1
1
mirror of https://github.com/rui314/mold.git synced 2025-01-01 05:02:36 +03:00
mold/output_chunks.cc
Rui Ueyama 48c8321344 Rename
2021-03-25 18:33:34 +09:00

1389 lines
38 KiB
C++

#include "mold.h"
#include <openssl/rand.h>
#include <openssl/sha.h>
#include <shared_mutex>
#include <tbb/parallel_for_each.h>
#include <tbb/parallel_sort.h>
void OutputEhdr::copy_buf() {
ElfEhdr &hdr = *(ElfEhdr *)(out::buf + shdr.sh_offset);
memset(&hdr, 0, sizeof(hdr));
memcpy(&hdr.e_ident, "\177ELF", 4);
hdr.e_ident[EI_CLASS] = ELFCLASS64;
hdr.e_ident[EI_DATA] = ELFDATA2LSB;
hdr.e_ident[EI_VERSION] = EV_CURRENT;
hdr.e_type = config.pic ? ET_DYN : ET_EXEC;
hdr.e_machine = EM_X86_64;
hdr.e_version = EV_CURRENT;
if (!config.entry.empty())
hdr.e_entry = Symbol::intern(config.entry)->get_addr();
hdr.e_phoff = out::phdr->shdr.sh_offset;
hdr.e_shoff = out::shdr->shdr.sh_offset;
hdr.e_ehsize = sizeof(ElfEhdr);
hdr.e_phentsize = sizeof(ElfPhdr);
hdr.e_phnum = out::phdr->shdr.sh_size / sizeof(ElfPhdr);
hdr.e_shentsize = sizeof(ElfShdr);
hdr.e_shnum = out::shdr->shdr.sh_size / sizeof(ElfShdr);
hdr.e_shstrndx = out::shstrtab->shndx;
}
void OutputShdr::update_shdr() {
i64 n = 1;
for (OutputChunk *chunk : out::chunks)
if (chunk->kind != OutputChunk::HEADER)
n++;
shdr.sh_size = n * sizeof(ElfShdr);
}
void OutputShdr::copy_buf() {
ElfShdr *hdr = (ElfShdr *)(out::buf + shdr.sh_offset);
hdr[0] = {};
i64 i = 1;
for (OutputChunk *chunk : out::chunks)
if (chunk->kind != OutputChunk::HEADER)
hdr[i++] = chunk->shdr;
}
static i64 to_phdr_flags(OutputChunk *chunk) {
i64 ret = PF_R;
if (chunk->shdr.sh_flags & SHF_WRITE)
ret |= PF_W;
if (chunk->shdr.sh_flags & SHF_EXECINSTR)
ret |= PF_X;
return ret;
}
bool is_relro(OutputChunk *chunk) {
u64 flags = chunk->shdr.sh_flags;
u64 type = chunk->shdr.sh_type;
std::string_view name = chunk->name;
bool match = (flags & SHF_TLS) || type == SHT_INIT_ARRAY ||
type == SHT_FINI_ARRAY || type == SHT_PREINIT_ARRAY ||
chunk == out::got || chunk == out::dynamic ||
name.ends_with(".rel.ro");
return (flags & SHF_WRITE) && match;
}
std::vector<ElfPhdr> create_phdr() {
std::vector<ElfPhdr> vec;
auto define = [&](u64 type, u64 flags, i64 min_align, OutputChunk *chunk) {
vec.push_back({});
ElfPhdr &phdr = vec.back();
phdr.p_type = type;
phdr.p_flags = flags;
phdr.p_align = std::max<u64>(min_align, chunk->shdr.sh_addralign);
phdr.p_offset = chunk->shdr.sh_offset;
phdr.p_filesz =
(chunk->shdr.sh_type == SHT_NOBITS) ? 0 : chunk->shdr.sh_size;
phdr.p_vaddr = chunk->shdr.sh_addr;
phdr.p_memsz = chunk->shdr.sh_size;
};
auto append = [&](OutputChunk *chunk) {
ElfPhdr &phdr = vec.back();
phdr.p_align = std::max<u64>(phdr.p_align, chunk->shdr.sh_addralign);
phdr.p_filesz = (chunk->shdr.sh_type == SHT_NOBITS)
? chunk->shdr.sh_offset - phdr.p_offset
: chunk->shdr.sh_offset + chunk->shdr.sh_size - phdr.p_offset;
phdr.p_memsz = chunk->shdr.sh_addr + chunk->shdr.sh_size - phdr.p_vaddr;
};
auto is_bss = [](OutputChunk *chunk) {
return chunk->shdr.sh_type == SHT_NOBITS &&
!(chunk->shdr.sh_flags & SHF_TLS);
};
// Create a PT_PHDR for the program header itself.
define(PT_PHDR, PF_R, 8, out::phdr);
// Create a PT_INTERP.
if (out::interp)
define(PT_INTERP, PF_R, 1, out::interp);
// Create a PT_NOTE for each group of SHF_NOTE sections with the same
// alignment requirement.
for (i64 i = 0, end = out::chunks.size(); i < end;) {
OutputChunk *first = out::chunks[i++];
if (first->shdr.sh_type != SHT_NOTE)
continue;
i64 flags = to_phdr_flags(first);
i64 alignment = first->shdr.sh_addralign;
define(PT_NOTE, flags, alignment, first);
while (i < end && out::chunks[i]->shdr.sh_type == SHT_NOTE &&
to_phdr_flags(out::chunks[i]) == flags &&
out::chunks[i]->shdr.sh_addralign == alignment)
append(out::chunks[i++]);
}
// Create PT_LOAD segments.
for (i64 i = 0, end = out::chunks.size(); i < end;) {
OutputChunk *first = out::chunks[i++];
if (!(first->shdr.sh_flags & SHF_ALLOC))
break;
i64 flags = to_phdr_flags(first);
define(PT_LOAD, flags, PAGE_SIZE, first);
first->new_page = true;
if (!is_bss(first))
while (i < end && !is_bss(out::chunks[i]) &&
to_phdr_flags(out::chunks[i]) == flags)
append(out::chunks[i++]);
while (i < end && is_bss(out::chunks[i]) &&
to_phdr_flags(out::chunks[i]) == flags)
append(out::chunks[i++]);
}
// Create a PT_TLS.
