1
1
mirror of https://github.com/rui314/mold.git synced 2024-12-28 19:04:27 +03:00
mold/main.cc
2020-10-28 20:00:51 +09:00

627 lines
17 KiB
C++

#include "mold.h"
#include <iostream>
using namespace llvm;
using namespace llvm::ELF;
using llvm::object::Archive;
using llvm::opt::InputArgList;
Config config;
//
// Command-line option processing
//
enum {
OPT_INVALID = 0,
#define OPTION(_1, _2, ID, _4, _5, _6, _7, _8, _9, _10, _11, _12) OPT_##ID,
#include "options.inc"
#undef OPTION
};
// Create prefix string literals used in Options.td
#define PREFIX(NAME, VALUE) const char *const NAME[] = VALUE;
#include "options.inc"
#undef PREFIX
// Create table mapping all options defined in Options.td
static const llvm::opt::OptTable::Info opt_info[] = {
#define OPTION(X1, X2, ID, KIND, GROUP, ALIAS, X7, X8, X9, X10, X11, X12) \
{X1, X2, X10, X11, OPT_##ID, llvm::opt::Option::KIND##Class, \
X9, X8, OPT_##GROUP, OPT_##ALIAS, X7, X12},
#include "options.inc"
#undef OPTION
};
class MyOptTable : llvm::opt::OptTable {
public:
MyOptTable() : OptTable(opt_info) {}
InputArgList parse(int argc, char **argv);
};
InputArgList MyOptTable::parse(int argc, char **argv) {
unsigned missingIndex;
unsigned missingCount;
SmallVector<const char *, 256> vec(argv, argv + argc);
InputArgList args = this->ParseArgs(vec, missingIndex, missingCount);
if (missingCount)
error(Twine(args.getArgString(missingIndex)) + ": missing argument");
for (auto *arg : args.filtered(OPT_UNKNOWN))
error("unknown argument '" + arg->getAsString(args) + "'");
return args;
}
//
// Main
//
static std::vector<MemoryBufferRef> get_archive_members(MemoryBufferRef mb) {
std::unique_ptr<Archive> file =
CHECK(Archive::create(mb), mb.getBufferIdentifier() + ": failed to parse archive");
std::vector<MemoryBufferRef> vec;
Error err = Error::success();
for (const Archive::Child &c : file->children(err)) {
MemoryBufferRef mbref =
CHECK(c.getMemoryBufferRef(),
mb.getBufferIdentifier() +
": could not get the buffer for a child of the archive");
vec.push_back(mbref);
}
if (err)
error(mb.getBufferIdentifier() + ": Archive::children failed: " +
toString(std::move(err)));
file.release(); // leak
return vec;
}
static void read_file(std::vector<ObjectFile *> &files, StringRef path) {
MemoryBufferRef mb = readFile(path);
switch (identify_magic(mb.getBuffer())) {
case file_magic::archive:
for (MemoryBufferRef member : get_archive_members(mb))
files.push_back(new ObjectFile(member, path));
break;
case file_magic::elf_relocatable:
files.push_back(new ObjectFile(mb, ""));
break;
default:
error(path + ": unknown file type");
}
}
template <typename T>
static std::vector<ArrayRef<T>> split(const std::vector<T> &input, int unit) {
ArrayRef<T> arr(input);
std::vector<ArrayRef<T>> vec;
while (arr.size() >= unit) {
vec.push_back(arr.slice(0, unit));
arr = arr.slice(unit);
}
if (!arr.empty())
vec.push_back(arr);
return vec;
}
static void bin_sections(std::vector<ObjectFile *> &files) {
#if 1
int unit = (files.size() + 127) / 128;
std::vector<ArrayRef<ObjectFile *>> slices = split(files, unit);
std::vector<std::vector<std::vector<InputSection *>>> groups(slices.size());
for (int i = 0; i < groups.size(); i++)
groups[i].resize(OutputSection::instances.size());
tbb::parallel_for(0, (int)slices.size(), [&](int i) {
for (ObjectFile *file : slices[i]) {
for (InputSection *isec : file->sections) {
if (!isec)
continue;
OutputSection *osec = isec->output_section;
groups[i][osec->idx].push_back(isec);
}
}
});
std::vector<int> sizes(OutputSection::instances.size());
for (ArrayRef<std::vector<InputSection *>> group : groups)
for (int i = 0; i < group.size(); i++)
sizes[i] += group[i].size();
for (int i = 0; i < sizes.size(); i++)
OutputSection::instances[i]->sections.reserve(sizes[i]);
for (ArrayRef<std::vector<InputSection *>> group : groups) {
for (int i = 0; i < group.size(); i++) {
std::vector<InputSection *> &sections = OutputSection::instances[i]->sections;
sections.insert(sections.end(), group[i].begin(), group[i].end());
}
}
#else
for (ObjectFile *file : files) {
for (InputSection *isec : file->sections) {
if (!isec)
continue;
OutputSection *osec = isec->output_section;
