
if (rel.r_addend != -4)
Fatal(ctx) << *this << ": bad r_addend for R_X86_64_GOTPCRELX";
bool do_relax = ctx.arg.relax && !sym.is_imported &&
sym.is_relative() && relax_gotpcrelx(loc - 2);
if (!do_relax)
sym.flags |= NEEDS_GOT;
break;
}
case R_X86_64_REX_GOTPCRELX: {
if (rel.r_addend != -4)
Fatal(ctx) << *this << ": bad r_addend for R_X86_64_REX_GOTPCRELX";
bool do_relax = ctx.arg.relax && !sym.is_imported &&
sym.is_relative() && relax_rex_gotpcrelx(loc - 3);
if (!do_relax)
sym.flags |= NEEDS_GOT;
break;
}
case R_X86_64_PLT32:
case R_X86_64_PLTOFF64: {
Action table[][4] = {
// Absolute Local Imported data Imported code
{ NONE, NONE, PLT, PLT }, // DSO
{ NONE, NONE, PLT, PLT }, // PIE
{ NONE, NONE, PLT, PLT }, // PDE
};
dispatch(ctx, table, i, rel, sym);
break;
}
case R_X86_64_TLSGD: {
if (i + 1 == rels.size())
Fatal(ctx) << *this << ": TLSGD reloc must be followed by PLT or GOTPCREL";
if (u32 ty = rels[i + 1].r_type;
ty != R_X86_64_PLT32 && ty != R_X86_64_PLTOFF64 &&
ty != R_X86_64_GOTPCREL && ty != R_X86_64_GOTPCRELX)
Fatal(ctx) << *this << ": TLSGD reloc must be followed by PLT or GOTPCREL";
if (ctx.arg.relax && !ctx.arg.shared && !sym.is_imported)
i++;
else
sym.flags |= NEEDS_TLSGD;
break;
}
case R_X86_64_TLSLD: {
if (i + 1 == rels.size())
Fatal(ctx) << *this << ": TLSLD reloc must be followed by PLT or GOTPCREL";
if (u32 ty = rels[i + 1].r_type;
ty != R_X86_64_PLT32 && ty != R_X86_64_PLTOFF64 &&
ty != R_X86_64_GOTPCREL && ty != R_X86_64_GOTPCRELX)
Fatal(ctx) << *this << ": TLSLD reloc must be followed by PLT or GOTPCREL";
if (ctx.arg.relax && !ctx.arg.shared)
i++;
else
ctx.needs_tlsld = true;
break;
}
case R_X86_64_GOTTPOFF: {
ctx.has_gottp_rel = true;
bool do_relax = ctx.arg.relax && !ctx.arg.shared &&
!sym.is_imported && relax_gottpoff(loc - 3);
if (!do_relax)
sym.flags |= NEEDS_GOTTP;
break;
}
case R_X86_64_GOTPC32_TLSDESC: {
if (memcmp(loc - 3, "\x48\x8d\x05", 3))
Fatal(ctx) << *this << ": GOTPC32_TLSDESC relocation is used"
<< " against an invalid code sequence";
bool do_relax = ctx.relax_tlsdesc && !sym.is_imported;
if (!do_relax)
sym.flags |= NEEDS_TLSDESC;
break;
}
case R_X86_64_GOTOFF64:
case R_X86_64_DTPOFF32:
case R_X86_64_DTPOFF64:
case R_X86_64_TPOFF32:
case R_X86_64_TPOFF64:
case R_X86_64_SIZE32:
case R_X86_64_SIZE64:
case R_X86_64_TLSDESC_CALL:
break;
default:
Error(ctx) << *this << ": unknown relocation: " << rel;
}
}
}
} // namespace mold::elf