for (i64 i = 0; i < out::chunks.size(); i++) {
if (!(out::chunks[i]->shdr.sh_flags & SHF_TLS))
continue;
define(PT_TLS, to_phdr_flags(out::chunks[i]), 1, out::chunks[i]);
i++;
while (i < out::chunks.size() && (out::chunks[i]->shdr.sh_flags & SHF_TLS))
append(out::chunks[i++]);
}
// Add PT_DYNAMIC
if (out::dynamic->shdr.sh_size)
define(PT_DYNAMIC, PF_R | PF_W, 1, out::dynamic);
// Add PT_GNU_EH_FRAME
if (out::eh_frame_hdr)
define(PT_GNU_EH_FRAME, PF_R, 1, out::eh_frame_hdr);
// Add PT_GNU_STACK, which is a marker segment that doesn't really
// contain any segments. It controls executable bit of stack area.
vec.push_back({
.p_type = PT_GNU_STACK,
.p_flags = config.z_execstack ? (PF_R | PF_W | PF_X) : (PF_R | PF_W),
});
// Create a PT_GNU_RELRO.
if (config.z_relro) {
for (i64 i = 0; i < out::chunks.size(); i++) {
if (!is_relro(out::chunks[i]))
continue;
define(PT_GNU_RELRO, PF_R, 1, out::chunks[i]);
out::chunks[i]->new_page = true;
i++;
while (i < out::chunks.size() && is_relro(out::chunks[i]))
append(out::chunks[i++]);
out::chunks[i - 1]->new_page_end = true;
}
}
return vec;
}
void OutputPhdr::update_shdr() {
shdr.sh_size = create_phdr().size() * sizeof(ElfPhdr);
}
void OutputPhdr::copy_buf() {
write_vector(out::buf + shdr.sh_offset, create_phdr());
}
void InterpSection::copy_buf() {
write_string(out::buf + shdr.sh_offset, config.dynamic_linker);
}
void RelDynSection::update_shdr() {
shdr.sh_link = out::dynsym->shndx;
// .rel.dyn contents are filled by GotSection::copy_buf() and
// InputSection::apply_reloc_alloc().
i64 offset = out::got->get_reldyn_size();
for (ObjectFile *file : out::objs) {
file->reldyn_offset = offset;
offset += file->num_dynrel * sizeof(ElfRela);
}
shdr.sh_size = offset;
}
void RelDynSection::sort() {
Timer t("sort_dynamic_relocs");
ElfRela *begin = (ElfRela *)(out::buf + shdr.sh_offset);
ElfRela *end = (ElfRela *)(out::buf + shdr.sh_offset + shdr.sh_size);
tbb::parallel_sort(begin, end, [](const ElfRela &a, const ElfRela &b) {
return std::tuple(a.r_sym, a.r_offset) <
std::tuple(b.r_sym, b.r_offset);
});
}
void StrtabSection::update_shdr() {
shdr.sh_size = 1;
for (ObjectFile *file : out::objs) {
file->strtab_offset = shdr.sh_size;
shdr.sh_size += file->strtab_size;
}
}
void ShstrtabSection::update_shdr() {
shdr.sh_size = 1;
for (OutputChunk *chunk : out::chunks) {
if (!chunk->name.empty()) {
chunk->shdr.sh_name = shdr.sh_size;
shdr.sh_size += chunk->name.size() + 1;
}
}
}
void ShstrtabSection::copy_buf() {
u8 *base = out::buf + shdr.sh_offset;
base[0] = '\0';
i64 i = 1;
for (OutputChunk *chunk : out::chunks) {
if (!chunk->name.empty()) {
write_string(base + i, chunk->name);
i += chunk->name.size() + 1;
}
}
}
i64 DynstrSection::add_string(std::string_view str) {
if (strings.empty())
shdr.sh_size = 1;
auto [it, inserted] = strings.insert({str, shdr.sh_size});
if (inserted)
shdr.sh_size += str.size() + 1;
return it->second;
}
i64 DynstrSection::find_string(std::string_view str) {
auto it = strings.find(str);
assert(it != strings.end());
return it->second;
}
void DynstrSection::update_shdr() {
if (shdr.sh_size == 1)
shdr.sh_size = 0;
}
void DynstrSection::copy_buf() {
u8 *base = out::buf + shdr.sh_offset;
base[0] = '\0';
for (std::pair<std::string_view, i64> pair : strings)
write_string(base + pair.second, pair.first);
if (!out::dynsym->symbols.empty()) {
i64 offset = dynsym_offset;
for (Symbol *sym : std::span(out::dynsym->symbols).subspan(1)) {
write_string(base + offset, sym->name);
offset += sym->name.size() + 1;
}
}
}
void SymtabSection::update_shdr() {
shdr.sh_size = sizeof(ElfSym);
for (ObjectFile *file : out::objs) {
file->local_symtab_offset = shdr.sh_size;
shdr.sh_size += file->num_local_symtab * sizeof(ElfSym);
}
for (ObjectFile *file : out::objs) {
file->global_symtab_offset = shdr.sh_size;
shdr.sh_size += file->num_global_symtab * sizeof(ElfSym);
}
shdr.sh_info = out::objs[0]->global_symtab_offset / sizeof(ElfSym);
shdr.sh_link = out::strtab->shndx;
if (shdr.sh_size == sizeof(ElfSym))
shdr.sh_size = 0;
static Counter counter("symtab");
counter += shdr.sh_size / sizeof(ElfSym);
}
void SymtabSection::copy_buf() {
memset(out::buf + shdr.sh_offset, 0, sizeof(ElfSym));
out::buf[out::strtab->shdr.sh_offset] = '\0';
tbb::parallel_for_each(out::objs, [](ObjectFile *file) {
file->write_symtab();
});
}
static bool has_init_array() {
for (OutputChunk *chunk : out::chunks)
if (chunk->shdr.sh_type == SHT_INIT_ARRAY)
return true;
return false;
}
