1
1
mirror of https://github.com/rui314/mold.git synced 2024-12-27 10:23:41 +03:00
mold/mold.h
2021-05-22 01:54:08 +09:00

2168 lines
58 KiB
C++

#pragma once
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "elf.h"
#include <atomic>
#include <cassert>
#include <cstdint>
#include <fstream>
#include <functional>
#include <iostream>
#include <map>
#include <memory>
#include <mutex>
#include <span>
#include <sstream>
#include <string>
#include <string_view>
#include <tbb/concurrent_hash_map.h>
#include <tbb/concurrent_vector.h>
#include <tbb/enumerable_thread_specific.h>
#include <tbb/spin_mutex.h>
#include <tbb/task_group.h>
#include <unordered_set>
#include <vector>
#include <xxh3.h>
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
typedef int8_t i8;
typedef int16_t i16;
typedef int32_t i32;
typedef int64_t i64;
static constexpr i32 SECTOR_SIZE = 512;
static constexpr i32 PAGE_SIZE = 4096;
static constexpr i32 SHA256_SIZE = 32;
template <typename E> class InputFile;
template <typename E> class InputSection;
template <typename E> class MergedSection;
template <typename E> class ObjectFile;
template <typename E> class OutputChunk;
template <typename E> class OutputSection;
template <typename E> class SharedFile;
template <typename E> class Symbol;
template <typename E> struct Context;
template <typename E> struct FdeRecord;
template <typename E> struct CieRecord;
class Compress;
class TarFile;
template <typename E> void cleanup();
template <typename E>
std::ostream &operator<<(std::ostream &out, const Symbol<E> &sym);
//
// Mergeable section fragments
//
template <typename E>
struct SectionFragment {
SectionFragment(MergedSection<E> *sec, std::string_view data)
: output_section(*sec), data(data) {}
SectionFragment(const SectionFragment &other)
: output_section(other.output_section), data(other.data),
offset(other.offset), alignment(other.alignment.load()),
is_alive(other.is_alive.load()) {}
inline u64 get_addr(Context<E> &ctx) const;
MergedSection<E> &output_section;
std::string_view data;
u32 offset = -1;
std::atomic_uint16_t alignment = 1;
std::atomic_bool is_alive = false;
};
template <typename E>
struct SectionFragmentRef {
SectionFragment<E> *frag = nullptr;
i32 idx = 0;
i32 addend = 0;
};
// Additinal class members for dynamic symbols. Because most symbols
// don't need them and we allocate tens of millions of symbol objects
// for large programs, and we separate them from `Symbol` class to
// save memory.
struct SymbolAux {
i32 got_idx = -1;
i32 gotplt_idx = -1;
i32 gottp_idx = -1;
i32 tlsgd_idx = -1;
i32 tlsdesc_idx = -1;
i32 plt_idx = -1;
i32 pltgot_idx = -1;
i32 dynsym_idx = -1;
};
//
// Interned string
//
inline u64 hash_string(std::string_view str) {
return XXH3_64bits(str.data(), str.size());
}
namespace tbb {
template<> struct tbb_hash_compare<std::string_view> {
static size_t hash(const std::string_view &k) {
return hash_string(k);
}
static bool equal(const std::string_view &k1, const std::string_view &k2) {
return k1 == k2;
}
};
}
template<typename ValueT> class ConcurrentMap {
public:
ValueT *insert(std::string_view key, const ValueT &val) {
typename decltype(map)::const_accessor acc;
map.insert(acc, std::make_pair(key, val));
return const_cast<ValueT *>(&acc->second);
}
tbb::concurrent_hash_map<std::string_view, ValueT> map;
};
//
// input_sections.cc
//
enum {
R_NONE = 1,
R_ABS,
R_DYN,
R_BASEREL,
R_PC,
R_GOT,
R_GOTOFF,
R_GOTPC,
R_GOTPCREL,
R_SIZE,
R_END,
};
// .eh_frame section contains CIE and FDE records to teach the runtime
// how to handle exceptions. Usually, a .eh_frame contains one CIE
// followed by as many FDEs as the number of functions defined by the
// file. CIE contains common information for FDEs (it is actually
// short for Common Information Entry). FDE contains the start address
// of a function and its length as well as how to handle exceptions
// for that function.
//
// Unlike other sections, the linker has to parse .eh_frame for optimal
// output for the following reasons:
//
// - Compilers tend to emit the same CIE as long as the programming
// language is the same, so CIEs in input object files are almost
// always identical. We want to merge them to make a resulting
// .eh_frame smaller.
//
// - If we eliminate a function (e.g. when we see two object files
// containing the duplicate definition of an inlined function), we
// want to also eliminate a corresponding FDE so that a resulting
// .eh_frame doesn't contain a dead FDE entry.
//
// - If we need to compare two function definitions for equality for
// ICF, we need to compare not only the function body but also its
// exception handlers.
//
// Note that we assume that the first relocation entry for an FDE
// always points to the function that the FDE is associated to.
template <typename E>
struct FdeRecord {
FdeRecord(u32 input_offset, u32 rel_idx)
: input_offset(input_offset), rel_idx(rel_idx) {}
FdeRecord(const FdeRecord &other)
: cie(other.cie), input_offset(other.input_offset),
output_offset(other.output_offset), rel_idx(other.rel_idx),
is_alive(other.is_alive.load()) {}
FdeRecord &operator=(const FdeRecord<E> &other) {
cie = other.cie;
input_offset = other.input_offset;
output_offset = other.output_offset;
rel_idx = other.rel_idx;
is_alive = other.is_alive.load();
return *this;
}
i64 size() const;
std::string_view get_contents() const;
std::span<ElfRel<E>> get_rels() const;
CieRecord<E> *cie = nullptr;
u32 input_offset = -1;
u32 output_offset = -1;
u32 rel_idx = -1;
std::atomic_bool is_alive = true;
};
template <typename E>
struct CieRecord {
CieRecord(Context<E> &ctx, ObjectFile<E> &file,
InputSection<E> &isec, u32 input_offset, u32 rel_idx)
: file(file), input_section(isec), input_offset(input_offset),
rel_idx(rel_idx), rels(isec.get_rels(ctx)),
contents(file.get_string(ctx, isec.shdr)) {}
i64 size() const;
std::string_view get_contents() const;
std::span<ElfRel<E>> get_rels() const;
bool equals(const CieRecord &other) const;
ObjectFile<E> &file;
InputSection<E> &input_section;
u32 input_offset = -1;
u32 output_offset = -1;
u32 rel_idx = -1;
u32 icf_idx = -1;
bool is_leader = false;
std::span<ElfRel<E>> rels;
std::string_view contents;
};
// InputSection represents a section in an input object file.
