1
1
mirror of https://github.com/rui314/mold.git synced 2024-09-22 02:20:51 +03:00
mold/output_chunks.cc
2021-07-16 15:43:37 +09:00

1848 lines
56 KiB
C++

#include "mold.h"
#include <openssl/rand.h>
#include <openssl/sha.h>
#include <shared_mutex>
#include <sys/mman.h>
#include <tbb/parallel_for_each.h>
#include <tbb/parallel_sort.h>
template <typename E>
void OutputChunk<E>::write_to(Context<E> &ctx, u8 *buf) {
Fatal(ctx) << name << ": write_to is called on an invalid section";
}
template <typename E>
u64 get_entry_addr(Context<E> &ctx) {
if (!ctx.arg.entry.empty())
if (Symbol<E> *sym = Symbol<E>::intern(ctx, ctx.arg.entry))
if (sym->file)
return sym->get_addr(ctx);
for (std::unique_ptr<OutputSection<E>> &osec : ctx.output_sections)
if (osec->name == ".text")
return osec->shdr.sh_addr;
return 0;
}
template <typename E>
void OutputEhdr<E>::copy_buf(Context<E> &ctx) {
ElfEhdr<E> &hdr = *(ElfEhdr<E> *)(ctx.buf + this->shdr.sh_offset);
memset(&hdr, 0, sizeof(hdr));
memcpy(&hdr.e_ident, "\177ELF", 4);
hdr.e_ident[EI_CLASS] = (E::wordsize == 8) ? ELFCLASS64 : ELFCLASS32;
hdr.e_ident[EI_DATA] = E::is_le ? ELFDATA2LSB : ELFDATA2MSB;
hdr.e_ident[EI_VERSION] = EV_CURRENT;
hdr.e_type = ctx.arg.pic ? ET_DYN : ET_EXEC;
hdr.e_machine = E::e_machine;
hdr.e_version = EV_CURRENT;
hdr.e_entry = get_entry_addr(ctx);
hdr.e_phoff = ctx.phdr->shdr.sh_offset;
hdr.e_shoff = ctx.shdr->shdr.sh_offset;
hdr.e_ehsize = sizeof(ElfEhdr<E>);
hdr.e_phentsize = sizeof(ElfPhdr<E>);
hdr.e_phnum = ctx.phdr->shdr.sh_size / sizeof(ElfPhdr<E>);
hdr.e_shentsize = sizeof(ElfShdr<E>);
hdr.e_shnum = ctx.shdr->shdr.sh_size / sizeof(ElfShdr<E>);
hdr.e_shstrndx = ctx.shstrtab->shndx;
}
template <typename E>
void OutputShdr<E>::update_shdr(Context<E> &ctx) {
i64 n = 0;
for (OutputChunk<E> *chunk : ctx.chunks)
if (chunk->shndx)
n = chunk->shndx;
this->shdr.sh_size = (n + 1) * sizeof(ElfShdr<E>);
}
template <typename E>
void OutputShdr<E>::copy_buf(Context<E> &ctx) {
ElfShdr<E> *hdr = (ElfShdr<E> *)(ctx.buf + this->shdr.sh_offset);
hdr[0] = {};
for (OutputChunk<E> *chunk : ctx.chunks)
if (chunk->shndx)
hdr[chunk->shndx] = chunk->shdr;
}
template <typename E>
static i64 to_phdr_flags(OutputChunk<E> *chunk) {
i64 ret = PF_R;
if (chunk->shdr.sh_flags & SHF_WRITE)
ret |= PF_W;
if (chunk->shdr.sh_flags & SHF_EXECINSTR)
ret |= PF_X;
return ret;
}
// PT_GNU_RELRO segment is a security mechanism to make more pages
// read-only than we could have done without it.
//
// Traditionally, sections are either read-only or read-write. If a
// section contains dynamic relocations, it must have been put into a
// read-write segment so that the program loader can mutate its
// contents in memory, even if no one will write to it at runtime.
//
// RELRO segment allows us to make such pages writable only when a
// program is being loaded. After that, the page becomes read-only.
//
// Some sections, such as .init, .fini, .got, .dynamic, contain
// dynamic relocations but doesn't have to be writable at runtime,
// so they are put into a RELRO segment.
template <typename E>
bool is_relro(Context<E> &ctx, OutputChunk<E> *chunk) {
u64 flags = chunk->shdr.sh_flags;
u64 type = chunk->shdr.sh_type;
if (flags & SHF_WRITE)
if ((flags & SHF_TLS) || type == SHT_INIT_ARRAY ||
type == SHT_FINI_ARRAY || type == SHT_PREINIT_ARRAY ||
chunk == ctx.got.get() || chunk == ctx.dynamic.get() ||
chunk->name.ends_with(".rel.ro"))
return true;
return false;
}
template <typename E>
std::vector<ElfPhdr<E>> create_phdr(Context<E> &ctx) {
std::vector<ElfPhdr<E>> vec;
auto define = [&](u64 type, u64 flags, i64 min_align, auto &chunk) {
vec.push_back({});
ElfPhdr<E> &phdr = vec.back();
phdr.p_type = type;
phdr.p_flags = flags;
phdr.p_align = std::max<u64>(min_align, chunk->shdr.sh_addralign);
phdr.p_offset = chunk->shdr.sh_offset;
phdr.p_filesz =
(chunk->shdr.sh_type == SHT_NOBITS) ? 0 : chunk->shdr.sh_size;
phdr.p_vaddr = chunk->shdr.sh_addr;
phdr.p_paddr = chunk->shdr.sh_addr;
phdr.p_memsz = chunk->shdr.sh_size;
};
auto append = [&](OutputChunk<E> *chunk) {
ElfPhdr<E> &phdr = vec.back();
phdr.p_align = std::max<u64>(phdr.p_align, chunk->shdr.sh_addralign);
phdr.p_filesz = (chunk->shdr.sh_type == SHT_NOBITS)
? chunk->shdr.sh_offset - phdr.p_offset
: chunk->shdr.sh_offset + chunk->shdr.sh_size - phdr.p_offset;
phdr.p_memsz = chunk->shdr.sh_addr + chunk->shdr.sh_size - phdr.p_vaddr;
};
auto is_bss = [](OutputChunk<E> *chunk) {
return chunk->shdr.sh_type == SHT_NOBITS &&
!(chunk->shdr.sh_flags & SHF_TLS);
};
// Create a PT_PHDR for the program header itself.
define(PT_PHDR, PF_R, E::wordsize, ctx.phdr);
// Create a PT_INTERP.
if (ctx.interp)
define(PT_INTERP, PF_R, 1, ctx.interp);
// Create a PT_NOTE for each group of SHF_NOTE sections with the same
// alignment requirement.
for (i64 i = 0, end = ctx.chunks.size(); i < end;) {
OutputChunk<E> *first = ctx.chunks[i++];
if (first->shdr.sh_type != SHT_NOTE)
continue;
i64 flags = to_phdr_flags(first);
i64 alignment = first->shdr.sh_addralign;
define(PT_NOTE, flags, alignment, first);
while (i < end && ctx.chunks[i]->shdr.sh_type == SHT_NOTE &&
to_phdr_flags(ctx.chunks[i]) == flags &&
ctx.chunks[i]->shdr.sh_addralign == alignment)
append(ctx.chunks[i++]);
}
// Create PT_LOAD segments.
for (OutputChunk<E> *chunk : ctx.chunks)
chunk->new_page = false;
for (i64 i = 0, end = ctx.chunks.size(); i < end;) {
OutputChunk<E> *first = ctx.chunks[i++];
if (!(first->shdr.sh_flags & SHF_ALLOC))
break;
i64 flags = to_phdr_flags(first);
define(PT_LOAD, flags, COMMON_PAGE_SIZE, first);
first->new_page = true;
if (!is_bss(first))
while (i < end && !is_bss(ctx.chunks[i]) &&
to_phdr_flags(ctx.chunks[i]) == flags)
append(ctx.chunks[i++]);
while (i < end && is_bss(ctx.chunks[i]) &&
to_phdr_flags(ctx.chunks[i]) == flags)
append(ctx.chunks[i++]);
}
// Create a PT_TLS.
for (i64 i = 0; i < ctx.chunks.size(); i++) {
if (!(ctx.chunks[i]->shdr.sh_flags & SHF_TLS))
continue;
define(PT_TLS, to_phdr_flags(ctx.chunks[i]), 1, ctx.chunks[i]);
i++;
while (i < ctx.chunks.size() && (ctx.chunks[i]->shdr.sh_flags & SHF_TLS))
append(ctx.chunks[i++]);
}
// Add PT_DYNAMIC
if (ctx.dynamic->shdr.sh_size)
define(PT_DYNAMIC, PF_R | PF_W, 1, ctx.dynamic);
// Add PT_GNU_EH_FRAME
if (ctx.eh_frame_hdr)
define(PT_GNU_EH_FRAME, PF_R, 1, ctx.eh_frame_hdr);
// Add PT_GNU_STACK, which is a marker segment that doesn't really
// contain any segments. It controls executable bit of stack area.