static bool has_fini_array() {
for (OutputChunk *chunk : out::chunks)
if (chunk->shdr.sh_type == SHT_FINI_ARRAY)
return true;
return false;
}
static std::vector<u64> create_dynamic_section() {
std::vector<u64> vec;
auto define = [&](u64 tag, u64 val) {
vec.push_back(tag);
vec.push_back(val);
};
for (SharedFile *file : out::dsos)
define(DT_NEEDED, out::dynstr->find_string(file->soname));
if (!config.rpaths.empty())
define(DT_RUNPATH, out::dynstr->find_string(config.rpaths));
if (!config.soname.empty())
define(DT_SONAME, out::dynstr->find_string(config.soname));
for (std::string_view str : config.auxiliary)
define(DT_AUXILIARY, out::dynstr->find_string(str));
for (std::string_view str : config.filter)
define(DT_FILTER, out::dynstr->find_string(str));
if (out::reldyn->shdr.sh_size) {
define(DT_RELA, out::reldyn->shdr.sh_addr);
define(DT_RELASZ, out::reldyn->shdr.sh_size);
define(DT_RELAENT, sizeof(ElfRela));
}
if (out::relplt->shdr.sh_size) {
define(DT_JMPREL, out::relplt->shdr.sh_addr);
define(DT_PLTRELSZ, out::relplt->shdr.sh_size);
define(DT_PLTREL, DT_RELA);
}
if (out::gotplt->shdr.sh_size)
define(DT_PLTGOT, out::gotplt->shdr.sh_addr);
if (out::dynsym->shdr.sh_size) {
define(DT_SYMTAB, out::dynsym->shdr.sh_addr);
define(DT_SYMENT, sizeof(ElfSym));
}
if (out::dynstr->shdr.sh_size) {
define(DT_STRTAB, out::dynstr->shdr.sh_addr);
define(DT_STRSZ, out::dynstr->shdr.sh_size);
}
if (has_init_array()) {
define(DT_INIT_ARRAY, out::__init_array_start->value);
define(DT_INIT_ARRAYSZ,
out::__init_array_end->value - out::__init_array_start->value);
}
if (has_fini_array()) {
define(DT_FINI_ARRAY, out::__fini_array_start->value);
define(DT_FINI_ARRAYSZ,
out::__fini_array_end->value - out::__fini_array_start->value);
}
if (out::versym->shdr.sh_size)
define(DT_VERSYM, out::versym->shdr.sh_addr);
if (out::verneed->shdr.sh_size) {
define(DT_VERNEED, out::verneed->shdr.sh_addr);
define(DT_VERNEEDNUM, out::verneed->shdr.sh_info);
}
if (out::verdef) {
define(DT_VERDEF, out::verdef->shdr.sh_addr);
define(DT_VERDEFNUM, out::verdef->shdr.sh_info);
}
if (Symbol *sym = Symbol::intern(config.init); sym->file)
define(DT_INIT, sym->get_addr());
if (Symbol *sym = Symbol::intern(config.fini); sym->file)
define(DT_FINI, sym->get_addr());
if (out::hash)
define(DT_HASH, out::hash->shdr.sh_addr);
if (out::gnu_hash)
define(DT_GNU_HASH, out::gnu_hash->shdr.sh_addr);
i64 flags = 0;
i64 flags1 = 0;
if (config.pie)
flags1 |= DF_1_PIE;
if (config.z_now) {
flags |= DF_BIND_NOW;
flags1 |= DF_1_NOW;
}
if (!config.z_dlopen)
flags1 |= DF_1_NOOPEN;
if (!config.z_delete)
flags1 |= DF_1_NODELETE;
if (out::has_gottpoff)
flags |= DF_STATIC_TLS;
if (flags)
define(DT_FLAGS, flags);
if (flags1)
define(DT_FLAGS_1, flags1);
define(DT_DEBUG, 0);
define(DT_NULL, 0);
return vec;
}
void DynamicSection::update_shdr() {
if (config.is_static)
return;
if (!config.shared && out::dsos.empty())
return;
shdr.sh_size = create_dynamic_section().size() * 8;
shdr.sh_link = out::dynstr->shndx;
}
void DynamicSection::copy_buf() {
std::vector<u64> contents = create_dynamic_section();
assert(shdr.sh_size == contents.size() * sizeof(contents[0]));
write_vector(out::buf + shdr.sh_offset, contents);
}
static std::string_view get_output_name(std::string_view name) {
static std::string_view prefixes[] = {
".text.", ".data.rel.ro.", ".data.", ".rodata.", ".bss.rel.ro.",
".bss.", ".init_array.", ".fini_array.", ".tbss.", ".tdata.",
};
for (std::string_view prefix : prefixes)
if (name.starts_with(prefix))
return prefix.substr(0, prefix.size() - 1);
if (name == ".zdebug_info")
return ".debug_info";
if (name == ".zdebug_aranges")
return ".debug_aranges";
if (name == ".zdebug_str")
return ".debug_str";
return name;
}
OutputSection::OutputSection(std::string_view name, u32 type, u64 flags)
: OutputChunk(REGULAR) {
this->name = name;
shdr.sh_type = type;
shdr.sh_flags = flags;
idx = instances.size();
instances.push_back(this);
}
OutputSection *
OutputSection::get_instance(std::string_view name, u64 type, u64 flags) {
if (name == ".eh_frame" && type == SHT_X86_64_UNWIND)
type = SHT_PROGBITS;
name = get_output_name(name);
flags = flags & ~(u64)SHF_GROUP & ~(u64)SHF_COMPRESSED;
auto find = [&]() -> OutputSection * {
for (OutputSection *osec : OutputSection::instances)
if (name == osec->name && type == osec->shdr.sh_type &&
flags == osec->shdr.sh_flags)
return osec;
return nullptr;
};
static std::shared_mutex mu;
// Search for an exiting output section.