template <typename E>
class InputSection {
public:
InputSection(Context<E> &ctx, ObjectFile<E> &file, const ElfShdr<E> &shdr,
std::string_view name, std::string_view contents,
i64 section_idx)
: file(file), shdr(shdr), nameptr(name.data()), namelen(name.size()),
contents(contents), section_idx(section_idx) {
output_section =
OutputSection<E>::get_instance(ctx, name, shdr.sh_type, shdr.sh_flags);
}
void scan_relocations(Context<E> &ctx);
void report_undefined_symbols();
void write_to(Context<E> &ctx, u8 *buf);
void apply_reloc_alloc(Context<E> &ctx, u8 *base);
void apply_reloc_nonalloc(Context<E> &ctx, u8 *base);
inline void kill();
inline std::string_view name() const {
return {nameptr, (size_t)namelen};
}
inline i64 get_priority() const;
inline u64 get_addr() const;
inline i64 get_addend(const ElfRel<E> &rel) const;
inline std::span<ElfRel<E>> get_rels(Context<E> &ctx) const;
inline std::span<FdeRecord<E>> get_fdes() const;
ObjectFile<E> &file;
const ElfShdr<E> &shdr;
OutputSection<E> *output_section = nullptr;
std::string_view contents;
std::unique_ptr<SectionFragmentRef<E>[]> rel_fragments;
std::unique_ptr<u8[]> rel_types;
i32 fde_begin = -1;
i32 fde_end = -1;
const char *nameptr = nullptr;
i32 namelen = 0;
u32 offset = -1;
u32 section_idx = -1;
u32 relsec_idx = -1;
u32 reldyn_offset = 0;
// For COMDAT de-duplication and garbage collection
std::atomic_bool is_alive = true;
// For garbage collection
std::atomic_bool is_visited = false;
// For ICF
InputSection *leader = nullptr;
u32 icf_idx = -1;
bool icf_eligible = false;
bool icf_leaf = false;
bool is_ehframe = false;
private:
typedef enum { NONE, ERROR, COPYREL, PLT, DYNREL, BASEREL } Action;
void uncompress_old_style(Context<E> &ctx);
void uncompress_new_style(Context<E> &ctx);
void do_uncompress(Context<E> &ctx, std::string_view data, u64 size);
void dispatch(Context<E> &ctx, Action table[3][4], u16 rel_type, i64 i);
};
//
// output_chunks.cc
//
template <typename E>
bool is_relro(Context<E> &ctx, OutputChunk<E> *chunk);
// OutputChunk represents a contiguous region in an output file.
template <typename E>
class OutputChunk {
public:
// There are three types of OutputChunks:
// - HEADER: the ELF, section or segment headers
// - REGULAR: output sections containing input sections
// - SYNTHETIC: linker-synthesized sections such as .got or .plt
enum Kind : u8 { HEADER, REGULAR, SYNTHETIC };
virtual ~OutputChunk() = default;
virtual void copy_buf(Context<E> &ctx) {}
virtual void write_to(Context<E> &ctx, u8 *buf);
virtual void update_shdr(Context<E> &ctx) {}
std::string_view name;
i64 shndx = 0;
Kind kind;
bool new_page = false;
bool new_page_end = false;
ElfShdr<E> shdr = {};
protected:
OutputChunk(Kind kind) : kind(kind) {
shdr.sh_addralign = 1;
}
};
// ELF header
template <typename E>
class OutputEhdr : public OutputChunk<E> {
public:
OutputEhdr() : OutputChunk<E>(this->HEADER) {
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_size = sizeof(ElfEhdr<E>);
}
void copy_buf(Context<E> &ctx) override;
};
// Section header
template <typename E>
class OutputShdr : public OutputChunk<E> {
public:
OutputShdr() : OutputChunk<E>(this->HEADER) {
this->shdr.sh_flags = SHF_ALLOC;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
// Program header
template <typename E>
class OutputPhdr : public OutputChunk<E> {
public:
OutputPhdr() : OutputChunk<E>(this->HEADER) {
this->shdr.sh_flags = SHF_ALLOC;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
class InterpSection : public OutputChunk<E> {
public:
InterpSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".interp";
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
// Sections
template <typename E>
class OutputSection : public OutputChunk<E> {
public:
static OutputSection *
get_instance(Context<E> &ctx, std::string_view name, u64 type, u64 flags);
void copy_buf(Context<E> &ctx) override;
void write_to(Context<E> &ctx, u8 *buf) override;
std::vector<InputSection<E> *> members;
u32 idx;
private:
OutputSection(std::string_view name, u32 type, u64 flags, u32 idx);
};
template <typename E>
class GotSection : public OutputChunk<E> {
public:
GotSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".got";
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
this->shdr.sh_addralign = E::got_size;
}
void add_got_symbol(Context<E> &ctx, Symbol<E> *sym);
void add_gottp_symbol(Context<E> &ctx, Symbol<E> *sym);
void add_tlsgd_symbol(Context<E> &ctx, Symbol<E> *sym);
void add_tlsdesc_symbol(Context<E> &ctx, Symbol<E> *sym);
void add_tlsld(Context<E> &ctx);
u64 get_tlsld_addr(Context<E> &ctx) const;
i64 get_reldyn_size(Context<E> &ctx) const;
void copy_buf(Context<E> &ctx) override;
std::vector<Symbol<E> *> got_syms;
std::vector<Symbol<E> *> gottp_syms;
std::vector<Symbol<E> *> tlsgd_syms;
std::vector<Symbol<E> *> tlsdesc_syms;
u32 tlsld_idx = -1;
};
template <typename E>
class GotPltSection : public OutputChunk<E> {
public:
GotPltSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".got.plt";
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
this->shdr.sh_addralign = E::got_size;
}
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
class PltSection : public OutputChunk<E> {
public:
PltSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".plt";
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC | SHF_EXECINSTR;
this->shdr.sh_addralign = E::plt_size;
}
void add_symbol(Context<E> &ctx, Symbol<E> *sym);
void copy_buf(Context<E> &ctx) override;
std::vector<Symbol<E> *> symbols;
};
template <typename E>
class PltGotSection : public OutputChunk<E> {
public:
PltGotSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".plt.got";
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC | SHF_EXECINSTR;
this->shdr.sh_addralign = E::pltgot_size;
}
void add_symbol(Context<E> &ctx, Symbol<E> *sym);
void copy_buf(Context<E> &ctx) override;
std::vector<Symbol<E> *> symbols;
};
template <typename E>
class RelPltSection : public OutputChunk<E> {
public:
RelPltSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = E::is_rel ? ".rel.plt" : ".rela.plt";
this->shdr.sh_type = E::rel_type;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_entsize = sizeof(ElfRel<E>);
this->shdr.sh_addralign = E::wordsize;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
class RelDynSection : public OutputChunk<E> {
public:
RelDynSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = E::is_rel ? ".rel.dyn" : ".rela.dyn";
this->shdr.sh_type = E::rel_type;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_entsize = sizeof(ElfRel<E>);
this->shdr.sh_addralign = E::wordsize;
}
void update_shdr(Context<E> &ctx) override;
void sort(Context<E> &ctx);
};
template <typename E>
class StrtabSection : public OutputChunk<E> {
public:
StrtabSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".strtab";
this->shdr.sh_type = SHT_STRTAB;
this->shdr.sh_size = 1;
}
void update_shdr(Context<E> &ctx) override;
};
template <typename E>
class ShstrtabSection : public OutputChunk<E> {
public:
ShstrtabSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".shstrtab";
this->shdr.sh_type = SHT_STRTAB;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
class DynstrSection : public OutputChunk<E> {
public:
DynstrSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".dynstr";
this->shdr.sh_type = SHT_STRTAB;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_size = 1;
}
i64 add_string(std::string_view str);
i64 find_string(std::string_view str);
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
i64 dynsym_offset = -1;
private:
std::unordered_map<std::string_view, i64> strings;
};
template <typename E>
class DynamicSection : public OutputChunk<E> {
public:
DynamicSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".dynamic";
this->shdr.sh_type = SHT_DYNAMIC;
this->shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
this->shdr.sh_addralign = E::wordsize;
this->shdr.sh_entsize = sizeof(ElfDyn<E>);
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
class SymtabSection : public OutputChunk<E> {
public:
SymtabSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".symtab";
this->shdr.sh_type = SHT_SYMTAB;
this->shdr.sh_entsize = sizeof(ElfSym<E>);
this->shdr.sh_addralign = E::wordsize;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