osec->sections.push_back(isec);
}
}
#endif
}
static void set_isec_offsets() {
#if 1
for_each(OutputSection::instances, [&](OutputSection *osec) {
if (osec->sections.empty())
return;
std::vector<ArrayRef<InputSection *>> slices = split(osec->sections, 100000);
std::vector<uint64_t> size(slices.size());
std::vector<uint32_t> alignments(slices.size());
tbb::parallel_for(0, (int)slices.size(), [&](int i) {
uint64_t off = 0;
uint32_t align = 1;
for (InputSection *isec : slices[i]) {
off = align_to(off, isec->shdr.sh_addralign);
isec->offset = off;
off += isec->shdr.sh_size;
align = std::max<uint32_t>(align, isec->shdr.sh_addralign);
}
size[i] = off;
alignments[i] = align;
});
uint32_t align = *std::max_element(alignments.begin(), alignments.end());
std::vector<uint64_t> start(slices.size());
for (int i = 1; i < slices.size(); i++)
start[i] = align_to(start[i - 1] + size[i], align);
tbb::parallel_for(1, (int)slices.size(), [&](int i) {
for (InputSection *isec : slices[i])
isec->offset += start[i];
});
osec->shdr.sh_size = start.back() + size.back();
osec->shdr.sh_addralign = align;
});
#else
for_each(OutputSection::instances, [&](OutputSection *osec) {
if (osec->sections.empty())
return;
uint64_t off = 0;
uint32_t align = 0;
for (InputSection *isec : osec->sections) {
off = align_to(off, isec->shdr.sh_addralign);
isec->offset = off;
off += isec->shdr.sh_size;
align = std::max<uint32_t>(align, isec->shdr.sh_addralign);
}
osec->shdr.sh_size = off;
osec->shdr.sh_addralign = align;
});
#endif
}
// We want to sort output sections in the following order.
//
// alloc readonly data
// alloc readonly code
// alloc writable tdata
// alloc writable tbss
// alloc writable data
// alloc writable bss
// nonalloc
static int get_rank(OutputSection *x) {
bool alloc = x->shdr.sh_flags & SHF_ALLOC;
bool writable = x->shdr.sh_flags & SHF_WRITE;
bool exec = x->shdr.sh_flags & SHF_EXECINSTR;
bool tls = x->shdr.sh_flags & SHF_TLS;
bool nobits = x->shdr.sh_type & SHT_NOBITS;
return (alloc << 5) | (!writable << 4) | (!exec << 3) | (tls << 2) | !nobits;
}
static bool is_osec_empty(OutputSection *osec) {
if (osec->sections.empty())
return true;
for (InputSection *isec : osec->sections)
if (isec->shdr.sh_size)
return false;
return true;
}
static std::vector<OutputSection *> get_output_sections() {
std::vector<OutputSection *> vec;
for (OutputSection *osec : OutputSection::instances)
if (!is_osec_empty(osec))
vec.push_back(osec);
std::sort(vec.begin(), vec.end(), [](OutputSection *a, OutputSection *b) {
int x = get_rank(a);
int y = get_rank(b);
if (x != y)
return x > y;
// Tie-break to make output deterministic.
if (a->shdr.sh_flags != b->shdr.sh_flags)
return a->shdr.sh_flags < b->shdr.sh_flags;
if (a->shdr.sh_type != b->shdr.sh_type)
return a->shdr.sh_type < b->shdr.sh_type;
return a->name < b->name;
});
return vec;
}
static std::vector<ELF64LE::Shdr *>
create_shdrs(ArrayRef<OutputChunk *> output_chunks) {
static ELF64LE::Shdr null_entry = {};
std::vector<ELF64LE::Shdr *> vec;
vec.push_back(&null_entry);
int idx = 1;
for (OutputChunk *chunk : output_chunks) {
if (!chunk->name.empty()) {
vec.push_back(&chunk->shdr);
chunk->idx = idx++;
}
}
return vec;
}
static void fill_shdrs(ArrayRef<OutputChunk *> output_chunks) {
int i = 1;
for (OutputChunk *chunk : output_chunks) {
if (chunk->name.empty())
continue;
chunk->shdr.sh_size = chunk->get_size();
}
}
static uint64_t set_osec_offsets(ArrayRef<OutputChunk *> output_chunks) {
uint64_t fileoff = 0;
uint64_t vaddr = 0x400000;
for (OutputChunk *chunk : output_chunks) {
if (chunk->starts_new_ptload) {
fileoff = align_to(fileoff, PAGE_SIZE);
vaddr = align_to(vaddr, PAGE_SIZE);
}
if (!chunk->is_bss())
fileoff = align_to(fileoff, chunk->shdr.sh_addralign);
vaddr = align_to(vaddr, chunk->shdr.sh_addralign);
chunk->shdr.sh_offset = fileoff;
if (chunk->shdr.sh_flags & SHF_ALLOC)
chunk->shdr.sh_addr = vaddr;
if (!chunk->is_bss())
fileoff += chunk->get_size();
vaddr += chunk->get_size();
}
return fileoff;
}
static void unlink_async(tbb::task_group &tg, StringRef path) {
if (!sys::fs::exists(path) || !sys::fs::is_regular_file(path))
return;
