1
1
mirror of https://github.com/rui314/mold.git synced 2024-09-21 09:57:18 +03:00
mold/arch_x86_64.cc
Rui Ueyama d90c0651c9 wip
2021-04-03 21:20:48 +09:00

664 lines
20 KiB
C++

#include "mold.h"
enum {
R_GOTPCRELX_RELAX = R_END + 1,
R_REX_GOTPCRELX_RELAX,
};
template <>
void PltSection<X86_64>::copy_buf(Context<X86_64> &ctx) {
u8 *buf = ctx.buf + this->shdr.sh_offset;
// Write PLT header
static const u8 plt0[] = {
0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
0x0f, 0x1f, 0x40, 0x00, // nop
};
memcpy(buf, plt0, sizeof(plt0));
*(u32 *)(buf + 2) = ctx.gotplt->shdr.sh_addr - this->shdr.sh_addr + 2;
*(u32 *)(buf + 8) = ctx.gotplt->shdr.sh_addr - this->shdr.sh_addr + 4;
// Write PLT entries
i64 relplt_idx = 0;
static const u8 data[] = {
0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOTPLT
0x68, 0, 0, 0, 0, // push $index_in_relplt
0xe9, 0, 0, 0, 0, // jmp PLT[0]
};
for (Symbol<X86_64> *sym : symbols) {
u8 *ent = buf + sym->get_plt_idx(ctx) * X86_64::plt_size;
memcpy(ent, data, sizeof(data));
*(u32 *)(ent + 2) = sym->get_gotplt_addr(ctx) - sym->get_plt_addr(ctx) - 6;
*(u32 *)(ent + 7) = relplt_idx++;
*(u32 *)(ent + 12) = this->shdr.sh_addr - sym->get_plt_addr(ctx) - 16;
}
}
template <>
void PltGotSection<X86_64>::copy_buf(Context<X86_64> &ctx) {
u8 *buf = ctx.buf + this->shdr.sh_offset;
static const u8 data[] = {
0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT
0x66, 0x90, // nop
};
for (Symbol<X86_64> *sym : symbols) {
u8 *ent = buf + sym->get_pltgot_idx(ctx) * X86_64::pltgot_size;
memcpy(ent, data, sizeof(data));
*(u32 *)(ent + 2) = sym->get_got_addr(ctx) - sym->get_plt_addr(ctx) - 6;
}
}
template <>
void EhFrameSection<X86_64>::apply_reloc(Context<X86_64> &ctx,
EhReloc<X86_64> &rel,
u64 loc, u64 val) {
u8 *base = ctx.buf + this->shdr.sh_offset;
switch (rel.type) {
case R_X86_64_32:
*(u32 *)(base + loc) = val;
return;
case R_X86_64_64:
*(u64 *)(base + loc) = val;
return;
case R_X86_64_PC32:
*(u32 *)(base + loc) = val - this->shdr.sh_addr - loc;
return;
case R_X86_64_PC64:
*(u64 *)(base + loc) = val - this->shdr.sh_addr - loc;
return;
}
unreachable(ctx);
}
static void overflow_check(Context<X86_64> &ctx, InputSection<X86_64> *sec,
Symbol<X86_64> &sym, u64 r_type, u64 val) {
switch (r_type) {
case R_X86_64_8:
if (val != (u8)val)
Error(ctx) << *sec << ": relocation R_X86_64_8 against " << sym
<< " out of range: " << val << " is not in [0, 255]";
return;
case R_X86_64_PC8:
if (val != (i8)val)
Error(ctx) << *sec << ": relocation R_X86_64_PC8 against " << sym
<< " out of range: " << (i64)val << " is not in [-128, 127]";
return;
case R_X86_64_16:
if (val != (u16)val)
Error(ctx) << *sec << ": relocation R_X86_64_16 against " << sym
<< " out of range: " << val << " is not in [0, 65535]";
return;
case R_X86_64_PC16:
if (val != (i16)val)