ElfPhdr<E> phdr = {};
phdr.p_type = PT_GNU_STACK,
phdr.p_flags = ctx.arg.z_execstack ? (PF_R | PF_W | PF_X) : (PF_R | PF_W),
vec.push_back(phdr);
// Create a PT_GNU_RELRO.
if (ctx.arg.z_relro) {
for (i64 i = 0; i < ctx.chunks.size(); i++) {
if (!is_relro(ctx, ctx.chunks[i]))
continue;
define(PT_GNU_RELRO, PF_R, 1, ctx.chunks[i]);
ctx.chunks[i]->new_page = true;
i++;
while (i < ctx.chunks.size() && is_relro(ctx, ctx.chunks[i]))
append(ctx.chunks[i++]);
if (i < ctx.chunks.size())
ctx.chunks[i]->new_page = true;
}
}
return vec;
}
template <typename E>
void OutputPhdr<E>::update_shdr(Context<E> &ctx) {
this->shdr.sh_size = create_phdr(ctx).size() * sizeof(ElfPhdr<E>);
}
template <typename E>
void OutputPhdr<E>::copy_buf(Context<E> &ctx) {
write_vector(ctx.buf + this->shdr.sh_offset, create_phdr(ctx));
}
template <typename E>
void InterpSection<E>::update_shdr(Context<E> &ctx) {
this->shdr.sh_size = ctx.arg.dynamic_linker.size() + 1;
}
template <typename E>
void InterpSection<E>::copy_buf(Context<E> &ctx) {
write_string(ctx.buf + this->shdr.sh_offset, ctx.arg.dynamic_linker);
}
template <typename E>
void RelDynSection<E>::update_shdr(Context<E> &ctx) {
this->shdr.sh_link = ctx.dynsym->shndx;
// .rel.dyn contents are filled by GotSection::copy_buf(Context<E> &ctx) and
// InputSection::apply_reloc_alloc().
i64 offset = ctx.got->get_reldyn_size(ctx);
offset += ctx.dynbss->symbols.size() * sizeof(ElfRel<E>);
offset += ctx.dynbss_relro->symbols.size() * sizeof(ElfRel<E>);
for (ObjectFile<E> *file : ctx.objs) {
file->reldyn_offset = offset;
offset += file->num_dynrel * sizeof(ElfRel<E>);
}
this->shdr.sh_size = offset;
}
template <typename E>
static ElfRel<E> reloc(u64 offset, u32 type, u32 sym, i64 addend = 0);
template <>
ElfRel<X86_64> reloc<X86_64>(u64 offset, u32 type, u32 sym, i64 addend) {
return {offset, type, sym, addend};
}
template <>
ElfRel<I386> reloc<I386>(u64 offset, u32 type, u32 sym, i64 addend) {
return {(u32)offset, type, sym};
}
template <>
ElfRel<AARCH64> reloc<AARCH64>(u64 offset, u32 type, u32 sym, i64 addend) {
return {offset, type, sym, addend};
}
template <typename E>
void RelDynSection<E>::copy_buf(Context<E> &ctx) {
ElfRel<E> *rel =
(ElfRel<E> *)(ctx.buf + this->shdr.sh_offset + ctx.got->get_reldyn_size(ctx));
for (Symbol<E> *sym : ctx.dynbss->symbols)
*rel++ = reloc<E>(sym->get_addr(ctx), E::R_COPY, sym->get_dynsym_idx(ctx));
for (Symbol<E> *sym : ctx.dynbss_relro->symbols)
*rel++ = reloc<E>(sym->get_addr(ctx), E::R_COPY, sym->get_dynsym_idx(ctx));
}
template <typename E>
void RelDynSection<E>::sort(Context<E> &ctx) {
Timer t(ctx, "sort_dynamic_relocs");
ElfRel<E> *begin = (ElfRel<E> *)(ctx.buf + this->shdr.sh_offset);
ElfRel<E> *end = (ElfRel<E> *)((u8 *)begin + this->shdr.sh_size);
tbb::parallel_sort(begin, end, [](const ElfRel<E> &a, const ElfRel<E> &b) {
return std::tuple(a.r_type != E::R_RELATIVE, a.r_sym, a.r_offset) <
std::tuple(b.r_type != E::R_RELATIVE, b.r_sym, b.r_offset);
});
// Dynamic section contains the number of R_RELATIVE dynamic relocations,
// so rewrite it if necessary.
if (ctx.dynamic->shdr.sh_size) {
auto it = std::find_if(begin, end, [](const ElfRel<E> &rel) {
return rel.r_type != E::R_RELATIVE;
});
this->relcount = it - begin;
ctx.dynamic->copy_buf(ctx);
}
}
template <typename E>
void StrtabSection<E>::update_shdr(Context<E> &ctx) {
this->shdr.sh_size = 1;
for (ObjectFile<E> *file : ctx.objs) {
file->strtab_offset = this->shdr.sh_size;
this->shdr.sh_size += file->strtab_size;
}
}
template <typename E>
void ShstrtabSection<E>::update_shdr(Context<E> &ctx) {
std::unordered_map<std::string_view, i64> map;
i64 offset = 1;
for (OutputChunk<E> *chunk : ctx.chunks)
if (!chunk->name.empty() && map.insert({chunk->name, offset}).second)
offset += chunk->name.size() + 1;
this->shdr.sh_size = offset;
for (OutputChunk<E> *chunk : ctx.chunks)
if (!chunk->name.empty())
chunk->shdr.sh_name = map[chunk->name];
}
template <typename E>
void ShstrtabSection<E>::copy_buf(Context<E> &ctx) {
u8 *base = ctx.buf + this->shdr.sh_offset;
base[0] = '\0';
for (OutputChunk<E> *chunk : ctx.chunks)
if (!chunk->name.empty())
write_string(base + chunk->shdr.sh_name, chunk->name);
}
template <typename E>
i64 DynstrSection<E>::add_string(std::string_view str) {
auto [it, inserted] = strings.insert({str, this->shdr.sh_size});
if (inserted)
this->shdr.sh_size += str.size() + 1;
return it->second;
}
template <typename E>
i64 DynstrSection<E>::find_string(std::string_view str) {
auto it = strings.find(str);
ASSERT(it != strings.end());
return it->second;
}
template <typename E>
void DynstrSection<E>::copy_buf(Context<E> &ctx) {
u8 *base = ctx.buf + this->shdr.sh_offset;
base[0] = '\0';
for (std::pair<std::string_view, i64> pair : strings)
write_string(base + pair.second, pair.first);
if (!ctx.dynsym->symbols.empty()) {
i64 offset = dynsym_offset;
for (Symbol<E> *sym :
std::span<Symbol<E> *>(ctx.dynsym->symbols).subspan(1)) {
write_string(base + offset, sym->name());
offset += sym->name().size() + 1;
}
}
}
template <typename E>
void SymtabSection<E>::update_shdr(Context<E> &ctx) {
this->shdr.sh_size = sizeof(ElfSym<E>);
for (ObjectFile<E> *file : ctx.objs) {
file->local_symtab_offset = this->shdr.sh_size;
this->shdr.sh_size += file->num_local_symtab * sizeof(ElfSym<E>);
}
for (ObjectFile<E> *file : ctx.objs) {
file->global_symtab_offset = this->shdr.sh_size;
this->shdr.sh_size += file->num_global_symtab * sizeof(ElfSym<E>);
}
this->shdr.sh_info = ctx.objs[0]->global_symtab_offset / sizeof(ElfSym<E>);
this->shdr.sh_link = ctx.strtab->shndx;
if (this->shdr.sh_size == sizeof(ElfSym<E>))
this->shdr.sh_size = 0;
static Counter counter("symtab");
counter += this->shdr.sh_size / sizeof(ElfSym<E>);
}
template <typename E>
void SymtabSection<E>::copy_buf(Context<E> &ctx) {
memset(ctx.buf + this->shdr.sh_offset, 0, sizeof(ElfSym<E>));
ctx.buf[ctx.strtab->shdr.sh_offset] = '\0';
tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
file->write_symtab(ctx);
});
}
template <typename E>
static bool has_init_array(Context<E> &ctx) {
for (OutputChunk<E> *chunk : ctx.chunks)
if (chunk->shdr.sh_type == SHT_INIT_ARRAY)
return true;
return false;
}
template <typename E>
static bool has_fini_array(Context<E> &ctx) {
for (OutputChunk<E> *chunk : ctx.chunks)
if (chunk->shdr.sh_type == SHT_FINI_ARRAY)
return true;
return false;
}