class DynsymSection : public OutputChunk<E> {
public:
DynsymSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".dynsym";
this->shdr.sh_type = SHT_DYNSYM;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_entsize = sizeof(ElfSym<E>);
this->shdr.sh_addralign = E::wordsize;
}
void add_symbol(Context<E> &ctx, Symbol<E> *sym);
void sort_symbols(Context<E> &ctx);
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
std::vector<Symbol<E> *> symbols;
};
template <typename E>
class HashSection : public OutputChunk<E> {
public:
HashSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".hash";
this->shdr.sh_type = SHT_HASH;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_entsize = 4;
this->shdr.sh_addralign = 4;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
class GnuHashSection : public OutputChunk<E> {
public:
GnuHashSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".gnu.hash";
this->shdr.sh_type = SHT_GNU_HASH;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_addralign = E::wordsize;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
static constexpr i64 LOAD_FACTOR = 8;
static constexpr i64 HEADER_SIZE = 16;
static constexpr i64 BLOOM_SHIFT = 26;
static constexpr i64 ELFCLASS_BITS = E::wordsize * 8;
u32 num_buckets = -1;
u32 symoffset = -1;
u32 num_bloom = 1;
};
template <typename E>
class MergedSection : public OutputChunk<E> {
public:
static MergedSection<E> *
get_instance(Context<E> &ctx, std::string_view name, u64 type, u64 flags);
SectionFragment<E> *insert(std::string_view data, i64 alignment);
void assign_offsets();
void copy_buf(Context<E> &ctx) override;
void write_to(Context<E> &ctx, u8 *buf) override;
private:
using MapTy =
tbb::concurrent_hash_map<std::string_view, SectionFragment<E>>;
static constexpr i64 NUM_SHARDS = 64;
MergedSection(std::string_view name, u64 flags, u32 type)
: OutputChunk<E>(this->SYNTHETIC) {
this->name = name;
this->shdr.sh_flags = flags;
this->shdr.sh_type = type;
}
MapTy maps[NUM_SHARDS];
i64 shard_offsets[NUM_SHARDS + 1] = {};
std::atomic_uint16_t max_alignment;
};
template <typename E>
class EhFrameSection : public OutputChunk<E> {
public:
EhFrameSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".eh_frame";
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_addralign = E::wordsize;
}
void construct(Context<E> &ctx);
void apply_reloc(Context<E> &ctx, ElfRel<E> &rel, u64 loc, u64 val);
void copy_buf(Context<E> &ctx) override;
};
template <typename E>
class EhFrameHdrSection : public OutputChunk<E> {
public:
EhFrameHdrSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".eh_frame_hdr";
this->shdr.sh_type = SHT_PROGBITS;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_addralign = 4;
this->shdr.sh_size = HEADER_SIZE;
}
static constexpr i64 HEADER_SIZE = 12;
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
u32 num_fdes = 0;
};
template <typename E>
class DynbssSection : public OutputChunk<E> {
public:
DynbssSection(bool is_relro) : OutputChunk<E>(this->SYNTHETIC) {
this->name = is_relro ? ".dynbss.rel.ro" : ".dynbss";
this->shdr.sh_type = SHT_NOBITS;
this->shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
this->shdr.sh_addralign = 64;
}
void add_symbol(Context<E> &ctx, Symbol<E> *sym);
std::vector<Symbol<E> *> symbols;
};
template <typename E>
class VersymSection : public OutputChunk<E> {
public:
VersymSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".gnu.version";
this->shdr.sh_type = SHT_GNU_VERSYM;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_entsize = 2;
this->shdr.sh_addralign = 2;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
std::vector<u16> contents;
};
template <typename E>
class VerneedSection : public OutputChunk<E> {
public:
VerneedSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".gnu.version_r";
this->shdr.sh_type = SHT_GNU_VERNEED;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_addralign = E::wordsize;
}
void construct(Context<E> &ctx);
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
std::vector<u8> contents;
};
template <typename E>
class VerdefSection : public OutputChunk<E> {
public:
VerdefSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".gnu.version_d";
this->shdr.sh_type = SHT_GNU_VERDEF;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_addralign = 8;
}
void construct(Context<E> &ctx);
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
std::vector<u8> contents;
};
template <typename E>
class BuildIdSection : public OutputChunk<E> {
public:
BuildIdSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".note.gnu.build-id";
this->shdr.sh_type = SHT_NOTE;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_addralign = 4;
this->shdr.sh_size = 1;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
void write_buildid(Context<E> &ctx);
static constexpr i64 HEADER_SIZE = 16;
};
template <typename E>
class NotePropertySection : public OutputChunk<E> {
public:
NotePropertySection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".note.gnu.property";
this->shdr.sh_type = SHT_NOTE;
this->shdr.sh_flags = SHF_ALLOC;
this->shdr.sh_addralign = E::wordsize;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
u32 features = 0;
};
template <typename E>
class CompressedSection : public OutputChunk<E> {
public:
CompressedSection(Context<E> &ctx, OutputChunk<E> &chunk);
void copy_buf(Context<E> &ctx) override;
private:
ElfChdr<E> chdr = {};
std::unique_ptr<Compress> contents;
};
template <typename E>
class ReproSection : public OutputChunk<E> {
public:
ReproSection() : OutputChunk<E>(this->SYNTHETIC) {
this->name = ".repro";
this->shdr.sh_type = SHT_PROGBITS;
}
void update_shdr(Context<E> &ctx) override;
void copy_buf(Context<E> &ctx) override;
private:
std::unique_ptr<TarFile> tar;
};
bool is_c_identifier(std::string_view name);
template <typename E>
std::vector<ElfPhdr<E>> create_phdr(Context<E> &ctx);
//
// object_file.cc
//
// A comdat section typically represents an inline function,
// which are de-duplicated by the linker.
//
// For each inline function, there's one comdat section, which
// contains section indices of the function code and its data such as
// string literals, if any.
//
// Comdat sections are identified by its signature. If two comdat
// sections have the same signature, the linker picks up one and
// discards the other by eliminating all sections that the other
// comdat section refers to.
struct ComdatGroup {
ComdatGroup() = default;
ComdatGroup(const ComdatGroup &other)
: owner(other.owner.load()) {}
// The file priority of the owner file of this comdat section.
std::atomic_uint32_t owner = -1;
};
// MemoryMappedFile represents an mmap'ed input file.
// mold uses mmap-IO only.
template <typename E>
class MemoryMappedFile {
public:
static MemoryMappedFile *open(Context<E> &ctx, std::string path);
static MemoryMappedFile *must_open(Context<E> &ctx, std::string path);
~MemoryMappedFile();
MemoryMappedFile *slice(Context<E> &ctx, std::string name, u64 start, u64 size);
u8 *data(Context<E> &ctx);
i64 size() const { return size_; }
std::string_view get_contents(Context<E> &ctx) {
return std::string_view((char *)data(ctx), size());
}
std::string name;
i64 mtime = 0;
private:
MemoryMappedFile(std::string name, u8 *data, u64 size, u64 mtime = 0)
: name(name), data_(data), size_(size), mtime(mtime) {}
std::mutex mu;
MemoryMappedFile *parent;
std::atomic<u8 *> data_;
i64 size_ = 0;
};
// InputFile is the base class of ObjectFile and SharedFile.
template <typename E>
class InputFile {
public:
InputFile(Context<E> &ctx, MemoryMappedFile<E> *mb);
InputFile() : name("<internal>") {}
inline std::string_view get_string(Context<E> &ctx, const ElfShdr<E> &shdr);
inline std::string_view get_string(Context<E> &ctx, i64 idx);
template<typename T> std::span<T>
get_data(Context<E> &ctx, const ElfShdr<E> &shdr);
template<typename T> std::span<T>
get_data(Context<E> &ctx, i64 idx);
ElfShdr<E> *find_section(i64 type);
MemoryMappedFile<E> *mb;
std::span<ElfShdr<E>> elf_sections;
std::vector<Symbol<E> *> symbols;
std::string name;
bool is_dso = false;
u32 priority;
std::atomic_bool is_alive = false;
std::string_view shstrtab;
protected:
std::unique_ptr<Symbol<E>[]> local_syms;
};
// ObjectFile represents an input .o file.