{
std::shared_lock lock(mu);
if (OutputSection *osec = find())
return osec;
}
// Create a new output section.
std::unique_lock lock(mu);
if (OutputSection *osec = find())
return osec;
return new OutputSection(name, type, flags);
}
void OutputSection::copy_buf() {
if (shdr.sh_type == SHT_NOBITS)
return;
tbb::parallel_for((i64)0, (i64)members.size(), [&](i64 i) {
// Copy section contents to an output file
InputSection &isec = *members[i];
isec.copy_buf();
// Zero-clear trailing padding
u64 this_end = isec.offset + isec.shdr.sh_size;
u64 next_start = (i == members.size() - 1) ?
shdr.sh_size : members[i + 1]->offset;
memset(out::buf + shdr.sh_offset + this_end, 0, next_start - this_end);
});
}
void GotSection::add_got_symbol(Symbol *sym) {
assert(sym->got_idx == -1);
sym->got_idx = shdr.sh_size / GOT_SIZE;
shdr.sh_size += GOT_SIZE;
got_syms.push_back(sym);
if (sym->is_imported)
out::dynsym->add_symbol(sym);
}
void GotSection::add_gottpoff_symbol(Symbol *sym) {
assert(sym->gottpoff_idx == -1);
sym->gottpoff_idx = shdr.sh_size / GOT_SIZE;
shdr.sh_size += GOT_SIZE;
gottpoff_syms.push_back(sym);
}
void GotSection::add_tlsgd_symbol(Symbol *sym) {
assert(sym->tlsgd_idx == -1);
sym->tlsgd_idx = shdr.sh_size / GOT_SIZE;
shdr.sh_size += GOT_SIZE * 2;
tlsgd_syms.push_back(sym);
out::dynsym->add_symbol(sym);
}
void GotSection::add_tlsdesc_symbol(Symbol *sym) {
assert(sym->tlsdesc_idx == -1);
sym->tlsdesc_idx = shdr.sh_size / GOT_SIZE;
shdr.sh_size += GOT_SIZE * 2;
tlsdesc_syms.push_back(sym);
out::dynsym->add_symbol(sym);
}
void GotSection::add_tlsld() {
if (tlsld_idx != -1)
return;
tlsld_idx = shdr.sh_size / GOT_SIZE;
shdr.sh_size += GOT_SIZE * 2;
}
i64 GotSection::get_reldyn_size() const {
i64 n = 0;
for (Symbol *sym : got_syms)
if (sym->is_imported || (config.pic && sym->is_relative()))
n++;
n += tlsgd_syms.size() * 2;
n += tlsdesc_syms.size() * 2;
for (Symbol *sym : gottpoff_syms)
if (sym->is_imported)
n++;
if (tlsld_idx != -1)
n++;
n += out::dynbss->symbols.size();
n += out::dynbss_relro->symbols.size();
return n * sizeof(ElfRela);
}
// Fill .got and .rel.dyn.
void GotSection::copy_buf() {
u64 *buf = (u64 *)(out::buf + shdr.sh_offset);
memset(buf, 0, shdr.sh_size);
ElfRela *rel = (ElfRela *)(out::buf + out::reldyn->shdr.sh_offset);
for (Symbol *sym : got_syms) {
u64 addr = sym->get_got_addr();
if (sym->is_imported) {
*rel++ = {addr, R_X86_64_GLOB_DAT, sym->dynsym_idx, 0};
} else {
buf[sym->got_idx] = sym->get_addr();
if (config.pic && sym->is_relative())
*rel++ = {addr, R_X86_64_RELATIVE, 0, (i64)sym->get_addr()};
}
}
for (Symbol *sym : tlsgd_syms) {
u64 addr = sym->get_tlsgd_addr();
*rel++ = {addr, R_X86_64_DTPMOD64, sym->dynsym_idx, 0};
*rel++ = {addr + GOT_SIZE, R_X86_64_DTPOFF64, sym->dynsym_idx, 0};
}
for (Symbol *sym : tlsdesc_syms)
*rel++ = {sym->get_tlsdesc_addr(), R_X86_64_TLSDESC, sym->dynsym_idx, 0};
for (Symbol *sym : gottpoff_syms) {
if (sym->is_imported)
*rel++ = {sym->get_gottpoff_addr(), R_X86_64_TPOFF32, sym->dynsym_idx, 0};
else
buf[sym->gottpoff_idx] = sym->get_addr() - out::tls_end;
}
if (tlsld_idx != -1)
*rel++ = {get_tlsld_addr(), R_X86_64_DTPMOD64, 0, 0};
for (Symbol *sym : out::dynbss->symbols)
*rel++ = {sym->get_addr(), R_X86_64_COPY, sym->dynsym_idx, 0};
for (Symbol *sym : out::dynbss_relro->symbols)
*rel++ = {sym->get_addr(), R_X86_64_COPY, sym->dynsym_idx, 0};
}
void GotPltSection::copy_buf() {
u64 *buf = (u64 *)(out::buf + shdr.sh_offset);
// The first slot of .got.plt points to _DYNAMIC, as requested by
// the x86-64 psABI. The second and the third slots are reserved by
// the psABI.