template <typename E>
static std::vector<typename E::WordTy> create_dynamic_section(Context<E> &ctx) {
std::vector<typename E::WordTy> vec;
auto define = [&](u64 tag, u64 val) {
vec.push_back(tag);
vec.push_back(val);
};
for (SharedFile<E> *file : ctx.dsos)
define(DT_NEEDED, ctx.dynstr->find_string(file->soname));
if (!ctx.arg.rpaths.empty())
define(DT_RUNPATH, ctx.dynstr->find_string(ctx.arg.rpaths));
if (!ctx.arg.soname.empty())
define(DT_SONAME, ctx.dynstr->find_string(ctx.arg.soname));
for (std::string_view str : ctx.arg.auxiliary)
define(DT_AUXILIARY, ctx.dynstr->find_string(str));
for (std::string_view str : ctx.arg.filter)
define(DT_FILTER, ctx.dynstr->find_string(str));
if (ctx.reldyn->shdr.sh_size) {
define(E::is_rel ? DT_REL : DT_RELA, ctx.reldyn->shdr.sh_addr);
define(E::is_rel ? DT_RELSZ : DT_RELASZ, ctx.reldyn->shdr.sh_size);
define(E::is_rel ? DT_RELENT : DT_RELAENT, sizeof(ElfRel<E>));
}
if (ctx.relplt->shdr.sh_size) {
define(DT_JMPREL, ctx.relplt->shdr.sh_addr);
define(DT_PLTRELSZ, ctx.relplt->shdr.sh_size);
define(DT_PLTREL, E::is_rel ? DT_REL : DT_RELA);
}
if (ctx.gotplt->shdr.sh_size)
define(DT_PLTGOT, ctx.gotplt->shdr.sh_addr);
if (ctx.dynsym->shdr.sh_size) {
define(DT_SYMTAB, ctx.dynsym->shdr.sh_addr);
define(DT_SYMENT, sizeof(ElfSym<E>));
}
if (ctx.dynstr->shdr.sh_size) {
define(DT_STRTAB, ctx.dynstr->shdr.sh_addr);
define(DT_STRSZ, ctx.dynstr->shdr.sh_size);
}
if (has_init_array(ctx)) {
define(DT_INIT_ARRAY, ctx.__init_array_start->value);
define(DT_INIT_ARRAYSZ,
ctx.__init_array_end->value - ctx.__init_array_start->value);
}
if (has_fini_array(ctx)) {
define(DT_FINI_ARRAY, ctx.__fini_array_start->value);
define(DT_FINI_ARRAYSZ,
ctx.__fini_array_end->value - ctx.__fini_array_start->value);
}
if (ctx.versym->shdr.sh_size)
define(DT_VERSYM, ctx.versym->shdr.sh_addr);
if (ctx.verneed->shdr.sh_size) {
define(DT_VERNEED, ctx.verneed->shdr.sh_addr);
define(DT_VERNEEDNUM, ctx.verneed->shdr.sh_info);
}
if (ctx.verdef) {
define(DT_VERDEF, ctx.verdef->shdr.sh_addr);
define(DT_VERDEFNUM, ctx.verdef->shdr.sh_info);
}
if (Symbol<E> *sym = Symbol<E>::intern(ctx, ctx.arg.init); sym->file)
define(DT_INIT, sym->get_addr(ctx));
if (Symbol<E> *sym = Symbol<E>::intern(ctx, ctx.arg.fini); sym->file)
define(DT_FINI, sym->get_addr(ctx));
if (ctx.hash)
define(DT_HASH, ctx.hash->shdr.sh_addr);
if (ctx.gnu_hash)
define(DT_GNU_HASH, ctx.gnu_hash->shdr.sh_addr);
if (ctx.reldyn)
define(E::is_rel ? DT_RELCOUNT : DT_RELACOUNT, ctx.reldyn->relcount);
if (ctx.has_textrel)
define(DT_TEXTREL, 0);
i64 flags = 0;
i64 flags1 = 0;
if (ctx.arg.pie)
flags1 |= DF_1_PIE;
if (ctx.arg.z_now) {
flags |= DF_BIND_NOW;
flags1 |= DF_1_NOW;
}
if (ctx.arg.z_origin) {
flags |= DF_ORIGIN;
flags1 |= DF_1_ORIGIN;
}
if (!ctx.arg.z_dlopen)
flags1 |= DF_1_NOOPEN;
if (!ctx.arg.z_delete)
flags1 |= DF_1_NODELETE;
if (!ctx.arg.z_dump)
flags1 |= DF_1_NODUMP;
if (ctx.arg.z_initfirst)
flags1 |= DF_1_INITFIRST;
if (ctx.arg.z_interpose)
flags1 |= DF_1_INTERPOSE;
if (ctx.has_gottp_rel)
flags |= DF_STATIC_TLS;
if (ctx.has_textrel)
flags |= DF_TEXTREL;
if (flags)
define(DT_FLAGS, flags);
if (flags1)
define(DT_FLAGS_1, flags1);
define(DT_DEBUG, 0);
define(DT_NULL, 0);
for (i64 i = 0; i < ctx.arg.spare_dynamic_tags; i++)
define(DT_NULL, 0);
return vec;
}
template <typename E>
void DynamicSection<E>::update_shdr(Context<E> &ctx) {
if (ctx.arg.is_static)
return;
if (!ctx.arg.pic && ctx.dsos.empty())
return;
this->shdr.sh_size = create_dynamic_section(ctx).size() * E::wordsize;
this->shdr.sh_link = ctx.dynstr->shndx;
}
template <typename E>
void DynamicSection<E>::copy_buf(Context<E> &ctx) {
std::vector<typename E::WordTy> contents = create_dynamic_section(ctx);
ASSERT(this->shdr.sh_size == contents.size() * sizeof(contents[0]));
write_vector(ctx.buf + this->shdr.sh_offset, contents);
}
template <typename E>
static std::string_view get_output_name(Context<E> &ctx, std::string_view name) {
if (ctx.arg.unique &&
std::regex_match(name.begin(), name.end(), *ctx.arg.unique))
return name;
if (ctx.arg.z_keep_text_section_prefix) {
static std::string_view text_prefixes[] = {
".text.hot.", ".text.unknown.", ".text.unlikely.", ".text.startup.",
".text.exit."
};
for (std::string_view prefix : text_prefixes) {
std::string_view stem = prefix.substr(0, prefix.size() - 1);
if (name == stem || name.starts_with(prefix))
return stem;
}
}
static std::string_view prefixes[] = {
".text.", ".data.rel.ro.", ".data.", ".rodata.", ".bss.rel.ro.", ".bss.",
".init_array.", ".fini_array.", ".tbss.", ".tdata.", ".gcc_except_table.",
};
for (std::string_view prefix : prefixes) {
std::string_view stem = prefix.substr(0, prefix.size() - 1);
if (name == stem || name.starts_with(prefix))
return stem;
}
if (name == ".zdebug_aranges")
return ".debug_aranges";
if (name == ".zdebug_frame")
return ".debug_frame";
if (name == ".zdebug_info")
return ".debug_info";
if (name == ".zdebug_line")
return ".debug_line";
if (name == ".zdebug_loc")
return ".debug_loc";
if (name == ".zdebug_pubnames")
return ".debug_pubnames";
if (name == ".zdebug_pubtypes")
return ".debug_pubtypes";
if (name == ".zdebug_ranges")
return ".debug_ranges";
if (name == ".zdebug_str")
return ".debug_str";
if (name == ".zdebug_types")
return ".debug_types";
return name;
}
template <typename E>
OutputSection<E>::OutputSection(std::string_view name, u32 type,
u64 flags, u32 idx)
: OutputChunk<E>(OutputChunk<E>::REGULAR), idx(idx) {
this->name = name;
this->shdr.sh_type = type;
this->shdr.sh_flags = flags;
}
static u64 canonicalize_type(std::string_view name, u64 type) {
if (type == SHT_PROGBITS && name == ".init_array")
return SHT_INIT_ARRAY;
if (type == SHT_PROGBITS && name == ".fini_array")
return SHT_FINI_ARRAY;
if (type == SHT_X86_64_UNWIND)
return SHT_PROGBITS;
return type;
}
template <typename E>
OutputSection<E> *
OutputSection<E>::get_instance(Context<E> &ctx, std::string_view name,
u64 type, u64 flags) {
name = get_output_name(ctx, name);
type = canonicalize_type(name, type);
flags = flags & ~(u64)SHF_GROUP & ~(u64)SHF_COMPRESSED;
auto find = [&]() -> OutputSection<E> * {
for (std::unique_ptr<OutputSection<E>> &osec : ctx.output_sections)
if (name == osec->name && type == osec->shdr.sh_type &&
flags == osec->shdr.sh_flags)
return osec.get();
return nullptr;
};
static std::shared_mutex mu;
// Search for an exiting output section.