template <typename E>
class ObjectFile : public InputFile<E> {
public:
static ObjectFile<E> *create(Context<E> &ctx, MemoryMappedFile<E> *mb,
std::string archive_name, bool is_in_lib);
static ObjectFile<E> *create_internal_file(Context<E> &ctx);
void parse(Context<E> &ctx);
void resolve_lazy_symbols(Context<E> &ctx);
void resolve_regular_symbols(Context<E> &ctx);
void mark_live_objects(Context<E> &ctx,
std::function<void(ObjectFile<E> *)> feeder);
void convert_undefined_weak_symbols(Context<E> &ctx);
void resolve_comdat_groups();
void eliminate_duplicate_comdat_groups();
void claim_unresolved_symbols();
void scan_relocations(Context<E> &ctx);
void convert_common_symbols(Context<E> &ctx);
void compute_symtab(Context<E> &ctx);
void write_symtab(Context<E> &ctx);
inline i64 get_shndx(const ElfSym<E> &esym);
inline InputSection<E> *get_section(const ElfSym<E> &esym);
inline std::span<Symbol<E> *> get_global_syms();
std::string archive_name;
std::vector<std::unique_ptr<InputSection<E>>> sections;
std::span<ElfSym<E>> elf_syms;
i64 first_global = 0;
const bool is_in_lib = false;
std::vector<CieRecord<E>> cies;
std::vector<FdeRecord<E>> fdes;
std::vector<const char *> symvers;
std::vector<SectionFragment<E> *> fragments;
std::vector<SectionFragmentRef<E>> sym_fragments;
std::vector<std::pair<ComdatGroup *, std::span<u32>>> comdat_groups;
bool exclude_libs = false;
u32 features = 0;
u64 num_dynrel = 0;
u64 reldyn_offset = 0;
u64 local_symtab_offset = 0;
u64 global_symtab_offset = 0;
u64 num_local_symtab = 0;
u64 num_global_symtab = 0;
u64 strtab_offset = 0;
u64 strtab_size = 0;
u64 fde_idx = 0;
u64 fde_offset = 0;
u64 fde_size = 0;
private:
ObjectFile();
ObjectFile(Context<E> &ctx, MemoryMappedFile<E> *mb,
std::string archive_name, bool is_in_lib);
void initialize_sections(Context<E> &ctx);
void initialize_symbols(Context<E> &ctx);
void initialize_mergeable_sections(Context<E> &ctx);
void initialize_ehframe_sections(Context<E> &ctx);
u32 read_note_gnu_property(Context<E> &ctx, const ElfShdr<E> &shdr);
void read_ehframe(Context<E> &ctx, InputSection<E> &isec);
void maybe_override_symbol(Context<E> &ctx, Symbol<E> &sym, i64 symidx);
void merge_visibility(Context<E> &ctx, Symbol<E> &sym, u8 visibility);
std::pair<std::string_view, const ElfShdr<E> *>
uncompress_contents(Context<E> &ctx, const ElfShdr<E> &shdr,
std::string_view name);
bool has_common_symbol;
std::string_view symbol_strtab;
const ElfShdr<E> *symtab_sec;
std::span<u32> symtab_shndx_sec;
};
// SharedFile represents an input .so file.
template <typename E>
class SharedFile : public InputFile<E> {
public:
static SharedFile<E> *create(Context<E> &ctx, MemoryMappedFile<E> *mb);
void parse(Context<E> &ctx);
void resolve_symbols(Context<E> &ctx);
std::vector<Symbol<E> *> find_aliases(Symbol<E> *sym);
bool is_readonly(Context<E> &ctx, Symbol<E> *sym);
std::string_view soname;
std::vector<std::string_view> version_strings;
std::vector<Symbol<E> *> undefs;
std::vector<const ElfSym<E> *> elf_syms;
private:
SharedFile(Context<E> &ctx, MemoryMappedFile<E> *mb);
std::string_view get_soname(Context<E> &ctx);
void maybe_override_symbol(Symbol<E> &sym, const ElfSym<E> &esym);
std::vector<std::string_view> read_verdef(Context<E> &ctx);
std::vector<u16> versyms;
std::string_view symbol_strtab;
const ElfShdr<E> *symtab_sec;
};
//
// archive_file.cc
//
// Unlike traditional linkers, mold doesn't read archive file symbol
// tables. Instead, it directly read archive members.
template <typename E>
std::vector<MemoryMappedFile<E> *>
read_fat_archive_members(Context<E> &ctx, MemoryMappedFile<E> *mb);
template <typename E>
std::vector<MemoryMappedFile<E> *>
read_thin_archive_members(Context<E> &ctx, MemoryMappedFile<E> *mb);
//
// linker_script.cc
//
template <typename E>
void parse_linker_script(Context<E> &ctx, MemoryMappedFile<E> *mb);
template <typename E>
void parse_version_script(Context<E> &ctx, std::string path);
template <typename E>
void parse_dynamic_list(Context<E> &ctx, std::string path);
//
// output_file.cc
//
// OutputFile represents a mmap'ed output file.
template <typename E>
class OutputFile {
public:
static std::unique_ptr<OutputFile>
open(Context<E> &ctx, std::string path, u64 filesize);
virtual void close(Context<E> &ctx) = 0;
virtual ~OutputFile() {}
static inline char *tmpfile;
u8 *buf = nullptr;
std::string path;
u64 filesize;
bool is_mmapped;
protected:
OutputFile(std::string path, u64 filesize, bool is_mmapped)
: path(path), filesize(filesize), is_mmapped(is_mmapped) {}
};
//
// filepath.cc
//
// These are various utility functions to deal with file pathnames.
std::string get_current_dir();
std::string path_dirname(std::string_view path);
std::string path_filename(std::string_view path);
std::string path_basename(std::string_view path);
std::string path_to_absolute(std::string_view path);
std::string path_clean(std::string_view path);
//
// glob.cc
//
// GlobPattern handles the glob pattern. Currently, only '*' (zero or
// more occurrences of any character) is supported as a metacharacter.
class GlobPattern {
public:
GlobPattern(std::string_view pat);
bool match(std::string_view str) const;
private:
enum { EXACT, PREFIX, SUFFIX, GENERIC } kind;
std::string_view pat;
};
//
// perf.cc
//
// Counter is used to collect statistics numbers.
class Counter {
public:
Counter(std::string_view name, i64 value = 0) : name(name), values(value) {
static std::mutex mu;
std::lock_guard lock(mu);
instances.push_back(this);
}
Counter &operator++(int) {
if (enabled)
values.local()++;
return *this;
}
Counter &operator+=(int delta) {
if (enabled)
values.local() += delta;
return *this;
}
static void print();
static inline bool enabled = false;
private:
i64 get_value();
std::string_view name;
tbb::enumerable_thread_specific<i64> values;
static inline std::vector<Counter *> instances;
};
// Timer and TimeRecord records elapsed time (wall clock time)
// used by each pass of the linker.