buf[0] = out::dynamic ? out::dynamic->shdr.sh_addr : 0;
buf[1] = 0;
buf[2] = 0;
for (Symbol *sym : out::plt->symbols)
if (sym->gotplt_idx != -1)
buf[sym->gotplt_idx] = sym->get_plt_addr() + 6;
}
void PltSection::add_symbol(Symbol *sym) {
assert(sym->plt_idx == -1);
assert(sym->got_idx == -1);
if (shdr.sh_size == 0) {
shdr.sh_size = PLT_SIZE;
out::gotplt->shdr.sh_size = GOT_SIZE * 3;
}
sym->plt_idx = shdr.sh_size / PLT_SIZE;
shdr.sh_size += PLT_SIZE;
symbols.push_back(sym);
sym->gotplt_idx = out::gotplt->shdr.sh_size / GOT_SIZE;
out::gotplt->shdr.sh_size += GOT_SIZE;
out::relplt->shdr.sh_size += sizeof(ElfRela);
out::dynsym->add_symbol(sym);
}
void PltSection::copy_buf() {
u8 *buf = out::buf + shdr.sh_offset;
static const u8 plt0[] = {
0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
0x0f, 0x1f, 0x40, 0x00, // nop
};
memcpy(buf, plt0, sizeof(plt0));
*(u32 *)(buf + 2) = out::gotplt->shdr.sh_addr - shdr.sh_addr + 2;
*(u32 *)(buf + 8) = out::gotplt->shdr.sh_addr - shdr.sh_addr + 4;
i64 relplt_idx = 0;
static const u8 data[] = {
0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOTPLT
0x68, 0, 0, 0, 0, // push $index_in_relplt
0xe9, 0, 0, 0, 0, // jmp PLT[0]
};
for (Symbol *sym : symbols) {
u8 *ent = buf + sym->plt_idx * PLT_SIZE;
memcpy(ent, data, sizeof(data));
*(u32 *)(ent + 2) = sym->get_gotplt_addr() - sym->get_plt_addr() - 6;
*(u32 *)(ent + 7) = relplt_idx++;
*(u32 *)(ent + 12) = shdr.sh_addr - sym->get_plt_addr() - 16;
}
}
void PltGotSection::add_symbol(Symbol *sym) {
assert(sym->plt_idx == -1);
assert(sym->got_idx != -1);
sym->plt_idx = shdr.sh_size / PLT_GOT_SIZE;
shdr.sh_size += PLT_GOT_SIZE;
symbols.push_back(sym);
}
void PltGotSection::copy_buf() {
u8 *buf = out::buf + shdr.sh_offset;
static const u8 data[] = {
0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT
0x66, 0x90, // nop
};
for (Symbol *sym : symbols) {
u8 *ent = buf + sym->plt_idx * PLT_GOT_SIZE;
memcpy(ent, data, sizeof(data));
*(u32 *)(ent + 2) = sym->get_got_addr() - sym->get_plt_addr() - 6;
}
}
void RelPltSection::update_shdr() {
shdr.sh_link = out::dynsym->shndx;
}
void RelPltSection::copy_buf() {
ElfRela *buf = (ElfRela *)(out::buf + shdr.sh_offset);
memset(buf, 0, shdr.sh_size);
i64 relplt_idx = 0;
for (Symbol *sym : out::plt->symbols) {
ElfRela &rel = buf[relplt_idx++];
memset(&rel, 0, sizeof(rel));
rel.r_sym = sym->dynsym_idx;
rel.r_offset = sym->get_gotplt_addr();
if (sym->get_type() == STT_GNU_IFUNC) {
rel.r_type = R_X86_64_IRELATIVE;
rel.r_addend = sym->input_section->get_addr() + sym->value;
} else {
rel.r_type = R_X86_64_JUMP_SLOT;
}
}
}
void DynsymSection::add_symbol(Symbol *sym) {
if (symbols.empty())
symbols.push_back({});
if (sym->dynsym_idx != -1)
return;
sym->dynsym_idx = -2;
symbols.push_back(sym);
}
void DynsymSection::sort_symbols() {
Timer t("sort_dynsyms");
struct T {
Symbol *sym;
i32 idx;
u32 hash;
bool is_local() const {
return sym->esym->st_bind == STB_LOCAL;
}
};
std::vector<T> vec(symbols.size());
for (i32 i = 1; i < symbols.size(); i++)
vec[i] = {symbols[i], i, 0};
// In any ELF file, local symbols should precede global symbols.
tbb::parallel_sort(vec.begin() + 1, vec.end(), [](const T &a, const T &b) {
return std::tuple(a.is_local(), a.idx) < std::tuple(b.is_local(), b.idx);
});
auto first_global = std::partition_point(vec.begin() + 1, vec.end(),
[](const T &x) {
return x.is_local();
});
// In any ELF file, the index of the first global symbols can be
// found in the symtab's sh_info field.
shdr.sh_info = first_global - vec.begin();
// If we have .gnu.hash section, it imposes more constraints
// on the order of symbols.