Error(ctx) << *sec << ": relocation R_X86_64_PC16 against " << sym
<< " out of range: " << (i64)val << " is not in [-32768, 32767]";
return;
case R_X86_64_32:
if (val != (u32)val)
Error(ctx) << *sec << ": relocation R_X86_64_32 against " << sym
<< " out of range: " << val << " is not in [0, 4294967296]";
return;
case R_X86_64_32S:
case R_X86_64_PC32:
case R_X86_64_GOT32:
case R_X86_64_GOTPC32:
case R_X86_64_GOTPCREL:
case R_X86_64_GOTPCRELX:
case R_X86_64_REX_GOTPCRELX:
case R_X86_64_PLT32:
case R_X86_64_TLSGD:
case R_X86_64_TLSLD:
case R_X86_64_TPOFF32:
case R_X86_64_DTPOFF32:
case R_X86_64_GOTTPOFF:
case R_X86_64_GOTPC32_TLSDESC:
case R_X86_64_SIZE32:
case R_X86_64_TLSDESC_CALL:
if (val != (i32)val)
Error(ctx) << *sec << ": relocation " << rel_to_string<X86_64>(r_type)
<< " against " << sym << " out of range: " << (i64)val
<< " is not in [-2147483648, 2147483647]";
return;
case R_X86_64_NONE:
case R_X86_64_64:
case R_X86_64_PC64:
case R_X86_64_TPOFF64:
case R_X86_64_DTPOFF64:
case R_X86_64_GOT64:
case R_X86_64_GOTPCREL64:
case R_X86_64_GOTPC64:
case R_X86_64_SIZE64:
return;
}
unreachable(ctx);
}
static void write_val(Context<X86_64> &ctx, u64 r_type, u8 *loc, u64 val) {
switch (r_type) {
case R_X86_64_NONE:
return;
case R_X86_64_8:
case R_X86_64_PC8:
*loc = val;
return;
case R_X86_64_16:
case R_X86_64_PC16:
*(u16 *)loc = val;
return;
case R_X86_64_32:
case R_X86_64_32S:
case R_X86_64_PC32:
case R_X86_64_GOT32:
case R_X86_64_GOTPC32:
case R_X86_64_GOTPCREL:
case R_X86_64_GOTPCRELX:
case R_X86_64_REX_GOTPCRELX:
case R_X86_64_PLT32:
case R_X86_64_TLSGD:
case R_X86_64_TLSLD:
case R_X86_64_TPOFF32:
case R_X86_64_DTPOFF32:
case R_X86_64_GOTTPOFF:
case R_X86_64_GOTPC32_TLSDESC:
case R_X86_64_SIZE32:
case R_X86_64_TLSDESC_CALL:
*(u32 *)loc = val;
return;
case R_X86_64_64:
case R_X86_64_PC64:
case R_X86_64_TPOFF64:
case R_X86_64_DTPOFF64:
case R_X86_64_GOT64:
case R_X86_64_GOTPCREL64:
case R_X86_64_GOTPC64:
case R_X86_64_SIZE64:
*(u64 *)loc = val;
return;
}
unreachable(ctx);
}
static u32 relax_gotpcrelx(u8 *loc) {
switch ((loc[0] << 8) | loc[1]) {
case 0xff15: return 0x90e8; // call *0(%rip) -> call 0
case 0xff25: return 0x90e9; // jmp *0(%rip) -> jmp 0
}
return 0;
}
static u32 relax_rex_gotpcrelx(u8 *loc) {
switch ((loc[0] << 16) | (loc[1] << 8) | loc[2]) {
case 0x488b05: return 0x488d05; // mov 0(%rip), %rax -> lea 0(%rip), %rax
case 0x488b0d: return 0x488d0d; // mov 0(%rip), %rcx -> lea 0(%rip), %rcx
case 0x488b15: return 0x488d15; // mov 0(%rip), %rdx -> lea 0(%rip), %rdx
case 0x488b1d: return 0x488d1d; // mov 0(%rip), %rbx -> lea 0(%rip), %rbx
case 0x488b25: return 0x488d25; // mov 0(%rip), %rsp -> lea 0(%rip), %rsp
case 0x488b2d: return 0x488d2d; // mov 0(%rip), %rbp -> lea 0(%rip), %rbp
case 0x488b35: return 0x488d35; // mov 0(%rip), %rsi -> lea 0(%rip), %rsi
case 0x488b3d: return 0x488d3d; // mov 0(%rip), %rdi -> lea 0(%rip), %rdi