struct TimerRecord {
TimerRecord(std::string name, TimerRecord *parent = nullptr);
void stop();
std::string name;
TimerRecord *parent;
tbb::concurrent_vector<TimerRecord *> children;
i64 start;
i64 end;
i64 user;
i64 sys;
bool stopped = false;
};
template <typename E>
class Timer {
public:
Timer(Context<E> &ctx, std::string name, Timer *parent = nullptr);
~Timer();
void stop();
static void print(Context<E> &ctx);
private:
TimerRecord *record;
};
//
// gc_sections.cc
//
template <typename E>
void gc_sections(Context<E> &ctx);
//
// icf.cc
//
template <typename E>
void icf_sections(Context<E> &ctx);
//
// mapfile.cc
//
template <typename E>
void print_map(Context<E> &ctx);
//
// subprocess.cc
//
inline char *socket_tmpfile;
std::function<void()> fork_child();
template <typename E>
void try_resume_daemon(Context<E> &ctx, char **argv);
template <typename E>
void daemonize(Context<E> &ctx, char **argv,
std::function<void()> *wait_for_client,
std::function<void()> *on_complete);
template <typename E>
[[noreturn]]
void process_run_subcommand(Context<E> &ctx, int argc, char **argv);
//
// commandline.cc
//
template <typename E>
std::vector<std::string_view>
expand_response_files(Context<E> &ctx, char **argv);
bool read_flag(std::span<std::string_view> &args, std::string name);
template <typename E>
bool read_arg(Context<E> &ctx, std::span<std::string_view> &args,
std::string_view &arg,
std::string name);
template <typename E>
std::string create_response_file(Context<E> &ctx);
template <typename E>
void parse_nonpositional_args(Context<E> &ctx,
std::vector<std::string_view> &remaining);
//
// compress.cc
//
class Compress {
public:
Compress(std::string_view input);
void write_to(u8 *buf);
i64 size() const;
private:
std::vector<std::vector<u8>> shards;
u64 checksum = 0;
};
//
// tar.cc
//
// TarFile is a class to create a tar file.
//
// If you pass `--reproduce=repro.tar` to mold, mold collects all
// input files and put them into `repro.tar`, so that it is easy to
// run the same command with the same command line arguments.
class TarFile {
public:
static constexpr i64 BLOCK_SIZE = 512;
TarFile(std::string basedir) : basedir(basedir) {}
void append(std::string path, std::string_view data);
void write(u8 *buf);
i64 size() const { return size_; }
private:
std::string basedir;
std::vector<std::pair<std::string, std::string_view>> contents;
i64 size_ = BLOCK_SIZE * 2;
};
//
// passes.cc
//
template <typename E> void apply_exclude_libs(Context<E> &);
template <typename E> void create_synthetic_sections(Context<E> &);
template <typename E> void set_file_priority(Context<E> &);
template <typename E> void resolve_obj_symbols(Context<E> &);
template <typename E> void resolve_dso_symbols(Context<E> &);
template <typename E> void eliminate_comdats(Context<E> &);
template <typename E> void convert_common_symbols(Context<E> &);
template <typename E> void compute_merged_section_sizes(Context<E> &);
template <typename E> void bin_sections(Context<E> &);
template <typename E> void check_duplicate_symbols(Context<E> &);
template <typename E> std::vector<OutputChunk<E> *>
collect_output_sections(Context<E> &);
template <typename E> void compute_section_sizes(Context<E> &);
template <typename E> void convert_undefined_weak_symbols(Context<E> &);
template <typename E> void scan_rels(Context<E> &);
template <typename E> void apply_version_script(Context<E> &);
template <typename E> void parse_symbol_version(Context<E> &);
template <typename E> void compute_import_export(Context<E> &);
template <typename E> void clear_padding(Context<E> &);
template <typename E> i64 get_section_rank(Context<E> &, OutputChunk<E> *chunk);
template <typename E> i64 set_osec_offsets(Context<E> &);
template <typename E> void fix_synthetic_symbols(Context<E> &);
template <typename E> void compress_debug_sections(Context<E> &);
//
// main.cc
//
struct BuildId {
template <typename E>
i64 size(Context<E> &ctx) const;
enum { NONE, HEX, HASH, UUID } kind = NONE;
std::vector<u8> value;
i64 hash_size = 0;
};
struct VersionPattern {
std::string_view pattern;
i16 ver_idx;
bool is_extern_cpp;
};
template <typename E, typename T>
class FileCache {
public:
void store(MemoryMappedFile<E> *mb, T *obj) {
Key k(mb->name, mb->size(), mb->mtime);
cache[k].push_back(obj);
}
std::vector<T *> get(MemoryMappedFile<E> *mb) {
Key k(mb->name, mb->size(), mb->mtime);
std::vector<T *> objs = cache[k];
cache[k].clear();
return objs;
}
T *get_one(MemoryMappedFile<E> *mb) {
std::vector<T *> objs = get(mb);
return objs.empty() ? nullptr : objs[0];
}
private:
typedef std::tuple<std::string, i64, i64> Key;
std::map<Key, std::vector<T *>> cache;
};
// Context represents a context object for each invocation of the linker.
// It contains command line flags, pointers to singleton objects
// (such as linker-synthesized output sections), unique_ptrs for
// resource management, and other miscellaneous objects.
template <typename E>
struct Context {
Context() = default;
Context(const Context<E> &) = delete;
// Command-line arguments
struct {
BuildId build_id;
bool Bsymbolic = false;
bool Bsymbolic_functions = false;
bool allow_multiple_definition = false;
bool compress_debug_sections = false;
bool demangle = true;
bool discard_all = false;
bool discard_locals = false;
bool eh_frame_hdr = true;
bool export_dynamic = false;
bool fatal_warnings = false;
bool fork = true;
bool gc_sections = false;
bool hash_style_gnu = false;
bool hash_style_sysv = true;
bool icf = false;
bool is_static = false;
bool omagic = false;
bool perf = false;
bool pic = false;
bool pie = false;
bool preload = false;
bool print_gc_sections = false;
bool print_icf_sections = false;
bool print_map = false;
bool quick_exit = true;
bool relax = true;
bool repro = false;
bool shared = false;
bool stats = false;
bool strip_all = false;
bool strip_debug = false;
bool trace = false;
bool warn_common = false;
bool z_copyreloc = true;
bool z_defs = false;
bool z_delete = true;
bool z_dlopen = true;
bool z_execstack = false;
bool z_initfirst = false;
bool z_interpose = false;
bool z_now = false;
bool z_relro = true;
i16 default_version = VER_NDX_GLOBAL;
std::vector<std::string_view> version_definitions;
std::vector<VersionPattern> version_patterns;
i64 filler = -1;
i64 spare_dynamic_tags = 5;
i64 thread_count = -1;