if (out::gnu_hash) {
i64 num_globals = vec.end() - first_global;
out::gnu_hash->num_buckets = num_globals / out::gnu_hash->LOAD_FACTOR + 1;
out::gnu_hash->symoffset = first_global - vec.begin();
tbb::parallel_for_each(first_global, vec.end(), [](T &x) {
x.hash = gnu_hash(x.sym->name) % out::gnu_hash->num_buckets;
});
tbb::parallel_sort(first_global, vec.end(), [&](const T &a, const T &b) {
return std::tuple(a.hash, a.idx) < std::tuple(b.hash, b.idx);
});
}
out::dynstr->dynsym_offset = out::dynstr->shdr.sh_size;
for (i64 i = 1; i < symbols.size(); i++) {
symbols[i] = vec[i].sym;
symbols[i]->dynsym_idx = i;
out::dynstr->shdr.sh_size += symbols[i]->name.size() + 1;
}
}
void DynsymSection::update_shdr() {
shdr.sh_link = out::dynstr->shndx;
shdr.sh_size = sizeof(ElfSym) * symbols.size();
}
void DynsymSection::copy_buf() {
u8 *base = out::buf + shdr.sh_offset;
memset(base, 0, sizeof(ElfSym));
i64 name_offset = out::dynstr->dynsym_offset;
for (i64 i = 1; i < symbols.size(); i++) {
Symbol &sym = *symbols[i];
ElfSym &esym = *(ElfSym *)(base + sym.dynsym_idx * sizeof(ElfSym));
memset(&esym, 0, sizeof(esym));
esym.st_type = sym.get_type();
esym.st_size = sym.esym->st_size;
if (sym.is_weak)
esym.st_bind = STB_WEAK;
else if (sym.file->is_dso)
esym.st_bind = STB_GLOBAL;
else
esym.st_bind = sym.esym->st_bind;
esym.st_name = name_offset;
name_offset += sym.name.size() + 1;
if (sym.has_copyrel) {
esym.st_shndx = sym.copyrel_readonly
? out::dynbss_relro->shndx : out::dynbss->shndx;
esym.st_value = sym.get_addr();
} else if (sym.file->is_dso || sym.esym->is_undef()) {
esym.st_shndx = SHN_UNDEF;
esym.st_size = 0;
if (!config.shared && sym.plt_idx != -1 && sym.got_idx == -1) {
// Emit an address for a canonical PLT
esym.st_value = sym.get_plt_addr();
}
} else if (!sym.input_section) {
esym.st_shndx = SHN_ABS;
esym.st_value = sym.get_addr();
} else if (sym.get_type() == STT_TLS) {
esym.st_shndx = sym.input_section->output_section->shndx;
esym.st_value = sym.get_addr() - out::tls_begin;
} else {
esym.st_shndx = sym.input_section->output_section->shndx;
esym.st_value = sym.get_addr();
}
}
}
void HashSection::update_shdr() {
if (out::dynsym->symbols.empty())
return;
i64 header_size = 8;
i64 num_slots = out::dynsym->symbols.size();
shdr.sh_size = header_size + num_slots * 8;
shdr.sh_link = out::dynsym->shndx;
}
void HashSection::copy_buf() {
u8 *base = out::buf + shdr.sh_offset;
memset(base, 0, shdr.sh_size);
i64 num_slots = out::dynsym->symbols.size();
u32 *hdr = (u32 *)base;
u32 *buckets = (u32 *)(base + 8);
u32 *chains = buckets + num_slots;
hdr[0] = hdr[1] = num_slots;
for (i64 i = 1; i < out::dynsym->symbols.size(); i++) {
Symbol *sym = out::dynsym->symbols[i];
i64 idx = elf_hash(sym->name) % num_slots;
chains[sym->dynsym_idx] = buckets[idx];
buckets[idx] = sym->dynsym_idx;
}
}
void GnuHashSection::update_shdr() {
if (out::dynsym->symbols.empty())
return;
shdr.sh_link = out::dynsym->shndx;
if (i64 num_symbols = out::dynsym->symbols.size() - symoffset) {
// We allocate 12 bits for each symbol in the bloom filter.
i64 num_bits = num_symbols * 12;
num_bloom = next_power_of_two(num_bits / ELFCLASS_BITS);
}
i64 num_symbols = out::dynsym->symbols.size() - symoffset;
shdr.sh_size = HEADER_SIZE; // Header
shdr.sh_size += num_bloom * ELFCLASS_BITS / 8; // Bloom filter
shdr.sh_size += num_buckets * 4; // Hash buckets
shdr.sh_size += num_symbols * 4; // Hash values
}
void GnuHashSection::copy_buf() {
u8 *base = out::buf + shdr.sh_offset;
memset(base, 0, shdr.sh_size);
*(u32 *)base = num_buckets;
*(u32 *)(base + 4) = symoffset;
*(u32 *)(base + 8) = num_bloom;
*(u32 *)(base + 12) = BLOOM_SHIFT;
std::span<Symbol *> symbols =
std::span(out::dynsym->symbols).subspan(symoffset);
std::vector<u32> hashes(symbols.size());
for (i64 i = 0; i < symbols.size(); i++)
hashes[i] = gnu_hash(symbols[i]->name);
// Write a bloom filter
u64 *bloom = (u64 *)(base + HEADER_SIZE);
for (i64 hash : hashes) {
i64 idx = (hash / 64) % num_bloom;
bloom[idx] |= (u64)1 << (hash % ELFCLASS_BITS);
bloom[idx] |= (u64)1 << ((hash >> BLOOM_SHIFT) % ELFCLASS_BITS);
}
// Write hash bucket indices
u32 *buckets = (u32 *)(bloom + num_bloom);
for (i64 i = 0; i < hashes.size(); i++) {
i64 idx = hashes[i] % num_buckets;
if (!buckets[idx])
buckets[idx] = i + symoffset;
}
// Write a hash table
u32 *table = buckets + num_buckets;
for (i64 i = 0; i < symbols.size(); i++) {
bool is_last = false;
if (i == symbols.size() - 1 ||
(hashes[i] % num_buckets) != (hashes[i + 1] % num_buckets))
is_last = true;
if (is_last)
table[i] = hashes[i] | 1;
else
table[i] = hashes[i] & ~1;
}
}
MergedSection *
MergedSection::get_instance(std::string_view name, u64 type, u64 flags) {
name = get_output_name(name);
flags = flags & ~(u64)SHF_MERGE & ~(u64)SHF_STRINGS;
auto find = [&]() -> MergedSection * {
for (MergedSection *osec : MergedSection::instances)
if (std::tuple(name, flags, type) ==
std::tuple(osec->name, osec->shdr.sh_flags, osec->shdr.sh_type))
return osec;
return nullptr;
};
// Search for an exiting output section.
static std::shared_mutex mu;
{
std::shared_lock lock(mu);
if (MergedSection *osec = find())
return osec;
}
// Create a new output section.