{
std::shared_lock lock(mu);
if (OutputSection<E> *osec = find())
return osec;
}
// Create a new output section.
std::unique_lock lock(mu);
if (OutputSection<E> *osec = find())
return osec;
OutputSection<E> *osec = new OutputSection(name, type, flags,
ctx.output_sections.size());
ctx.output_sections.push_back(std::unique_ptr<OutputSection<E>>(osec));
return osec;
}
template <typename E>
void OutputSection<E>::copy_buf(Context<E> &ctx) {
if (this->shdr.sh_type != SHT_NOBITS)
write_to(ctx, ctx.buf + this->shdr.sh_offset);
}
template <typename E>
void OutputSection<E>::write_to(Context<E> &ctx, u8 *buf) {
tbb::parallel_for((i64)0, (i64)members.size(), [&](i64 i) {
// Copy section contents to an output file
InputSection<E> &isec = *members[i];
isec.write_to(ctx, buf + isec.offset);
// Zero-clear trailing padding
u64 this_end = isec.offset + isec.shdr.sh_size;
u64 next_start = (i == members.size() - 1) ?
this->shdr.sh_size : members[i + 1]->offset;
memset(buf + this_end, 0, next_start - this_end);
});
}
template <typename E>
void GotSection<E>::add_got_symbol(Context<E> &ctx, Symbol<E> *sym) {
sym->set_got_idx(ctx, this->shdr.sh_size / E::wordsize);
this->shdr.sh_size += E::wordsize;
got_syms.push_back(sym);
if (sym->is_imported)
ctx.dynsym->add_symbol(ctx, sym);
}
template <typename E>
void GotSection<E>::add_gottp_symbol(Context<E> &ctx, Symbol<E> *sym) {
sym->set_gottp_idx(ctx, this->shdr.sh_size / E::wordsize);
this->shdr.sh_size += E::wordsize;
gottp_syms.push_back(sym);
if (sym->is_imported)
ctx.dynsym->add_symbol(ctx, sym);
}
template <typename E>
void GotSection<E>::add_tlsgd_symbol(Context<E> &ctx, Symbol<E> *sym) {
sym->set_tlsgd_idx(ctx, this->shdr.sh_size / E::wordsize);
this->shdr.sh_size += E::wordsize * 2;
tlsgd_syms.push_back(sym);
if (sym->esym().st_bind != STB_LOCAL)
ctx.dynsym->add_symbol(ctx, sym);
}
template <typename E>
void GotSection<E>::add_tlsdesc_symbol(Context<E> &ctx, Symbol<E> *sym) {
sym->set_tlsdesc_idx(ctx, this->shdr.sh_size / E::wordsize);
this->shdr.sh_size += E::wordsize * 2;
tlsdesc_syms.push_back(sym);
ctx.dynsym->add_symbol(ctx, sym);
}
template <typename E>
void GotSection<E>::add_tlsld(Context<E> &ctx) {
if (tlsld_idx != -1)
return;
tlsld_idx = this->shdr.sh_size / E::wordsize;
this->shdr.sh_size += E::wordsize * 2;
}
template <typename E>
u64 GotSection<E>::get_tlsld_addr(Context<E> &ctx) const {
ASSERT(tlsld_idx != -1);
return this->shdr.sh_addr + tlsld_idx * E::wordsize;
}
template <typename E>
i64 GotSection<E>::get_reldyn_size(Context<E> &ctx) const {
i64 n = 0;
for (Symbol<E> *sym : got_syms)
if (sym->is_imported || (ctx.arg.pic && sym->is_relative(ctx)) ||
sym->get_type() == STT_GNU_IFUNC)
n++;
n += tlsgd_syms.size();
for (Symbol<E> *sym : tlsgd_syms)
if (sym->get_dynsym_idx(ctx) != -1)
n++;
n += tlsdesc_syms.size();
for (Symbol<E> *sym : gottp_syms)
if (sym->is_imported)
n++;
if (tlsld_idx != -1)
n++;
return n * sizeof(ElfRel<E>);
}
// Fill .got and .rel.dyn.
template <typename E>
void GotSection<E>::copy_buf(Context<E> &ctx) {
typename E::WordTy *buf =
(typename E::WordTy *)(ctx.buf + this->shdr.sh_offset);
memset(buf, 0, this->shdr.sh_size);
ElfRel<E> *rel = (ElfRel<E> *)(ctx.buf + ctx.reldyn->shdr.sh_offset);
for (Symbol<E> *sym : got_syms) {
u64 addr = sym->get_got_addr(ctx);
if (sym->is_imported) {
*rel++ = reloc<E>(addr, E::R_GLOB_DAT, sym->get_dynsym_idx(ctx));
} else if (sym->get_type() == STT_GNU_IFUNC) {
u64 resolver_addr = sym->input_section->get_addr() + sym->value;
*rel++ = reloc<E>(addr, E::R_IRELATIVE, 0, resolver_addr);
if (E::is_rel)
buf[sym->get_got_idx(ctx)] = resolver_addr;
} else {
buf[sym->get_got_idx(ctx)] = sym->get_addr(ctx);
if (ctx.arg.pic && sym->is_relative(ctx))
*rel++ = reloc<E>(addr, E::R_RELATIVE, 0, (i64)sym->get_addr(ctx));
}
}
for (Symbol<E> *sym : tlsgd_syms) {
u64 addr = sym->get_tlsgd_addr(ctx);
i32 dynsym_idx = sym->get_dynsym_idx(ctx);
if (dynsym_idx == -1) {
*rel++ = reloc<E>(addr, E::R_DTPMOD, 0);
buf[sym->get_tlsgd_idx(ctx) + 1] = sym->get_addr(ctx) - ctx.tls_begin;
} else {
*rel++ = reloc<E>(addr, E::R_DTPMOD, dynsym_idx);
*rel++ = reloc<E>(addr + E::wordsize, E::R_DTPOFF, dynsym_idx);
}
}
for (Symbol<E> *sym : tlsdesc_syms)
*rel++ = reloc<E>(sym->get_tlsdesc_addr(ctx), E::R_TLSDESC,
sym->get_dynsym_idx(ctx));
for (Symbol<E> *sym : gottp_syms) {
if (sym->is_imported) {
*rel++ = reloc<E>(sym->get_gottp_addr(ctx), E::R_TPOFF,
sym->get_dynsym_idx(ctx));
} else if (E::e_machine == EM_386 || E::e_machine == EM_X86_64) {
buf[sym->get_gottp_idx(ctx)] = sym->get_addr(ctx) - ctx.tls_end;
} else {
ASSERT(E::e_machine == EM_AARCH64);
buf[sym->get_gottp_idx(ctx)] = sym->get_addr(ctx) - ctx.tls_begin + 16;
}
}
if (tlsld_idx != -1)
*rel++ = reloc<E>(get_tlsld_addr(ctx), E::R_DTPMOD, 0);
}
template <typename E>
void GotPltSection<E>::copy_buf(Context<E> &ctx) {
typename E::WordTy *buf =
(typename E::WordTy *)(ctx.buf + this->shdr.sh_offset);
// The first slot of .got.plt points to _DYNAMIC, as requested by
// the x86-64 psABI. The second and the third slots are reserved by
// the psABI.