case 0x4c8b05: return 0x4c8d05; // mov 0(%rip), %r8 -> lea 0(%rip), %r8
case 0x4c8b0d: return 0x4c8d0d; // mov 0(%rip), %r9 -> lea 0(%rip), %r9
case 0x4c8b15: return 0x4c8d15; // mov 0(%rip), %r10 -> lea 0(%rip), %r10
case 0x4c8b1d: return 0x4c8d1d; // mov 0(%rip), %r11 -> lea 0(%rip), %r11
case 0x4c8b25: return 0x4c8d25; // mov 0(%rip), %r12 -> lea 0(%rip), %r12
case 0x4c8b2d: return 0x4c8d2d; // mov 0(%rip), %r13 -> lea 0(%rip), %r13
case 0x4c8b35: return 0x4c8d35; // mov 0(%rip), %r14 -> lea 0(%rip), %r14
case 0x4c8b3d: return 0x4c8d3d; // mov 0(%rip), %r15 -> lea 0(%rip), %r15
}
return 0;
}
static u32 relax_gottpoff(u8 *loc) {
switch ((loc[0] << 16) | (loc[1] << 8) | loc[2]) {
case 0x488b05: return 0x48c7c0; // mov 0(%rip), %rax -> mov $0, %rax
case 0x488b0d: return 0x48c7c1; // mov 0(%rip), %rcx -> mov $0, %rcx
case 0x488b15: return 0x48c7c2; // mov 0(%rip), %rdx -> mov $0, %rdx
case 0x488b1d: return 0x48c7c3; // mov 0(%rip), %rbx -> mov $0, %rbx
case 0x488b25: return 0x48c7c4; // mov 0(%rip), %rsp -> mov $0, %rsp
case 0x488b2d: return 0x48c7c5; // mov 0(%rip), %rbp -> mov $0, %rbp
case 0x488b35: return 0x48c7c6; // mov 0(%rip), %rsi -> mov $0, %rsi
case 0x488b3d: return 0x48c7c7; // mov 0(%rip), %rdi -> mov $0, %rdi
case 0x4c8b05: return 0x49c7c0; // mov 0(%rip), %r8 -> mov $0, %r8
case 0x4c8b0d: return 0x49c7c1; // mov 0(%rip), %r9 -> mov $0, %r9
case 0x4c8b15: return 0x49c7c2; // mov 0(%rip), %r10 -> mov $0, %r10
case 0x4c8b1d: return 0x49c7c3; // mov 0(%rip), %r11 -> mov $0, %r11
case 0x4c8b25: return 0x49c7c4; // mov 0(%rip), %r12 -> mov $0, %r12
case 0x4c8b2d: return 0x49c7c5; // mov 0(%rip), %r13 -> mov $0, %r13
case 0x4c8b35: return 0x49c7c6; // mov 0(%rip), %r14 -> mov $0, %r14
case 0x4c8b3d: return 0x49c7c7; // mov 0(%rip), %r15 -> mov $0, %r15
}
return 0;
}
// Apply relocations to SHF_ALLOC sections (i.e. sections that are
// mapped to memory at runtime) based on the result of
// scan_relocations().
template <>
void InputSection<X86_64>::apply_reloc_alloc(Context<X86_64> &ctx, u8 *base) {
i64 ref_idx = 0;
ElfRel<X86_64> *dynrel = nullptr;
std::span<ElfRel<X86_64>> rels = get_rels(ctx);
if (ctx.reldyn)
dynrel = (ElfRel<X86_64> *)(ctx.buf + ctx.reldyn->shdr.sh_offset +
file.reldyn_offset + this->reldyn_offset);
for (i64 i = 0; i < rels.size(); i++) {
const ElfRel<X86_64> &rel = rels[i];
Symbol<X86_64> &sym = *file.symbols[rel.r_sym];
u8 *loc = base + rel.r_offset;
const SectionFragmentRef<X86_64> *ref = nullptr;
if (has_fragments[i])
ref = &rel_fragments[ref_idx++];
auto write = [&](u64 val) {
overflow_check(ctx, this, sym, rel.r_type, val);
write_val(ctx, rel.r_type, loc, val);
};
#define S (ref ? ref->frag->get_addr(ctx) : sym.get_addr(ctx))
#define A (ref ? ref->addend : rel.r_addend)
#define P (output_section->shdr.sh_addr + offset + rel.r_offset)