std::string Map;
std::string chroot;
std::string directory;
std::string dynamic_linker;
std::string entry = "_start";
std::string fini = "_fini";
std::string init = "_init";
std::string output;
std::string rpaths;
std::string soname;
std::string sysroot;
std::unordered_set<std::string_view> wrap;
std::vector<std::string_view> auxiliary;
std::vector<std::string_view> exclude_libs;
std::vector<std::string_view> filter;
std::vector<std::string_view> library_paths;
std::vector<std::string_view> trace_symbol;
std::vector<std::string_view> undefined;
u64 image_base = 0x200000;
} arg;
void reset_reader_context(bool is_preloading) {
as_needed = false;
whole_archive = false;
this->is_preloading = is_preloading;
is_static = arg.is_static;
visited.clear();
}
// Reader context
bool as_needed;
bool whole_archive;
bool is_preloading;
bool is_static;
std::unordered_set<std::string_view> visited;
tbb::task_group tg;
bool has_error = false;
// Symbol table
ConcurrentMap<Symbol<E>> symbol_map;
ConcurrentMap<ComdatGroup> comdat_groups;
tbb::concurrent_vector<std::unique_ptr<MergedSection<E>>> merged_sections;
tbb::concurrent_vector<std::unique_ptr<OutputChunk<E>>> output_chunks;
std::vector<std::unique_ptr<OutputSection<E>>> output_sections;
FileCache<E, ObjectFile<E>> obj_cache;
FileCache<E, SharedFile<E>> dso_cache;
tbb::concurrent_vector<std::unique_ptr<TimerRecord>> timer_records;
tbb::concurrent_vector<std::function<void()>> on_exit;
tbb::concurrent_vector<std::unique_ptr<ObjectFile<E>>> owning_objs;
tbb::concurrent_vector<std::unique_ptr<SharedFile<E>>> owning_dsos;
tbb::concurrent_vector<std::unique_ptr<u8[]>> owning_bufs;
tbb::concurrent_vector<std::unique_ptr<ElfShdr<E>>> owning_shdrs;
tbb::concurrent_vector<std::unique_ptr<MemoryMappedFile<E>>> owning_mbs;
// Symbol auxiliary data
std::vector<SymbolAux> symbol_aux;
// Fully-expanded command line args
std::vector<std::string_view> cmdline_args;
// Input files
std::vector<ObjectFile<E> *> objs;
std::vector<SharedFile<E> *> dsos;
ObjectFile<E> *internal_obj = nullptr;
// Output buffer
std::unique_ptr<OutputFile<E>> output_file;
u8 *buf = nullptr;
std::vector<OutputChunk<E> *> chunks;
std::atomic_bool has_gottp_rel = false;
std::atomic_bool has_textrel = false;
// Output chunks
std::unique_ptr<OutputEhdr<E>> ehdr;
std::unique_ptr<OutputShdr<E>> shdr;
std::unique_ptr<OutputPhdr<E>> phdr;
std::unique_ptr<InterpSection<E>> interp;
std::unique_ptr<GotSection<E>> got;
std::unique_ptr<GotPltSection<E>> gotplt;
std::unique_ptr<RelPltSection<E>> relplt;
std::unique_ptr<RelDynSection<E>> reldyn;
std::unique_ptr<DynamicSection<E>> dynamic;
std::unique_ptr<StrtabSection<E>> strtab;
std::unique_ptr<DynstrSection<E>> dynstr;
std::unique_ptr<HashSection<E>> hash;
std::unique_ptr<GnuHashSection<E>> gnu_hash;
std::unique_ptr<ShstrtabSection<E>> shstrtab;
std::unique_ptr<PltSection<E>> plt;
std::unique_ptr<PltGotSection<E>> pltgot;
std::unique_ptr<SymtabSection<E>> symtab;
std::unique_ptr<DynsymSection<E>> dynsym;
std::unique_ptr<EhFrameSection<E>> eh_frame;
std::unique_ptr<EhFrameHdrSection<E>> eh_frame_hdr;
std::unique_ptr<DynbssSection<E>> dynbss;
std::unique_ptr<DynbssSection<E>> dynbss_relro;
std::unique_ptr<VersymSection<E>> versym;
std::unique_ptr<VerneedSection<E>> verneed;
std::unique_ptr<VerdefSection<E>> verdef;
std::unique_ptr<BuildIdSection<E>> buildid;
std::unique_ptr<NotePropertySection<E>> note_property;
std::unique_ptr<ReproSection<E>> repro;
u64 tls_begin = -1;
u64 tls_end = -1;
// Linker-synthesized symbols
Symbol<E> *__bss_start = nullptr;
Symbol<E> *__ehdr_start = nullptr;
Symbol<E> *__rel_iplt_start = nullptr;
Symbol<E> *__rel_iplt_end = nullptr;
Symbol<E> *__init_array_start = nullptr;
Symbol<E> *__init_array_end = nullptr;
Symbol<E> *__fini_array_start = nullptr;
Symbol<E> *__fini_array_end = nullptr;
Symbol<E> *__preinit_array_start = nullptr;
Symbol<E> *__preinit_array_end = nullptr;
Symbol<E> *_DYNAMIC = nullptr;
Symbol<E> *_GLOBAL_OFFSET_TABLE_ = nullptr;
Symbol<E> *__GNU_EH_FRAME_HDR = nullptr;
Symbol<E> *_end = nullptr;
Symbol<E> *_etext = nullptr;
Symbol<E> *_edata = nullptr;
Symbol<E> *__executable_start = nullptr;
};
template <typename E>
MemoryMappedFile<E> *find_library(Context<E> &ctx, std::string path);
template <typename E>
void read_file(Context<E> &ctx, MemoryMappedFile<E> *mb);
template <typename E>
std::string_view save_string(Context<E> &ctx, const std::string &str);
std::string get_version_string();
//
// Error output
//
inline thread_local bool opt_demangle = false;
template <typename E>
class SyncOut {
public:
SyncOut(Context<E> &ctx, std::ostream &out = std::cout) : out(out) {
opt_demangle = ctx.arg.demangle;
}
~SyncOut() {
std::lock_guard lock(mu);
out << ss.str() << "\n";
}
template <class T> SyncOut &operator<<(T &&val) {
ss << std::forward<T>(val);
return *this;
}
static inline std::mutex mu;
private:
std::ostream &out;
std::stringstream ss;
};
template <typename E>
class Fatal {
public:
Fatal(Context<E> &ctx) : out(ctx, std::cerr) {
out << "mold: ";
}
[[noreturn]] ~Fatal() {
out.~SyncOut();
cleanup<E>();
_exit(1);
}
template <class T> Fatal &operator<<(T &&val) {
out << std::forward<T>(val);
return *this;
}
private:
SyncOut<E> out;
};
template <typename E>
class Error {
public:
Error(Context<E> &ctx) : out(ctx, std::cerr) {
out << "mold: ";
ctx.has_error = true;
}
template <class T> Error &operator<<(T &&val) {
out << std::forward<T>(val);
return *this;
}
static void checkpoint(Context<E> &ctx) {
if (!ctx.has_error)
return;
cleanup<E>();
_exit(1);
}
private:
SyncOut<E> out;
};
template <typename E>
class Warn {
public:
Warn(Context<E> &ctx) : out(ctx, std::cerr) {
out << "mold: ";
if (ctx.arg.fatal_warnings)
ctx.has_error = true;
}
template <class T> Warn &operator<<(T &&val) {
out << std::forward<T>(val);
return *this;
}
private:
SyncOut<E> out;
};
#define unreachable(ctx) \
do { \
Fatal(ctx) << "internal error at " << __FILE__ << ":" << __LINE__; \
} while (0)
template <typename E>
std::ostream &operator<<(std::ostream &out, const InputFile<E> &file);
//
// Symbol
//
enum {
NEEDS_GOT = 1 << 0,
NEEDS_PLT = 1 << 1,
NEEDS_GOTTP = 1 << 2,
NEEDS_TLSGD = 1 << 3,
NEEDS_TLSLD = 1 << 4,
NEEDS_COPYREL = 1 << 5,
NEEDS_DYNSYM = 1 << 6,
NEEDS_TLSDESC = 1 << 7,
};
// Symbol class represents a defined symbol.