buf[0] = ctx.dynamic ? ctx.dynamic->shdr.sh_addr : 0;
buf[1] = 0;
buf[2] = 0;
for (Symbol<E> *sym : ctx.plt->symbols)
buf[sym->get_gotplt_idx(ctx)] = sym->get_plt_addr(ctx) + 6;
}
template <typename E>
void PltSection<E>::add_symbol(Context<E> &ctx, Symbol<E> *sym) {
ASSERT(!sym->has_plt(ctx));
ASSERT(!sym->has_got(ctx));
if (this->shdr.sh_size == 0) {
this->shdr.sh_size = E::plt_hdr_size;
ctx.gotplt->shdr.sh_size = E::wordsize * 3;
}
sym->set_plt_idx(ctx, this->shdr.sh_size / E::plt_size);
this->shdr.sh_size += E::plt_size;
symbols.push_back(sym);
sym->set_gotplt_idx(ctx, ctx.gotplt->shdr.sh_size / E::wordsize);
ctx.gotplt->shdr.sh_size += E::wordsize;
ctx.relplt->shdr.sh_size += sizeof(ElfRel<E>);
ctx.dynsym->add_symbol(ctx, sym);
}
template <typename E>
void PltGotSection<E>::add_symbol(Context<E> &ctx, Symbol<E> *sym) {
ASSERT(!sym->has_plt(ctx));
ASSERT(sym->has_got(ctx));
sym->set_pltgot_idx(ctx, this->shdr.sh_size / E::pltgot_size);
this->shdr.sh_size += E::pltgot_size;
symbols.push_back(sym);
}
template <typename E>
void RelPltSection<E>::update_shdr(Context<E> &ctx) {
this->shdr.sh_link = ctx.dynsym->shndx;
this->shdr.sh_info = ctx.gotplt->shndx;
}
template <typename E>
void RelPltSection<E>::copy_buf(Context<E> &ctx) {
ElfRel<E> *buf = (ElfRel<E> *)(ctx.buf + this->shdr.sh_offset);
i64 relplt_idx = 0;
for (Symbol<E> *sym : ctx.plt->symbols)
buf[relplt_idx++] = reloc<E>(sym->get_gotplt_addr(ctx), E::R_JUMP_SLOT,
sym->get_dynsym_idx(ctx));
}
template <typename E>
void DynsymSection<E>::add_symbol(Context<E> &ctx, Symbol<E> *sym) {
ASSERT(sym->esym().st_bind != STB_LOCAL);
if (sym->get_dynsym_idx(ctx) != -1)
return;
sym->set_dynsym_idx(ctx, -2);
symbols.push_back(sym);
}
template <typename E>
void DynsymSection<E>::finalize(Context<E> &ctx) {
Timer t(ctx, "DynsymSection::finalize");
// If we have .gnu.hash section, we need to sort .dynsym contents by
// symbol hashes.
if (ctx.gnu_hash) {
// We need a stable sort for build reproducibility, but parallel_sort
// isn't stable, so we use this struct to make it stable.
struct T {
Symbol<E> *sym;
u32 hash;
i32 idx;
};
std::vector<T> vec(symbols.size());
ctx.gnu_hash->num_buckets = (vec.size() - 1) / ctx.gnu_hash->LOAD_FACTOR + 1;
ctx.gnu_hash->symoffset = 1;
tbb::parallel_for((i64)1, (i64)vec.size(), [&](i64 i) {
vec[i].sym = symbols[i];
vec[i].hash = djb_hash(symbols[i]->name()) % ctx.gnu_hash->num_buckets;
vec[i].idx = i;
});
tbb::parallel_sort(vec.begin() + 1, vec.end(), [&](const T &a, const T &b) {
return std::tuple(a.hash, a.idx) < std::tuple(b.hash, b.idx);
});
for (i64 i = 1; i < symbols.size(); i++)
symbols[i] = vec[i].sym;
}
ctx.dynstr->dynsym_offset = ctx.dynstr->shdr.sh_size;
for (i64 i = 1; i < symbols.size(); i++) {
symbols[i]->set_dynsym_idx(ctx, i);
ctx.dynstr->shdr.sh_size += symbols[i]->name().size() + 1;
}
}
template <typename E>
void DynsymSection<E>::update_shdr(Context<E> &ctx) {
this->shdr.sh_link = ctx.dynstr->shndx;
this->shdr.sh_size = sizeof(ElfSym<E>) * symbols.size();
}
template <typename E>
void DynsymSection<E>::copy_buf(Context<E> &ctx) {
u8 *base = ctx.buf + this->shdr.sh_offset;
memset(base, 0, sizeof(ElfSym<E>));
i64 name_offset = ctx.dynstr->dynsym_offset;
for (i64 i = 1; i < symbols.size(); i++) {
Symbol<E> &sym = *symbols[i];
ElfSym<E> &esym =
*(ElfSym<E> *)(base + sym.get_dynsym_idx(ctx) * sizeof(ElfSym<E>));
memset(&esym, 0, sizeof(esym));
esym.st_type = sym.esym().st_type;
esym.st_size = sym.esym().st_size;
if (sym.is_weak)
esym.st_bind = STB_WEAK;
else if (sym.file->is_dso)
esym.st_bind = STB_GLOBAL;
else
esym.st_bind = sym.esym().st_bind;
esym.st_name = name_offset;
name_offset += sym.name().size() + 1;
if (sym.has_copyrel) {
esym.st_shndx = sym.copyrel_readonly
? ctx.dynbss_relro->shndx : ctx.dynbss->shndx;
esym.st_value = sym.get_addr(ctx);
} else if (sym.file->is_dso || sym.esym().is_undef()) {
esym.st_shndx = SHN_UNDEF;
esym.st_size = 0;
if (!ctx.arg.pic && sym.has_plt(ctx) && !sym.has_got(ctx)) {
// Emit an address for a canonical PLT
esym.st_value = sym.get_plt_addr(ctx);
}
} else if (!sym.input_section) {
esym.st_shndx = SHN_ABS;
esym.st_value = sym.get_addr(ctx);
} else if (sym.get_type() == STT_TLS) {
esym.st_shndx = sym.input_section->output_section->shndx;
esym.st_value = sym.get_addr(ctx) - ctx.tls_begin;
} else {
esym.st_shndx = sym.input_section->output_section->shndx;
esym.st_value = sym.get_addr(ctx, false);
esym.st_visibility = sym.visibility;
}
}
}
template <typename E>
void HashSection<E>::update_shdr(Context<E> &ctx) {
if (ctx.dynsym->symbols.empty())
return;
i64 header_size = 8;
i64 num_slots = ctx.dynsym->symbols.size();
this->shdr.sh_size = header_size + num_slots * 8;
this->shdr.sh_link = ctx.dynsym->shndx;
}
template <typename E>
void HashSection<E>::copy_buf(Context<E> &ctx) {
u8 *base = ctx.buf + this->shdr.sh_offset;
memset(base, 0, this->shdr.sh_size);
i64 num_slots = ctx.dynsym->symbols.size();
u32 *hdr = (u32 *)base;
u32 *buckets = (u32 *)(base + 8);
u32 *chains = buckets + num_slots;
hdr[0] = hdr[1] = num_slots;
for (i64 i = 1; i < ctx.dynsym->symbols.size(); i++) {
Symbol<E> *sym = ctx.dynsym->symbols[i];
i64 idx = elf_hash(sym->name()) % num_slots;
chains[sym->get_dynsym_idx(ctx)] = buckets[idx];
buckets[idx] = sym->get_dynsym_idx(ctx);
}
}
template <typename E>
void GnuHashSection<E>::update_shdr(Context<E> &ctx) {
if (ctx.dynsym->symbols.empty())
return;
this->shdr.sh_link = ctx.dynsym->shndx;
if (i64 num_symbols = ctx.dynsym->symbols.size() - symoffset) {
// We allocate 12 bits for each symbol in the bloom filter.
i64 num_bits = num_symbols * 12;
num_bloom = next_power_of_two(num_bits / ELFCLASS_BITS);
}
i64 num_symbols = ctx.dynsym->symbols.size() - symoffset;
this->shdr.sh_size = HEADER_SIZE; // Header
this->shdr.sh_size += num_bloom * E::wordsize; // Bloom filter
this->shdr.sh_size += num_buckets * 4; // Hash buckets
this->shdr.sh_size += num_symbols * 4; // Hash values
}
template <typename E>
void GnuHashSection<E>::copy_buf(Context<E> &ctx) {
u8 *base = ctx.buf + this->shdr.sh_offset;
memset(base, 0, this->shdr.sh_size);
*(u32 *)base = num_buckets;
*(u32 *)(base + 4) = symoffset;
*(u32 *)(base + 8) = num_bloom;
*(u32 *)(base + 12) = BLOOM_SHIFT;
std::span<Symbol<E> *> symbols =
std::span<Symbol<E> *>(ctx.dynsym->symbols).subspan(symoffset);
std::vector<u32> hashes(symbols.size());
for (i64 i = 0; i < symbols.size(); i++)
hashes[i] = djb_hash(symbols[i]->name());
// Write a bloom filter
typename E::WordTy *bloom = (typename E::WordTy *)(base + HEADER_SIZE);
for (i64 hash : hashes) {
i64 idx = (hash / ELFCLASS_BITS) % num_bloom;
bloom[idx] |= (u64)1 << (hash % ELFCLASS_BITS);
bloom[idx] |= (u64)1 << ((hash >> BLOOM_SHIFT) % ELFCLASS_BITS);
}
// Write hash bucket indices
u32 *buckets = (u32 *)(bloom + num_bloom);
for (i64 i = 0; i < hashes.size(); i++) {
i64 idx = hashes[i] % num_buckets;
if (!buckets[idx])
buckets[idx] = i + symoffset;
}
// Write a hash table
u32 *table = buckets + num_buckets;
for (i64 i = 0; i < symbols.size(); i++) {
bool is_last = false;
if (i == symbols.size() - 1 ||
(hashes[i] % num_buckets) != (hashes[i + 1] % num_buckets))
is_last = true;
if (is_last)
table[i] = hashes[i] | 1;
else
table[i] = hashes[i] & ~1;
}
}
template <typename E>
MergedSection<E>::MergedSection(std::string_view name, u64 flags, u32 type)
: OutputChunk<E>(this->SYNTHETIC) {
this->name = name;
this->shdr.sh_flags = flags;
this->shdr.sh_type = type;
}
template <typename E>
MergedSection<E> *
MergedSection<E>::get_instance(Context<E> &ctx, std::string_view name,
u64 type, u64 flags) {
name = get_output_name(ctx, name);
flags = flags & ~(u64)SHF_MERGE & ~(u64)SHF_STRINGS;
auto find = [&]() -> MergedSection * {
for (std::unique_ptr<MergedSection<E>> &osec : ctx.merged_sections)
if (std::tuple(name, flags, type) ==
std::tuple(osec->name, osec->shdr.sh_flags, osec->shdr.sh_type))
return osec.get();
return nullptr;
};
// Search for an exiting output section.