#define G (sym.get_got_addr(ctx) - ctx.got->shdr.sh_addr)
#define GOT ctx.got->shdr.sh_addr
switch (rel_types[i]) {
case R_NONE:
break;
case R_ABS:
write(S + A);
break;
case R_BASEREL:
*dynrel++ = {P, R_X86_64_RELATIVE, 0, (i64)(S + A)};
break;
case R_DYN:
*dynrel++ = {P, R_X86_64_64, (u32)sym.get_dynsym_idx(ctx), A};
break;
case R_PC:
write(S + A - P);
break;
case R_GOT:
write(G + A);
break;
case R_GOTPC:
write(GOT + A - P);
break;
case R_GOTPCREL:
write(G + GOT + A - P);
break;
case R_GOTPCRELX_RELAX: {
u32 insn = relax_gotpcrelx(loc - 2);
loc[-2] = insn >> 8;
loc[-1] = insn;
write(S + A - P);
break;
}
case R_REX_GOTPCRELX_RELAX: {
u32 insn = relax_rex_gotpcrelx(loc - 3);
loc[-3] = insn >> 16;
loc[-2] = insn >> 8;
loc[-1] = insn;
write(S + A - P);
break;
}
case R_TLSGD:
write(sym.get_tlsgd_addr(ctx) + A - P);
break;
case R_TLSGD_RELAX_LE: {
// Relax GD to LE
static const u8 insn[] = {
0x64, 0x48, 0x8b, 0x04, 0x25, 0, 0, 0, 0, // mov %fs:0, %rax
0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea 0(%rax), %rax
};
memcpy(loc - 4, insn, sizeof(insn));
*(u32 *)(loc + 8) = S - ctx.tls_end + A + 4;
i++;
break;
}
case R_TLSLD:
write(ctx.got->get_tlsld_addr(ctx) + A - P);
break;
case R_TLSLD_RELAX_LE: {
// Relax LD to LE
static const u8 insn[] = {
0x66, 0x66, 0x66, // (padding)
0x64, 0x48, 0x8b, 0x04, 0x25, 0, 0, 0, 0, // mov %fs:0, %rax
};
memcpy(loc - 3, insn, sizeof(insn));
i++;
break;
}
case R_DTPOFF:
write(S + A - ctx.tls_begin);
break;
case R_DTPOFF_RELAX:
write(S + A - ctx.tls_end);
break;
case R_TPOFF:
write(S + A - ctx.tls_end);
break;
case R_GOTTPOFF:
write(sym.get_gottp_addr(ctx) + A - P);
break;
case R_GOTTPOFF_RELAX: {
u32 insn = relax_gottpoff(loc - 3);
loc[-3] = insn >> 16;
loc[-2] = insn >> 8;
loc[-1] = insn;
write(S + A - ctx.tls_end + 4);
break;
}
case R_GOTPC_TLSDESC:
write(sym.get_tlsdesc_addr(ctx) + A - P);
break;
case R_GOTPC_TLSDESC_RELAX_LE: {
static const u8 insn[] = {
0x48, 0xc7, 0xc0, 0, 0, 0, 0, // mov $0, %rax
};
memcpy(loc - 3, insn, sizeof(insn));
write(S + A - ctx.tls_end + 4);
break;
}
case R_SIZE:
write(sym.esym().st_size + A);
break;
case R_TLSDESC_CALL_RELAX:
// call *(%rax) -> nop
loc[0] = 0x66;
loc[1] = 0x90;
break;
default:
unreachable(ctx);
}
#undef S
#undef A
#undef P
#undef G
#undef GOT
}
}
// This function is responsible for applying relocations against
// non-SHF_ALLOC sections (i.e. sections that are not mapped to memory
// at runtime).
//
// Relocations against non-SHF_ALLOC sections are much easier to
// handle than that against SHF_ALLOC sections. It is because, since
// they are not mapped to memory, they don't contain any variable or
// function and never need PLT or GOT. Non-SHF_ALLOC sections are
// mostly debug info sections.
//
// Relocations against non-SHF_ALLOC sections are not scanned by
// scan_relocations.