//
// A symbol has not only one but several different addresses if it
// has PLT or GOT entries. This class provides various functions to
// compute different addresses.
template <typename E>
class Symbol {
public:
Symbol() = default;
Symbol(std::string_view name) : nameptr(name.data()), namelen(name.size()) {}
Symbol(const Symbol<E> &other) : Symbol(other.name()) {}
// If we haven't seen the same `key` before, create a new instance
// of Symbol and returns it. Otherwise, returns the previously-
// instantiated object. `key` is usually the same as `name`.
static Symbol<E> *intern(Context<E> &ctx, std::string_view key,
std::string_view name) {
return ctx.symbol_map.insert(key, {name});
}
static Symbol<E> *intern(Context<E> &ctx, std::string_view name) {
return intern(ctx, name, name);
}
u64 get_addr(Context<E> &ctx) const {
if (SectionFragment<E> *frag = get_frag()) {
if (!frag->is_alive) {
// This condition is met if a non-alloc section refers an
// alloc section and if the referenced piece of data is
// garbage-collected. Typically, this condition is met if a
// debug info section referring a string constant in .rodata.
return 0;
}
return frag->get_addr(ctx) + value;
}
if (has_copyrel) {
return copyrel_readonly
? ctx.dynbss_relro->shdr.sh_addr + value
: ctx.dynbss->shdr.sh_addr + value;
}
if (has_plt(ctx) && esym().st_type == STT_GNU_IFUNC)
return get_plt_addr(ctx);
if (input_section) {
if (input_section->is_ehframe) {
// This is a special case: Only crtbegin.o and crtend.o
// contain these symbols.
if (name() == "__EH_FRAME_BEGIN__" || esym().st_type == STT_SECTION)
return ctx.eh_frame->shdr.sh_addr;
if (name() == "__FRAME_END__")
return ctx.eh_frame->shdr.sh_addr + ctx.eh_frame->shdr.sh_size;
Fatal(ctx) << "symbol referring .eh_frame is not supported: "
<< *this << " " << *file;
}
if (!input_section->is_alive) {
// The control can reach here if there's a relocation that refers
// a local symbol belonging to a comdat group section. This is a
// violation of the spec, as all relocations should use only global
// symbols of comdat members. However, .eh_frame tends to have such
// relocations.
return 0;
}
return input_section->get_addr() + value;
}
if (has_plt(ctx))
return get_plt_addr(ctx);
return value;
}
u64 get_got_addr(Context<E> &ctx) const {
return ctx.got->shdr.sh_addr + get_got_idx(ctx) * E::got_size;
}
u64 get_gotplt_addr(Context<E> &ctx) const {
assert(get_gotplt_idx(ctx) != -1);
return ctx.gotplt->shdr.sh_addr + get_gotplt_idx(ctx) * E::got_size;
}
u64 get_gottp_addr(Context<E> &ctx) const {
assert(get_gottp_idx(ctx) != -1);
return ctx.got->shdr.sh_addr + get_gottp_idx(ctx) * E::got_size;
}
u64 get_tlsgd_addr(Context<E> &ctx) const {
assert(get_tlsgd_idx(ctx) != -1);
return ctx.got->shdr.sh_addr + get_tlsgd_idx(ctx) * E::got_size;
}
u64 get_tlsdesc_addr(Context<E> &ctx) const {
assert(get_tlsdesc_idx(ctx) != -1);
return ctx.got->shdr.sh_addr + get_tlsdesc_idx(ctx) * E::got_size;
}
u64 get_plt_addr(Context<E> &ctx) const {
if (i32 idx = get_plt_idx(ctx); idx != -1)
return ctx.plt->shdr.sh_addr + idx * E::plt_size;
return ctx.pltgot->shdr.sh_addr + get_pltgot_idx(ctx) * E::pltgot_size;
}
void set_got_idx(Context<E> &ctx, i32 idx) const {
assert(aux_idx != -1);
assert(ctx.symbol_aux[aux_idx].got_idx < 0);
ctx.symbol_aux[aux_idx].got_idx = idx;
}
void set_gotplt_idx(Context<E> &ctx, i32 idx) const {
assert(aux_idx != -1);
assert(ctx.symbol_aux[aux_idx].gotplt_idx < 0);
ctx.symbol_aux[aux_idx].gotplt_idx = idx;
}
void set_gottp_idx(Context<E> &ctx, i32 idx) const {
assert(aux_idx != -1);
assert(ctx.symbol_aux[aux_idx].gottp_idx < 0);
ctx.symbol_aux[aux_idx].gottp_idx = idx;
}
void set_tlsgd_idx(Context<E> &ctx, i32 idx) const {
assert(aux_idx != -1);
assert(ctx.symbol_aux[aux_idx].tlsgd_idx < 0);
ctx.symbol_aux[aux_idx].tlsgd_idx = idx;
}
void set_tlsdesc_idx(Context<E> &ctx, i32 idx) const {
assert(aux_idx != -1);
assert(ctx.symbol_aux[aux_idx].tlsdesc_idx < 0);
ctx.symbol_aux[aux_idx].tlsdesc_idx = idx;
}
void set_plt_idx(Context<E> &ctx, i32 idx) const {
assert(aux_idx != -1);
assert(ctx.symbol_aux[aux_idx].plt_idx < 0);
ctx.symbol_aux[aux_idx].plt_idx = idx;
}
void set_pltgot_idx(Context<E> &ctx, i32 idx) const {
assert(aux_idx != -1);
assert(ctx.symbol_aux[aux_idx].pltgot_idx < 0);
ctx.symbol_aux[aux_idx].pltgot_idx = idx;
}
void set_dynsym_idx(Context<E> &ctx, i32 idx) const {
assert(aux_idx != -1);
assert(ctx.symbol_aux[aux_idx].dynsym_idx < 0);
ctx.symbol_aux[aux_idx].dynsym_idx = idx;
}
i32 get_got_idx(Context<E> &ctx) const {
return (aux_idx == -1) ? -1 : ctx.symbol_aux[aux_idx].got_idx;
}
i32 get_gotplt_idx(Context<E> &ctx) const {
return (aux_idx == -1) ? -1 : ctx.symbol_aux[aux_idx].gotplt_idx;
}
i32 get_gottp_idx(Context<E> &ctx) const {
return (aux_idx == -1) ? -1 : ctx.symbol_aux[aux_idx].gottp_idx;
}
i32 get_tlsgd_idx(Context<E> &ctx) const {
return (aux_idx == -1) ? -1 : ctx.symbol_aux[aux_idx].tlsgd_idx;
}
i32 get_tlsdesc_idx(Context<E> &ctx) const {
return (aux_idx == -1) ? -1 : ctx.symbol_aux[aux_idx].tlsdesc_idx;
}
i32 get_plt_idx(Context<E> &ctx) const {
return (aux_idx == -1) ? -1 : ctx.symbol_aux[aux_idx].plt_idx;
}
i32 get_pltgot_idx(Context<E> &ctx) const {
return (aux_idx == -1) ? -1 : ctx.symbol_aux[aux_idx].pltgot_idx;
}
i32 get_dynsym_idx(Context<E> &ctx) const {
return (aux_idx == -1) ? -1 : ctx.symbol_aux[aux_idx].dynsym_idx;
}
bool has_plt(Context<E> &ctx) const {
return get_plt_idx(ctx) != -1 || get_pltgot_idx(ctx) != -1;
}
bool has_got(Context<E> &ctx) const {
return get_got_idx(ctx) != -1;
}
bool is_alive() const {
if (SectionFragment<E> *frag = get_frag())
return frag->is_alive;
if (input_section)
return input_section->is_alive;
return true;
}
bool is_absolute(Context<E> &ctx) const {
if (file == ctx.internal_obj)
return false;
if (file->is_dso)
return esym().is_abs();
if (is_imported)
return false;
if (get_frag())
return false;
return input_section == nullptr;
}
bool is_relative(Context<E> &ctx) const {
return !is_absolute(ctx);
}
bool is_undef() const {
return esym().is_undef() && esym().st_bind != STB_WEAK;
}
bool is_undef_weak() const {
return esym().is_undef() && esym().st_bind == STB_WEAK;
}
u32 get_type() const {
if (esym().st_type == STT_GNU_IFUNC && file->is_dso)
return STT_FUNC;
return esym().st_type;
}
std::string_view get_version() const {
if (file->is_dso)
return ((SharedFile<E> *)file)->version_strings[ver_idx];
return "";
}
std::string_view get_demangled_name() const;
const ElfSym<E> &esym() const {
if (file->is_dso)
return *((SharedFile<E> *)file)->elf_syms[sym_idx];
return ((ObjectFile<E> *)file)->elf_syms[sym_idx];
}
SectionFragment<E> *get_frag() const {
if (!file || file->is_dso)
return nullptr;
return ((ObjectFile<E> *)file)->sym_fragments[sym_idx].frag;
}
std::string_view name() const {
return {nameptr, (size_t)namelen};
}
// A symbol is owned by a file. If two or more files define the
// same symbol, the one with the strongest definition owns the symbol.