static std::shared_mutex mu;
{
std::shared_lock lock(mu);
if (MergedSection *osec = find())
return osec;
}
// Create a new output section.
std::unique_lock lock(mu);
if (MergedSection *osec = find())
return osec;
auto *osec = new MergedSection(name, flags, type);
ctx.merged_sections.push_back(std::unique_ptr<MergedSection>(osec));
return osec;
}
template <typename E>
SectionFragment<E> *
MergedSection<E>::insert(std::string_view data, u64 hash, i64 alignment) {
ASSERT(alignment < UINT16_MAX);
std::call_once(once_flag, [&]() {
// We aim 2/3 occupation ratio
map.resize(estimator.get_cardinality() * 3 / 2);
});
SectionFragment<E> *frag;
bool inserted;
std::tie(frag, inserted) = map.insert(data, hash, SectionFragment(this, data));
ASSERT(frag);
for (u16 cur = frag->alignment; cur < alignment;)
if (frag->alignment.compare_exchange_strong(cur, alignment))
break;
return frag;
}
template <typename E>
void MergedSection<E>::assign_offsets(Context<E> &ctx) {
std::vector<i64> sizes(map.NUM_SHARDS);
std::vector<i64> max_alignments(map.NUM_SHARDS);
shard_offsets.resize(map.NUM_SHARDS + 1);
i64 shard_size = map.nbuckets / map.NUM_SHARDS;
tbb::parallel_for((i64)0, map.NUM_SHARDS, [&](i64 i) {
std::vector<SectionFragment<E> *> fragments;
fragments.reserve(shard_size);
for (i64 j = shard_size * i; j < shard_size * (i + 1); j++)
if (SectionFragment<E> &frag = map.values[j]; frag.is_alive)
fragments.push_back(&frag);
// Sort fragments to make output deterministic.
tbb::parallel_sort(fragments.begin(), fragments.end(),
[](SectionFragment<E> *a, SectionFragment<E> *b) {
if (a->alignment != b->alignment)
return a->alignment < b->alignment;
if (a->data.size() != b->data.size())
return a->data.size() < b->data.size();
return a->data < b->data;
});
// Assign offsets.
i64 offset = 0;
i64 max_alignment = 0;
for (SectionFragment<E> *frag : fragments) {
offset = align_to(offset, frag->alignment);
frag->offset = offset;
offset += frag->data.size();
max_alignment = std::max<i64>(max_alignment, frag->alignment);
}
sizes[i] = offset;
max_alignments[i] = max_alignment;
static Counter merged_strings("merged_strings");
merged_strings += fragments.size();
});
i64 alignment = 1;
for (i64 x : max_alignments)
alignment = std::max(alignment, x);
for (i64 i = 1; i < map.NUM_SHARDS + 1; i++)
shard_offsets[i] =
align_to(shard_offsets[i - 1] + sizes[i - 1], alignment);
tbb::parallel_for((i64)1, map.NUM_SHARDS, [&](i64 i) {
for (i64 j = shard_size * i; j < shard_size * (i + 1); j++)
if (SectionFragment<E> &frag = map.values[j]; frag.is_alive)
frag.offset += shard_offsets[i];
});
this->shdr.sh_size = shard_offsets[map.NUM_SHARDS];
this->shdr.sh_addralign = alignment;
}
template <typename E>
void MergedSection<E>::copy_buf(Context<E> &ctx) {
write_to(ctx, ctx.buf + this->shdr.sh_offset);
}
template <typename E>
void MergedSection<E>::write_to(Context<E> &ctx, u8 *buf) {
i64 shard_size = map.nbuckets / map.NUM_SHARDS;
tbb::parallel_for((i64)0, map.NUM_SHARDS, [&](i64 i) {
memset(buf + shard_offsets[i], 0, shard_offsets[i + 1] - shard_offsets[i]);
for (i64 j = shard_size * i; j < shard_size * (i + 1); j++)
if (SectionFragment<E> &frag = map.values[j]; frag.is_alive)
memcpy(buf + frag.offset, frag.data.data(), frag.data.size());
});
}
template <typename E>
void EhFrameSection<E>::construct(Context<E> &ctx) {
// Remove dead FDEs and assign them offsets within their corresponding
// CIE group.
tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
erase(file->fdes, [](FdeRecord<E> &fde) { return !fde.is_alive; });
i64 offset = 0;
for (FdeRecord<E> &fde : file->fdes) {
fde.output_offset = offset;
offset += fde.size();
}
file->fde_size = offset;
});
// Uniquify CIEs and assign offsets to them.
std::vector<CieRecord<E> *> leaders;
auto find_leader = [&](CieRecord<E> &cie) -> CieRecord<E> * {
for (CieRecord<E> *leader : leaders)
if (cie.equals(*leader))
return leader;
return nullptr;
};
i64 offset = 0;
for (ObjectFile<E> *file : ctx.objs) {
for (CieRecord<E> &cie : file->cies) {
if (CieRecord<E> *leader = find_leader(cie)) {
cie.output_offset = leader->output_offset;
} else {
cie.output_offset = offset;
cie.is_leader = true;
offset += cie.size();
leaders.push_back(&cie);
}
}
}
// Assign FDE offsets to files.
i64 idx = 0;
for (ObjectFile<E> *file : ctx.objs) {
file->fde_idx = idx;
idx += file->fdes.size();
file->fde_offset = offset;
offset += file->fde_size;
}
// .eh_frame must end with a null word.
this->shdr.sh_size = offset + 4;
}
template <typename E>
void EhFrameSection<E>::copy_buf(Context<E> &ctx) {
u8 *base = ctx.buf + this->shdr.sh_offset;
tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
// Copy CIEs.
for (CieRecord<E> &cie : file->cies) {
if (!cie.is_leader)
continue;
std::string_view contents = cie.get_contents();
memcpy(base + cie.output_offset, contents.data(), contents.size());
for (ElfRel<E> &rel : cie.get_rels()) {
if (rel.r_type == E::R_NONE)
continue;
ASSERT(rel.r_offset - cie.input_offset < contents.size());
u64 loc = cie.output_offset + rel.r_offset - cie.input_offset;
u64 val = file->symbols[rel.r_sym]->get_addr(ctx);
u64 addend = cie.input_section.get_addend(rel);
apply_reloc(ctx, rel, loc, val + addend);
}
}
// Copy FDEs.
for (FdeRecord<E> &fde : file->fdes) {
i64 offset = file->fde_offset + fde.output_offset;
std::string_view contents = fde.get_contents();
memcpy(base + offset, contents.data(), contents.size());
*(u32 *)(base + offset + 4) = offset + 4 - fde.cie->output_offset;
for (ElfRel<E> &rel : fde.get_rels()) {
if (rel.r_type == E::R_NONE)
continue;
ASSERT(rel.r_offset - fde.input_offset < contents.size());
u64 loc = offset + rel.r_offset - fde.input_offset;
u64 val = file->symbols[rel.r_sym]->get_addr(ctx);
u64 addend = fde.cie->input_section.get_addend(rel);
apply_reloc(ctx, rel, loc, val + addend);
}
}
});
// Write a terminator.