template <>
void InputSection<X86_64>::apply_reloc_nonalloc(Context<X86_64> &ctx, u8 *base) {
std::span<ElfRel<X86_64>> rels = get_rels(ctx);
i64 ref_idx = 0;
for (i64 i = 0; i < rels.size(); i++) {
const ElfRel<X86_64> &rel = rels[i];
Symbol<X86_64> &sym = *file.symbols[rel.r_sym];
u8 *loc = base + rel.r_offset;
if (!sym.file) {
Error(ctx) << "undefined symbol: " << file << ": " << sym;
continue;
}
const SectionFragmentRef<X86_64> *ref = nullptr;
if (has_fragments[i])
ref = &rel_fragments[ref_idx++];
auto write = [&](u64 val) {
overflow_check(ctx, this, sym, rel.r_type, val);
write_val(ctx, rel.r_type, loc, val);
};
switch (rel.r_type) {
case R_X86_64_NONE:
break;
case R_X86_64_8:
case R_X86_64_16:
case R_X86_64_32:
case R_X86_64_32S:
case R_X86_64_64:
if (ref)
write(ref->frag->get_addr(ctx) + ref->addend);
else
write(sym.get_addr(ctx) + rel.r_addend);
break;
case R_X86_64_DTPOFF32:
case R_X86_64_DTPOFF64:
write(sym.get_addr(ctx) + rel.r_addend - ctx.tls_begin);
break;
case R_X86_64_SIZE32:
case R_X86_64_SIZE64:
write(sym.esym().st_size + rel.r_addend);
break;
default:
Fatal(ctx) << *this << ": invalid relocation for non-allocated sections: "
<< rel_to_string<X86_64>(rel.r_type);
break;
}
}
}
// Linker has to create data structures in an output file to apply
// some type of relocations. For example, if a relocation refers a GOT
// or a PLT entry of a symbol, linker has to create an entry in .got
// or in .plt for that symbol. In order to fix the file layout, we
// need to scan relocations.
template <>
void InputSection<X86_64>::scan_relocations(Context<X86_64> &ctx) {
assert(shdr.sh_flags & SHF_ALLOC);
this->reldyn_offset = file.num_dynrel * sizeof(ElfRel<X86_64>);
std::span<ElfRel<X86_64>> rels = get_rels(ctx);
// Scan relocations
for (i64 i = 0; i < rels.size(); i++) {
const ElfRel<X86_64> &rel = rels[i];
Symbol<X86_64> &sym = *file.symbols[rel.r_sym];
u8 *loc = (u8 *)(contents.data() + rel.r_offset);
if (!sym.file) {
Error(ctx) << "undefined symbol: " << file << ": " << sym;
continue;
}
if (sym.get_type() == STT_GNU_IFUNC) {
sym.flags |= NEEDS_GOT;
sym.flags |= NEEDS_PLT;
}
switch (rel.r_type) {
case R_X86_64_NONE:
rel_types[i] = R_NONE;
break;
case R_X86_64_8:
case R_X86_64_16:
case R_X86_64_32:
case R_X86_64_32S: {
// Dynamic linker does not support 8, 16 or 32-bit dynamic
// relocations for these types of relocations. We report an
// error if we cannot relocate them even at load-time.
Action table[][4] = {
// Absolute Local Imported data Imported code
{ NONE, ERROR, ERROR, ERROR }, // DSO
{ NONE, ERROR, ERROR, ERROR }, // PIE
{ NONE, NONE, COPYREL, PLT }, // PDE
};
dispatch(ctx, table, R_ABS, i);
break;
}
case R_X86_64_64: {
// Unlike the above, we can use R_X86_64_RELATIVE and R_86_64_64
// relocations.
Action table[][4] = {
// Absolute Local Imported data Imported code
{ NONE, BASEREL, DYNREL, DYNREL }, // DSO
{ NONE, BASEREL, DYNREL, DYNREL }, // PIE
{ NONE, NONE, COPYREL, PLT }, // PDE
};
dispatch(ctx, table, R_ABS, i);
break;
}
case R_X86_64_PC8:
case R_X86_64_PC16:
case R_X86_64_PC32: {
Action table[][4] = {
// Absolute Local Imported data Imported code
{ ERROR, NONE, ERROR, ERROR }, // DSO
{ ERROR, NONE, COPYREL, PLT }, // PIE