std::unique_lock lock(mu);
if (MergedSection *osec = find())
return osec;
auto *osec = new MergedSection(name, flags, type);
MergedSection::instances.push_back(osec);
return osec;
}
static void update_atomic_max(std::atomic_uint16_t &atom, i16 val) {
u16 cur = atom;
while (cur < val)
if (atom.compare_exchange_strong(cur, val))
break;
}
SectionFragment *MergedSection::insert(std::string_view data, i64 alignment) {
assert(alignment < UINT16_MAX);
std::string_view suffix = data;
if (suffix.size() > 32)
suffix = suffix.substr(suffix.size() - 32);
i64 shard = hash_string(suffix) % NUM_SHARDS;
MapTy::const_accessor acc;
bool inserted =
maps[shard].insert(acc, std::pair(data, SectionFragment(this, data)));
SectionFragment *frag = const_cast<SectionFragment *>(&acc->second);
update_atomic_max(frag->alignment, alignment);
update_atomic_max(max_alignment, alignment);
return frag;
}
void MergedSection::assign_offsets() {
std::vector<SectionFragment *> fragments[NUM_SHARDS];
i64 sizes[NUM_SHARDS] = {};
tbb::parallel_for((i64)0, NUM_SHARDS, [&](i64 i) {
for (auto it = maps[i].begin(); it != maps[i].end(); it++)
if (SectionFragment &frag = it->second; frag.is_alive)
fragments[i].push_back(&frag);
// Sort section fragments to make an output deterministic.
std::sort(fragments[i].begin(), fragments[i].end(),
[&](SectionFragment *a, SectionFragment *b) {
if (a->alignment != b->alignment)
return a->alignment > b->alignment;
if (a->data.size() != b->data.size())
return a->data.size() < b->data.size();
return a->data < b->data;
});
i64 offset = 0;
for (SectionFragment *frag : fragments[i]) {
offset = align_to(offset, frag->alignment);
frag->offset = offset;
offset += frag->data.size();
}
sizes[i] = offset;
});
for (i64 i = 1; i < NUM_SHARDS + 1; i++)
shard_offsets[i] =
align_to(shard_offsets[i - 1] + sizes[i - 1], max_alignment);
tbb::parallel_for((i64)1, NUM_SHARDS, [&](i64 i) {
for (SectionFragment *frag : fragments[i])
frag->offset += shard_offsets[i];
});
shdr.sh_size = shard_offsets[NUM_SHARDS];
shdr.sh_addralign = max_alignment;
static Counter merged_strings("merged_strings");
for (std::span<SectionFragment *> span : fragments)
merged_strings += span.size();
}
void MergedSection::copy_buf() {
u8 *base = out::buf + shdr.sh_offset;
tbb::parallel_for((i64)0, NUM_SHARDS, [&](i64 i) {
memset(base + shard_offsets[i], 0, shard_offsets[i + 1] - shard_offsets[i]);
for (auto it = maps[i].begin(); it != maps[i].end(); it++)
if (SectionFragment &frag = it->second; frag.is_alive)
memcpy(base + frag.offset, frag.data.data(), frag.data.size());
});
}
void EhFrameSection::construct() {
// Remove dead FDEs and assign them offsets within their corresponding
// CIE group.
tbb::parallel_for((i64)0, (i64)out::objs.size(), [&](i64 i) {
ObjectFile *file = out::objs[i];
i64 count = 0;
for (CieRecord &cie : file->cies) {
i64 offset = 0;
for (FdeRecord &fde : cie.fdes) {
if (!fde.is_alive)
continue;
fde.offset = offset;
offset += fde.contents.size();
cie.num_fdes++;
}
cie.fde_size = offset;
}
});
// Aggreagate CIEs.
cies.reserve(out::objs.size());
for (ObjectFile *file : out::objs)
for (CieRecord &cie : file->cies)
cies.push_back(&cie);
// Record the total number of FDEs for .eh_frame_hdr.
for (CieRecord *cie : cies) {
cie->fde_idx = num_fdes;
num_fdes += cie->num_fdes;
}
// Assign offsets within the output section to CIEs.
auto should_merge = [](CieRecord &a, CieRecord &b) {
return a.contents == b.contents && a.rels == b.rels;
};
i64 offset = 0;
for (i64 i = 0; i < cies.size(); i++) {
CieRecord &cie = *cies[i];
cie.offset = offset;
if (i == 0 || !should_merge(cie, *cies[i - 1])) {
cie.leader_offset = offset;
offset += cie.contents.size() + cie.fde_size;
} else {
cie.leader_offset = cies[i - 1]->leader_offset;
offset += cie.fde_size;
}
}
shdr.sh_size = offset;
if (out::eh_frame_hdr)
out::eh_frame_hdr->shdr.sh_size =
out::eh_frame_hdr->HEADER_SIZE + num_fdes * 8;
}
void EhFrameSection::copy_buf() {
u8 *base = out::buf + shdr.sh_offset;
u8 *hdr_base = nullptr;
if (out::eh_frame_hdr)
hdr_base = out::buf + out::eh_frame_hdr->shdr.sh_offset;
auto apply_reloc = [&](EhReloc &rel, u64 loc, u64 val) {
switch (rel.type) {
case R_X86_64_32:
*(u32 *)(base + loc) = val;
return;
case R_X86_64_64:
*(u64 *)(base + loc) = val;
return;
case R_X86_64_PC32:
*(u32 *)(base + loc) = val - shdr.sh_addr - loc;
return;
case R_X86_64_PC64:
*(u64 *)(base + loc) = val - shdr.sh_addr - loc;
return;
}
unreachable();
};
struct Entry {
i32 init_addr;
i32 fde_addr;
};
// Copy CIEs and FDEs.
tbb::parallel_for_each(cies, [&](CieRecord *cie) {
i64 cie_size = 0;
Entry *entry = nullptr;
if (out::eh_frame_hdr)
entry = (Entry *)(hdr_base + out::eh_frame_hdr->HEADER_SIZE) +
cie->fde_idx;
// Copy a CIE.
if (cie->offset == cie->leader_offset) {
memcpy(base + cie->offset, cie->contents.data(), cie->contents.size());
cie_size = cie->contents.size();
for (EhReloc &rel : cie->rels) {
u64 loc = cie->offset + rel.offset;
u64 val = rel.sym.get_addr() + rel.addend;
apply_reloc(rel, loc, val);
}
}
// Copy FDEs.