*(u32 *)(base + this->shdr.sh_size - 4) = 0;
}
template <typename E>
void EhFrameHdrSection<E>::update_shdr(Context<E> &ctx) {
num_fdes = 0;
for (ObjectFile<E> *file : ctx.objs)
num_fdes += file->fdes.size();
this->shdr.sh_size = HEADER_SIZE + num_fdes * 8;
}
template <typename E>
void EhFrameHdrSection<E>::copy_buf(Context<E> &ctx) {
u8 *base = ctx.buf + this->shdr.sh_offset;
u64 eh_frame_addr = ctx.eh_frame->shdr.sh_addr;
// Write a header
base[0] = 1;
base[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
base[2] = DW_EH_PE_udata4;
base[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
*(u32 *)(base + 4) = eh_frame_addr - this->shdr.sh_addr - 4;
*(u32 *)(base + 8) = num_fdes;
// Fill contents
struct Entry {
i32 init_addr;
i32 fde_addr;
};
tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
Entry *entry = (Entry *)(base + HEADER_SIZE) + file->fde_idx;
for (FdeRecord<E> &fde : file->fdes) {
ElfRel<E> &rel = fde.cie->rels[fde.rel_idx];
u64 val = file->symbols[rel.r_sym]->get_addr(ctx);
u64 addend = fde.cie->input_section.get_addend(rel);
i64 offset = file->fde_offset + fde.output_offset;
*entry++ = {(i32)(val + addend - this->shdr.sh_addr),
(i32)(eh_frame_addr + offset - this->shdr.sh_addr)};
}
});
// Sort contents
Entry *begin = (Entry *)(base + HEADER_SIZE);
Entry *end = begin + num_fdes;
tbb::parallel_sort(begin, end, [](const Entry &a, const Entry &b) {
return a.init_addr < b.init_addr;
});
}
template <typename E>
void DynbssSection<E>::add_symbol(Context<E> &ctx, Symbol<E> *sym) {
if (sym->has_copyrel)
return;
ASSERT(!ctx.arg.shared);
ASSERT(sym->file->is_dso);
this->shdr.sh_size = align_to(this->shdr.sh_size, this->shdr.sh_addralign);
sym->value = this->shdr.sh_size;
sym->has_copyrel = true;
this->shdr.sh_size += sym->esym().st_size;
symbols.push_back(sym);
ctx.dynsym->add_symbol(ctx, sym);
}
template <typename E>
void VersymSection<E>::update_shdr(Context<E> &ctx) {
this->shdr.sh_size = contents.size() * sizeof(contents[0]);
this->shdr.sh_link = ctx.dynsym->shndx;
}
template <typename E>
void VersymSection<E>::copy_buf(Context<E> &ctx) {
write_vector(ctx.buf + this->shdr.sh_offset, contents);
}
template <typename E>
void VerneedSection<E>::construct(Context<E> &ctx) {
Timer t(ctx, "fill_verneed");
if (ctx.dynsym->symbols.empty())
return;
// Create a list of versioned symbols and sort by file and version.
std::vector<Symbol<E> *> syms(ctx.dynsym->symbols.begin() + 1,
ctx.dynsym->symbols.end());
erase(syms, [](Symbol<E> *sym) {
return !sym->file->is_dso || sym->ver_idx <= VER_NDX_LAST_RESERVED;
});
if (syms.empty())
return;
sort(syms, [](Symbol<E> *a, Symbol<E> *b) {
return std::tuple(((SharedFile<E> *)a->file)->soname, a->ver_idx) <
std::tuple(((SharedFile<E> *)b->file)->soname, b->ver_idx);
});
// Resize of .gnu.version
ctx.versym->contents.resize(ctx.dynsym->symbols.size(), 1);
ctx.versym->contents[0] = 0;
// Allocate a large enough buffer for .gnu.version_r.
contents.resize((sizeof(ElfVerneed<E>) + sizeof(ElfVernaux<E>)) *
syms.size());
// Fill .gnu.version_r.
u8 *buf = (u8 *)&contents[0];
u8 *ptr = buf;
ElfVerneed<E> *verneed = nullptr;
ElfVernaux<E> *aux = nullptr;
u16 veridx = VER_NDX_LAST_RESERVED + ctx.arg.version_definitions.size();
auto start_group = [&](InputFile<E> *file) {
this->shdr.sh_info++;
if (verneed)
verneed->vn_next = ptr - (u8 *)verneed;
verneed = (ElfVerneed<E> *)ptr;
ptr += sizeof(*verneed);
verneed->vn_version = 1;
verneed->vn_file = ctx.dynstr->find_string(((SharedFile<E> *)file)->soname);
verneed->vn_aux = sizeof(ElfVerneed<E>);
aux = nullptr;
};
auto add_entry = [&](Symbol<E> *sym) {
verneed->vn_cnt++;
if (aux)
aux->vna_next = sizeof(ElfVernaux<E>);
aux = (ElfVernaux<E> *)ptr;
ptr += sizeof(*aux);
std::string_view verstr = sym->get_version();
aux->vna_hash = elf_hash(verstr);
aux->vna_other = ++veridx;
aux->vna_name = ctx.dynstr->add_string(verstr);
};
for (i64 i = 0; i < syms.size(); i++) {
if (i == 0 || syms[i - 1]->file != syms[i]->file) {
start_group(syms[i]->file);
add_entry(syms[i]);
} else if (syms[i - 1]->ver_idx != syms[i]->ver_idx) {
add_entry(syms[i]);
}
ctx.versym->contents[syms[i]->get_dynsym_idx(ctx)] = veridx;
}
// Resize .gnu.version_r to fit to its contents.
contents.resize(ptr - buf);
}
template <typename E>
void VerneedSection<E>::update_shdr(Context<E> &ctx) {
this->shdr.sh_size = contents.size();
this->shdr.sh_link = ctx.dynstr->shndx;
}
template <typename E>
void VerneedSection<E>::copy_buf(Context<E> &ctx) {
write_vector(ctx.buf + this->shdr.sh_offset, contents);
}
template <typename E>
void VerdefSection<E>::construct(Context<E> &ctx) {
Timer t(ctx, "fill_verdef");
if (ctx.arg.version_definitions.empty())
return;
// Resize .gnu.version
ctx.versym->contents.resize(ctx.dynsym->symbols.size(), 1);
ctx.versym->contents[0] = 0;
// Allocate a buffer for .gnu.version_d.
contents.resize((sizeof(ElfVerdef<E>) + sizeof(ElfVerdaux<E>)) *
(ctx.arg.version_definitions.size() + 1));
u8 *buf = (u8 *)&contents[0];
u8 *ptr = buf;
ElfVerdef<E> *verdef = nullptr;
auto write = [&](std::string_view verstr, i64 idx, i64 flags) {
this->shdr.sh_info++;
if (verdef)
verdef->vd_next = ptr - (u8 *)verdef;
verdef = (ElfVerdef<E> *)ptr;
ptr += sizeof(ElfVerdef<E>);
verdef->vd_version = 1;
verdef->vd_flags = flags;
verdef->vd_ndx = idx;
verdef->vd_cnt = 1;
verdef->vd_hash = elf_hash(verstr);
verdef->vd_aux = sizeof(ElfVerdef<E>);
ElfVerdaux<E> *aux = (ElfVerdaux<E> *)ptr;
ptr += sizeof(ElfVerdaux<E>);
aux->vda_name = ctx.dynstr->add_string(verstr);
};
std::string_view basename = ctx.arg.soname.empty() ?
ctx.arg.output : ctx.arg.soname;
write(basename, 1, VER_FLG_BASE);
i64 idx = 2;
for (std::string_view verstr : ctx.arg.version_definitions)
write(verstr, idx++, 0);
for (Symbol<E> *sym : std::span<Symbol<E> *>(ctx.dynsym->symbols).subspan(1))
ctx.versym->contents[sym->get_dynsym_idx(ctx)] = sym->ver_idx;
}
template <typename E>
void VerdefSection<E>::update_shdr(Context<E> &ctx) {
this->shdr.sh_size = contents.size();
this->shdr.sh_link = ctx.dynstr->shndx;
}
template <typename E>
void VerdefSection<E>::copy_buf(Context<E> &ctx) {
write_vector(ctx.buf + this->shdr.sh_offset, contents);
}
template <typename E>
i64 BuildId::size(Context<E> &ctx) const {
switch (kind) {
case HEX:
return value.size();
case HASH:
return hash_size;
case UUID:
return 16;
default:
unreachable(ctx);
}
}
template <typename E>
void BuildIdSection<E>::update_shdr(Context<E> &ctx) {
this->shdr.sh_size = HEADER_SIZE + ctx.arg.build_id.size(ctx);
}
template <typename E>
void BuildIdSection<E>::copy_buf(Context<E> &ctx) {
u32 *base = (u32 *)(ctx.buf + this->shdr.sh_offset);
memset(base, 0, this->shdr.sh_size);
base[0] = 4; // Name size
base[1] = ctx.arg.build_id.size(ctx); // Hash size
base[2] = NT_GNU_BUILD_ID; // Type
memcpy(base + 3, "GNU", 4); // Name string
}
template <typename E>
static void compute_sha256(Context<E> &ctx, i64 offset) {
u8 *buf = ctx.buf;
i64 bufsize = ctx.output_file->filesize;
i64 shard_size = 4096 * 1024;
i64 num_shards = bufsize / shard_size + 1;
std::vector<u8> shards(num_shards * SHA256_SIZE);
tbb::parallel_for((i64)0, num_shards, [&](i64 i) {
u8 *begin = buf + shard_size * i;
i64 sz = (i < num_shards - 1) ? shard_size : (bufsize % shard_size);
SHA256(begin, sz, shards.data() + i * SHA256_SIZE);
// We call munmap early for each chunk so that the last munmap
// gets cheaper. We assume that the .note.build-id section is
// at the beginning of an output file. This is an ugly performance
// hack, but we can save about 30 ms for a 2 GiB output.