{ NONE, NONE, COPYREL, PLT }, // PDE
};
dispatch(ctx, table, R_PC, i);
break;
}
case R_X86_64_PC64: {
Action table[][4] = {
// Absolute Local Imported data Imported code
{ BASEREL, NONE, ERROR, ERROR }, // DSO
{ BASEREL, NONE, COPYREL, PLT }, // PIE
{ NONE, NONE, COPYREL, PLT }, // PDE
};
dispatch(ctx, table, R_PC, i);
break;
}
case R_X86_64_GOT32:
case R_X86_64_GOT64:
sym.flags |= NEEDS_GOT;
rel_types[i] = R_GOT;
break;
case R_X86_64_GOTPC32:
case R_X86_64_GOTPC64:
sym.flags |= NEEDS_GOT;
rel_types[i] = R_GOTPC;
break;
case R_X86_64_GOTPCREL:
case R_X86_64_GOTPCREL64:
sym.flags |= NEEDS_GOT;
rel_types[i] = R_GOTPCREL;
break;
case R_X86_64_GOTPCRELX: {
if (rel.r_addend != -4)
Fatal(ctx) << *this << ": bad r_addend for R_X86_64_GOTPCRELX";
if (ctx.arg.relax && !sym.is_imported && sym.is_relative(ctx) &&
relax_gotpcrelx(loc - 2)) {
rel_types[i] = R_GOTPCRELX_RELAX;
} else {
sym.flags |= NEEDS_GOT;
rel_types[i] = R_GOTPCREL;
}
break;
}
case R_X86_64_REX_GOTPCRELX:
if (rel.r_addend != -4)
Fatal(ctx) << *this << ": bad r_addend for R_X86_64_REX_GOTPCRELX";
if (ctx.arg.relax && !sym.is_imported && sym.is_relative(ctx) &&
relax_rex_gotpcrelx(loc - 3)) {
rel_types[i] = R_REX_GOTPCRELX_RELAX;
} else {
sym.flags |= NEEDS_GOT;
rel_types[i] = R_GOTPCREL;
}
break;
case R_X86_64_PLT32:
if (sym.is_imported)
sym.flags |= NEEDS_PLT;
rel_types[i] = R_PC;
break;
case R_X86_64_TLSGD: {
if (i + 1 == rels.size())
Fatal(ctx) << *this
<< ": TLSGD reloc must be followed by PLT32 or GOTPCREL";
if (ctx.arg.relax && !ctx.arg.shared && !sym.is_imported) {
rel_types[i++] = R_TLSGD_RELAX_LE;
} else {
sym.flags |= NEEDS_TLSGD;
rel_types[i] = R_TLSGD;
}
break;
}
case R_X86_64_TLSLD:
if (i + 1 == rels.size())
Fatal(ctx) << *this
<< ": TLSGD reloc must be followed by PLT32 or GOTPCREL";
if (sym.is_imported)
Fatal(ctx) << *this << ": TLSLD reloc refers external symbol " << sym;
if (ctx.arg.relax && !ctx.arg.shared) {
rel_types[i++] = R_TLSLD_RELAX_LE;
} else {
sym.flags |= NEEDS_TLSLD;
rel_types[i] = R_TLSLD;
}
break;
case R_X86_64_DTPOFF32:
case R_X86_64_DTPOFF64:
if (sym.is_imported)
Fatal(ctx) << *this << ": DTPOFF reloc refers external symbol " << sym;
if (ctx.arg.relax && !ctx.arg.shared)
rel_types[i] = R_DTPOFF_RELAX;
else
rel_types[i] = R_DTPOFF;
break;
case R_X86_64_TPOFF32:
case R_X86_64_TPOFF64:
rel_types[i] = R_TPOFF;
break;
case R_X86_64_GOTTPOFF:
ctx.has_gottp_rel = true;
if (ctx.arg.relax && !ctx.arg.shared && !sym.is_imported &&
relax_gottpoff(loc - 3)) {
rel_types[i] = R_GOTTPOFF_RELAX;
} else {
sym.flags |= NEEDS_GOTTP;
rel_types[i] = R_GOTTPOFF;
}
break;
case R_X86_64_GOTPC32_TLSDESC:
if (memcmp(loc - 3, "\x48\x8d\x05", 3))
Fatal(ctx) << *this << ": GOTPC32_TLSDESC relocation is used"
<< " against an invalid code sequence";
if (ctx.arg.relax && !ctx.arg.shared) {
rel_types[i] = R_GOTPC_TLSDESC_RELAX_LE;
} else {
sym.flags |= NEEDS_TLSDESC;
rel_types[i] = R_GOTPC_TLSDESC;
}
break;
case R_X86_64_SIZE32:
case R_X86_64_SIZE64:
rel_types[i] = R_SIZE;
break;
case R_X86_64_TLSDESC_CALL:
if (ctx.arg.relax && !ctx.arg.shared)
rel_types[i] = R_TLSDESC_CALL_RELAX;
else
rel_types[i] = R_NONE;
break;
default:
Fatal(ctx) << *this << ": unknown relocation: " << rel.r_type;
}
}
}