for (FdeRecord &fde : cie->fdes) {
if (fde.offset == -1)
continue;
i64 fde_off = cie->offset + cie_size + fde.offset;
memcpy(base + fde_off, fde.contents.data(), fde.contents.size());
*(u32 *)(base + fde_off + 4) = fde_off + 4 - cie->leader_offset;
for (i64 i = 0; i < fde.rels.size(); i++) {
EhReloc &rel = fde.rels[i];
u64 loc = fde_off + rel.offset;
u64 val = rel.sym.get_addr() + rel.addend;
apply_reloc(rel, loc, val);
// Write to .eh_frame_hdr
if (out::eh_frame_hdr && i == 0) {
assert(rel.offset == 8);
entry->init_addr = val - out::eh_frame_hdr->shdr.sh_addr;
entry->fde_addr =
shdr.sh_addr + fde_off - out::eh_frame_hdr->shdr.sh_addr;
entry++;
}
}
}
});
if (out::eh_frame_hdr) {
// Write .eh_frame_hdr header
hdr_base[0] = 1;
hdr_base[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
hdr_base[2] = DW_EH_PE_udata4;
hdr_base[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
*(u32 *)(hdr_base + 4) =
shdr.sh_addr - out::eh_frame_hdr->shdr.sh_addr - 4;
*(u32 *)(hdr_base + 8) = num_fdes;
// Sort .eh_frame_hdr contents
Entry *begin = (Entry *)(hdr_base + out::eh_frame_hdr->HEADER_SIZE);
Entry *end = begin + num_fdes;
tbb::parallel_sort(begin, end, [](const Entry &a, const Entry &b) {
return a.init_addr < b.init_addr;
});
}
}
// Compiler-generated object files don't usually contain symbols
// referring a .eh_frame section, but crtend.o contains such symbol
// (i.e. "__FRAME_END__"). So we need to handle such symbol.
// This function is slow, but it's okay because they are rare.
u64 EhFrameSection::get_addr(const Symbol &sym) {
InputSection &isec = *sym.input_section;
const char *section_begin = isec.contents.data();
auto contains = [](std::string_view str, const char *ptr) {
const char *begin = str.data();
const char *end = begin + str.size();
return (begin == ptr) || (begin < ptr && ptr < end);
};
for (CieRecord &cie : isec.file.cies) {
u64 offset = 0;
if (cie.offset == cie.leader_offset) {
if (contains(cie.contents, section_begin + offset)) {
u64 cie_addr = shdr.sh_addr + cie.offset;
u64 addend = sym.value - offset;
return cie_addr + addend;
}
offset += cie.contents.size();
}
for (FdeRecord &fde : cie.fdes) {
if (contains(fde.contents, section_begin + offset)) {
if (!fde.is_alive)
return 0;
u64 fde_addr = shdr.sh_addr + cie.offset + offset;
u64 addend = sym.value - offset;
return fde_addr + addend;
}
offset += fde.contents.size();
}
}
Fatal() << isec.file << ": .eh_frame has bad symbol: " << sym;
}
void DynbssSection::add_symbol(Symbol *sym) {
if (sym->has_copyrel)
return;
assert(!config.shared);
assert(sym->file->is_dso);
shdr.sh_size = align_to(shdr.sh_size, shdr.sh_addralign);
sym->value = shdr.sh_size;
sym->has_copyrel = true;
shdr.sh_size += sym->esym->st_size;
symbols.push_back(sym);
out::dynsym->add_symbol(sym);
}
void VersymSection::update_shdr() {
shdr.sh_size = contents.size() * sizeof(contents[0]);
shdr.sh_link = out::dynsym->shndx;
}
void VersymSection::copy_buf() {
write_vector(out::buf + shdr.sh_offset, contents);
}
void VerneedSection::update_shdr() {
shdr.sh_size = contents.size();
shdr.sh_link = out::dynstr->shndx;
}
void VerneedSection::copy_buf() {
write_vector(out::buf + shdr.sh_offset, contents);
}
void VerdefSection::update_shdr() {
shdr.sh_size = contents.size();
shdr.sh_link = out::dynstr->shndx;
}
void VerdefSection::copy_buf() {
write_vector(out::buf + shdr.sh_offset, contents);
}
void BuildIdSection::update_shdr() {
shdr.sh_size = HEADER_SIZE + config.build_id.size();
}
void BuildIdSection::copy_buf() {
u32 *base = (u32 *)(out::buf + shdr.sh_offset);
memset(base, 0, shdr.sh_size);
base[0] = 4; // Name size
base[1] = config.build_id.size(); // Hash size
base[2] = NT_GNU_BUILD_ID; // Type
memcpy(base + 3, "GNU", 4); // Name string
}
static void compute_sha256(u8 *buf, i64 size, u8 *digest) {
i64 shard_size = 1024 * 1024;
i64 num_shards = size / shard_size + 1;
std::vector<u8> shards(num_shards * SHA256_SIZE);
tbb::parallel_for((i64)0, num_shards, [&](i64 i) {
u8 *begin = buf + shard_size * i;
i64 sz = (i < num_shards - 1) ? shard_size : (size % shard_size);
SHA256(begin, sz, shards.data() + i * SHA256_SIZE);
});
SHA256(shards.data(), shards.size(), digest);
}
void BuildIdSection::write_buildid(i64 filesize) {
switch (config.build_id.kind) {
case BuildId::HEX:
write_vector(out::buf + shdr.sh_offset + HEADER_SIZE,
config.build_id.value);
return;
case BuildId::HASH: {
// Modern x86 processors have purpose-built instructions to accelerate
// SHA256 computation, and SHA256 outperforms MD5 on such computers.
// So, we always compute SHA256 and truncate it if smaller digest was
// requested.
u8 digest[SHA256_SIZE];
assert(config.build_id.size() <= SHA256_SIZE);
compute_sha256(out::buf, filesize, digest);
memcpy(out::buf + shdr.sh_offset + HEADER_SIZE, digest,
config.build_id.size());
return;
}
case BuildId::UUID:
if (!RAND_bytes(out::buf + shdr.sh_offset + HEADER_SIZE,
config.build_id.size()))
Fatal() << "RAND_bytes failed";
return;
}
unreachable();
}