if (i > 0 && ctx.output_file->is_mmapped)
munmap(begin, sz);
});
ASSERT(ctx.arg.build_id.size(ctx) <= SHA256_SIZE);
u8 digest[SHA256_SIZE];
SHA256(shards.data(), shards.size(), digest);
memcpy(buf + offset, digest, ctx.arg.build_id.size(ctx));
if (ctx.output_file->is_mmapped)
munmap(buf, std::min(bufsize, shard_size));
}
template <typename E>
static std::vector<u8> get_uuid_v4(Context<E> &ctx) {
std::vector<u8> buf(16);
if (!RAND_bytes(buf.data(), buf.size()))
Fatal(ctx) << "RAND_bytes failed";
// Indicate that this is UUIDv4.
buf[6] &= 0b00001111;
buf[6] |= 0b01000000;
// Indicates that this is an RFC4122 variant.
buf[8] &= 0b00111111;
buf[8] |= 0b10000000;
return buf;
}
template <typename E>
void BuildIdSection<E>::write_buildid(Context<E> &ctx) {
switch (ctx.arg.build_id.kind) {
case BuildId::HEX:
write_vector(ctx.buf + this->shdr.sh_offset + HEADER_SIZE,
ctx.arg.build_id.value);
return;
case BuildId::HASH:
// Modern x86 processors have purpose-built instructions to accelerate
// SHA256 computation, and SHA256 outperforms MD5 on such computers.
// So, we always compute SHA256 and truncate it if smaller digest was
// requested.
compute_sha256(ctx, this->shdr.sh_offset + HEADER_SIZE);
return;
case BuildId::UUID:
write_vector(ctx.buf + this->shdr.sh_offset + HEADER_SIZE,
get_uuid_v4(ctx));
return;
default:
unreachable(ctx);
}
}
template <typename E>
void NotePropertySection<E>::update_shdr(Context<E> &ctx) {
features = -1;
for (ObjectFile<E> *file : ctx.objs)
if (file != ctx.internal_obj)
features &= file->features;
if (features != 0 && features != -1)
this->shdr.sh_size = (E::wordsize == 8) ? 32 : 28;
}
template <typename E>
void NotePropertySection<E>::copy_buf(Context<E> &ctx) {
u32 *buf = (u32 *)(ctx.buf + this->shdr.sh_offset);
memset(buf, 0, this->shdr.sh_size);
buf[0] = 4; // Name size
buf[1] = (E::wordsize == 8) ? 16 : 12; // Content size
buf[2] = NT_GNU_PROPERTY_TYPE_0; // Type
memcpy(buf + 3, "GNU", 4); // Name
buf[4] = GNU_PROPERTY_X86_FEATURE_1_AND; // Feature type
buf[5] = 4; // Feature size
buf[6] = features; // Feature flags
}
template <typename E>
GabiCompressedSection<E>::GabiCompressedSection(Context<E> &ctx,
OutputChunk<E> &chunk)
: OutputChunk<E>(this->SYNTHETIC) {
ASSERT(chunk.name.starts_with(".debug"));
this->name = chunk.name;
std::unique_ptr<u8[]> buf(new u8[chunk.shdr.sh_size]);
chunk.write_to(ctx, buf.get());
chdr.ch_type = ELFCOMPRESS_ZLIB;
chdr.ch_size = chunk.shdr.sh_size;
chdr.ch_addralign = chunk.shdr.sh_addralign;
contents.reset(new ZlibCompressor({(char *)buf.get(), chunk.shdr.sh_size}));
this->shdr = chunk.shdr;
this->shdr.sh_flags |= SHF_COMPRESSED;
this->shdr.sh_addralign = 1;
this->shdr.sh_size = sizeof(chdr) + contents->size();
this->shndx = chunk.shndx;
}
template <typename E>
void GabiCompressedSection<E>::copy_buf(Context<E> &ctx) {
u8 *base = ctx.buf + this->shdr.sh_offset;
memcpy(base, &chdr, sizeof(chdr));
contents->write_to(base + sizeof(chdr));
}
template <typename E>
GnuCompressedSection<E>::GnuCompressedSection(Context<E> &ctx,
OutputChunk<E> &chunk)
: OutputChunk<E>(this->SYNTHETIC) {
ASSERT(chunk.name.starts_with(".debug"));
this->name = save_string(ctx, ".zdebug" + std::string(chunk.name.substr(6)));
std::unique_ptr<u8[]> buf(new u8[chunk.shdr.sh_size]);
chunk.write_to(ctx, buf.get());
contents.reset(new ZlibCompressor({(char *)buf.get(), chunk.shdr.sh_size}));
this->shdr = chunk.shdr;
this->shdr.sh_size = HEADER_SIZE + contents->size();
this->shndx = chunk.shndx;
this->original_size = chunk.shdr.sh_size;
}
template <typename E>
void GnuCompressedSection<E>::copy_buf(Context<E> &ctx) {
u8 *base = ctx.buf + this->shdr.sh_offset;
memcpy(base, "ZLIB", 4);
write64be(base + 4, this->original_size);
contents->write_to(base + 12);
}
template <typename E>
void ReproSection<E>::update_shdr(Context<E> &ctx) {
if (contents)
return;
TarFile tar("repro");
tar.append("response.txt", save_string(ctx, create_response_file(ctx)));
tar.append("version.txt", save_string(ctx, get_version_string() + "\n"));
std::unordered_set<std::string> seen;
for (std::unique_ptr<MemoryMappedFile<E>> &mb : ctx.owning_mbs) {
std::string path = path_to_absolute(mb->name);
if (seen.insert(path).second)
tar.append(path, mb->get_contents(ctx));
}
std::vector<u8> buf(tar.size());
tar.write_to(&buf[0]);
contents.reset(new GzipCompressor({(char *)&buf[0], buf.size()}));
this->shdr.sh_size = contents->size();
}
template <typename E>
void ReproSection<E>::copy_buf(Context<E> &ctx) {
contents->write_to(ctx.buf + this->shdr.sh_offset);
}
#define INSTANTIATE(E) \
template class OutputChunk<E>; \
template class OutputEhdr<E>; \
template class OutputShdr<E>; \
template class OutputPhdr<E>; \
template class InterpSection<E>; \
template class OutputSection<E>; \
template class GotSection<E>; \
template class GotPltSection<E>; \
template class PltSection<E>; \
template class PltGotSection<E>; \
template class RelPltSection<E>; \
template class RelDynSection<E>; \
template class StrtabSection<E>; \
template class ShstrtabSection<E>; \
template class DynstrSection<E>; \
template class DynamicSection<E>; \
template class SymtabSection<E>; \
template class DynsymSection<E>; \
template class HashSection<E>; \
template class GnuHashSection<E>; \
template class MergedSection<E>; \
template class EhFrameSection<E>; \
template class EhFrameHdrSection<E>; \
template class DynbssSection<E>; \
template class VersymSection<E>; \
template class VerneedSection<E>; \
template class VerdefSection<E>; \
template class BuildIdSection<E>; \
template class NotePropertySection<E>; \
template class GabiCompressedSection<E>; \
template class GnuCompressedSection<E>; \
template class ReproSection<E>; \
template i64 BuildId::size(Context<E> &) const; \
template bool is_relro(Context<E> &, OutputChunk<E> *); \
template std::vector<ElfPhdr<E>> create_phdr(Context<E> &)
INSTANTIATE(X86_64);
INSTANTIATE(I386);
INSTANTIATE(AARCH64);