// If `file` is null, the symbol is equivalent to nonexistent.
InputFile<E> *file = nullptr;
InputSection<E> *input_section = nullptr;
const char *nameptr = nullptr;
u64 value = -1;
// Index into the symbol table of the owner file.
i32 sym_idx = -1;
i32 namelen = 0;
i32 aux_idx = -1;
u16 shndx = 0;
u16 ver_idx = 0;
// `flags` has NEEDS_ flags.
std::atomic_uint8_t flags = 0;
tbb::spin_mutex mu;
std::atomic_uint8_t visibility = STV_DEFAULT;
u8 is_lazy : 1 = false;
u8 is_weak : 1 = false;
u8 write_to_symtab : 1 = false;
u8 traced : 1 = false;
u8 wrap : 1 = false;
u8 has_copyrel : 1 = false;
u8 copyrel_readonly : 1 = false;
// If a symbol can be interposed at runtime, `is_imported` is true.
// If a symbol is a dynamic symbol and can be used by other ELF
// module at runtime, `is_exported` is true.
//
// Note that both can be true at the same time. Such symbol
// represents a function or data exported from this ELF module
// which can be interposed by other definition at runtime.
// That is the usual exported symbols when creating a DSO.
// In other words, a dynamic symbol is exported by a DSO and
// imported by itself.
//
// If is_imported is true and is_exported is false, it is a dynamic
// symbol imported from other DSO.
//
// If is_imported is false and is_exported is true, there are two
// possible cases. If we are creating an executable, we know that
// exported symbols cannot be interposed by any DSO (because the
// dynamic loader searches a dynamic symbol from an exectuable
// before examining any DSOs), so any exported symbol is export-only.
// If we are creating a DSO, export-only symbols represent a
// protected symbol (i.e. a symbol whose visibility is STV_PROTECTED).
u8 is_imported : 1 = false;
u8 is_exported : 1 = false;
};
//
// Inline objects and functions
//
template <typename E>
inline std::ostream &
operator<<(std::ostream &out, const InputSection<E> &isec) {
out << isec.file << ":(" << isec.name() << ")";
return out;
}
inline u64 align_to(u64 val, u64 align) {
if (align == 0)
return val;
assert(__builtin_popcount(align) == 1);
return (val + align - 1) & ~(align - 1);
}
inline u64 next_power_of_two(u64 val) {
assert(val >> 63 == 0);
if (val == 0 || val == 1)
return 1;
return (u64)1 << (64 - __builtin_clzl(val - 1));
}
template <typename E>
inline u64 SectionFragment<E>::get_addr(Context<E> &ctx) const {
return output_section.shdr.sh_addr + offset;
}
template <typename E>
inline void InputSection<E>::kill() {
if (is_alive.exchange(false)) {
is_alive = false;
for (FdeRecord<E> &fde : get_fdes())
fde.is_alive = false;
}
}
template <typename E>
inline u64 InputSection<E>::get_addr() const {
return output_section->shdr.sh_addr + offset;
}
template <typename E>
inline i64 InputSection<E>::get_priority() const {
return ((i64)file.priority << 32) | section_idx;
}
template <>
inline i64 InputSection<X86_64>::get_addend(const ElfRel<X86_64> &rel) const {
return rel.r_addend;
}
template <>
inline i64 InputSection<I386>::get_addend(const ElfRel<I386> &rel) const {
u8 *buf = (u8 *)contents.data();
return *(i32 *)(buf + rel.r_offset);
}
template <typename E>
inline std::span<ElfRel<E>> InputSection<E>::get_rels(Context<E> &ctx) const {
if (relsec_idx == -1)
return {};
return file.template get_data<ElfRel<E>>(ctx, file.elf_sections[relsec_idx]);
}
template <typename E>
inline std::span<FdeRecord<E>> InputSection<E>::get_fdes() const {
std::span<FdeRecord<E>> span(file.fdes);
return span.subspan(fde_begin, fde_end - fde_begin);
}
template <typename E>
inline std::string_view
InputFile<E>::get_string(Context<E> &ctx, const ElfShdr<E> &shdr) {
u8 *begin = mb->data(ctx) + shdr.sh_offset;
u8 *end = begin + shdr.sh_size;
if (mb->data(ctx) + mb->size() < end)
Fatal(ctx) << *this << ": shdr corrupted";
return {(char *)begin, (char *)end};
}
template <typename E>
inline std::string_view InputFile<E>::get_string(Context<E> &ctx, i64 idx) {
assert(idx < elf_sections.size());
if (elf_sections.size() <= idx)
Fatal(ctx) << *this << ": invalid section index: " << idx;
return this->get_string(ctx, elf_sections[idx]);
}
template <typename E>
inline i64 ObjectFile<E>::get_shndx(const ElfSym<E> &esym) {
assert(&elf_syms[0] <= &esym);
assert(&esym < &elf_syms[elf_syms.size()]);
if (esym.st_shndx == SHN_XINDEX)
return symtab_shndx_sec[&esym - &elf_syms[0]];
return esym.st_shndx;
}
template <typename E>
inline InputSection<E> *ObjectFile<E>::get_section(const ElfSym<E> &esym) {
return sections[get_shndx(esym)].get();
}
template <typename E>
std::span<Symbol<E> *> ObjectFile<E>::get_global_syms() {
return std::span<Symbol<E> *>(this->symbols).subspan(first_global);
}
inline u32 elf_hash(std::string_view name) {
u32 h = 0;
for (u8 c : name) {
h = (h << 4) + c;
u32 g = h & 0xf0000000;
if (g != 0)
h ^= g >> 24;
h &= ~g;
}
return h;
}
inline u32 djb_hash(std::string_view name) {
u32 h = 5381;
for (u8 c : name)
h = (h << 5) + h + c;
return h;
}
inline void write_string(u8 *buf, std::string_view str) {
memcpy(buf, str.data(), str.size());
buf[str.size()] = '\0';
}
template <typename T>
inline void write_vector(u8 *buf, const std::vector<T> &vec) {
memcpy(buf, vec.data(), vec.size() * sizeof(T));
}
template <typename T, typename U>
inline void append(std::vector<T> &vec1, std::vector<U> vec2) {
vec1.insert(vec1.end(), vec2.begin(), vec2.end());
}
template <typename T>
inline std::vector<T> flatten(std::vector<std::vector<T>> &vec) {
std::vector<T> ret;
for (std::vector<T> &v : vec)
append(ret, v);
return ret;
}
template <typename T, typename U>
inline void erase(std::vector<T> &vec, U pred) {
vec.erase(std::remove_if(vec.begin(), vec.end(), pred), vec.end());
}
template <typename T, typename U>
inline void sort(T &vec, U less) {
std::stable_sort(vec.begin(), vec.end(), less);
}
inline u64 read64be(u8 *buf) {
return ((u64)buf[0] << 56) | ((u64)buf[1] << 48) |
((u64)buf[2] << 40) | ((u64)buf[3] << 32) |
((u64)buf[4] << 24) | ((u64)buf[5] << 16) |
((u64)buf[6] << 8) | (u64)buf[7];
}
inline void write32be(u8 *buf, u32 val) {
buf[0] = val >> 24;
buf[1] = val >> 16;
buf[2] = val >> 8;
buf[3] = val;
}