int fd;
if (std::error_code ec = sys::fs::openFileForRead(path, fd))
return;
sys::fs::remove(path);
tg.run([=]() { close(fd); });
}
static void write_symtab(uint8_t *buf, std::vector<ObjectFile *> files) {
std::vector<uint64_t> symtab_off(files.size() + 1);
std::vector<uint64_t> strtab_off(files.size() + 1);
strtab_off[0] = 1;
for (int i = 1; i < files.size() + 1; i++) {
symtab_off[i] = symtab_off[i - 1] + files[i - 1]->local_symtab_size;
strtab_off[i] = strtab_off[i - 1] + files[i - 1]->local_strtab_size;
}
out::symtab->shdr.sh_info = symtab_off.back() / sizeof(ELF64LE::Sym);
tbb::parallel_for((size_t)0, files.size(),
[&](size_t i) {
files[i]->write_local_symtab(buf, symtab_off[i], strtab_off[i]);
});
symtab_off[0] = symtab_off.back();
strtab_off[0] = strtab_off.back();
for (int i = 1; i < files.size() + 1; i++) {
symtab_off[i] = symtab_off[i - 1] + files[i - 1]->global_symtab_size;
strtab_off[i] = strtab_off[i - 1] + files[i - 1]->global_strtab_size;
}
assert(symtab_off.back() == out::symtab->size);
assert(strtab_off.back() == out::strtab->size);
tbb::parallel_for((size_t)0, files.size(),
[&](size_t i) {
files[i]->write_global_symtab(buf, symtab_off[i], strtab_off[i]);
});
}
class MyTimer {
public:
MyTimer(StringRef name) {
timer = new Timer(name, name);
timer->startTimer();
}
MyTimer(StringRef name, llvm::TimerGroup &tg) {
timer = new Timer(name, name, tg);
timer->startTimer();
}
~MyTimer() { timer->stopTimer(); }
private:
llvm::Timer *timer;
};
int main(int argc, char **argv) {
// tbb::global_control tbb_cont(tbb::global_control::max_allowed_parallelism, 64);
// Parse command line options
MyOptTable opt_table;
InputArgList args = opt_table.parse(argc - 1, argv + 1);
if (auto *arg = args.getLastArg(OPT_o))
config.output = arg->getValue();
else
error("-o option is missing");
std::vector<ObjectFile *> files;
llvm::TimerGroup before_copy("before_copy", "before_copy");
// Open input files
{
MyTimer t("parse");
for (auto *arg : args)
if (arg->getOption().getID() == OPT_INPUT)
read_file(files, arg->getValue());
// Parse input files
for_each(files, [](ObjectFile *file) { file->parse(); });
}
// Set priorities to files
int priority = 1;
for (ObjectFile *file : files)
if (!file->is_in_archive())
file->priority = priority++;
for (ObjectFile *file : files)
if (file->is_in_archive())
file->priority = priority++;
// Resolve symbols
{
MyTimer t("resolve_symbols", before_copy);
for_each(files, [](ObjectFile *file) { file->register_defined_symbols(); });
std::vector<ObjectFile *> objs;
for (ObjectFile *file : files)
if (!file->is_in_archive())
objs.push_back(file);
tbb::parallel_do(
objs.begin(), objs.end(),
[&](ObjectFile *file, tbb::parallel_do_feeder<ObjectFile *>& feeder) {
file->register_undefined_symbols(feeder);
});
}
// Eliminate unused archive members.
files.erase(std::remove_if(files.begin(), files.end(),
[](ObjectFile *file){ return !file->is_alive; }),
files.end());
// Eliminate duplicate comdat groups.
{
MyTimer t("comdat", before_copy);
for_each(files, [](ObjectFile *file) { file->eliminate_duplicate_comdat_groups(); });
}
// Create .bss sections for common symbols.
{
MyTimer t("common", before_copy);
for_each(files, [](ObjectFile *file) { file->convert_common_symbols(); });
}
// Bin input sections into output sections
{
MyTimer t("bin_sections", before_copy);
bin_sections(files);
}
{
MyTimer t("isec_offsets", before_copy);
set_isec_offsets();
}
// Scan relocations to fix the sizes of .got, .plt, .got.plt, .dynstr,
// .rela.dyn, .rela.plt.
{
MyTimer t("scan_rel", before_copy);
for_each(files, [](ObjectFile *file) { file->scan_relocations(); });
}
// Create linker-synthesized sections.
out::ehdr = new OutputEhdr;
out::phdr = new OutputPhdr;
out::shdr = new OutputShdr;
// out::interp = new InterpSection;
out::shstrtab = new ShstrtabSection;
out::symtab = new SymtabSection;
out::strtab = new StrtabSection;
// Compute .symtab and .strtab sizes
{
MyTimer t("symtab_size", before_copy);
for_each(files, [](ObjectFile *file) { file->compute_symtab(); });
for (ObjectFile *file : files) {
out::symtab->size += file->local_symtab_size + file->global_symtab_size;
out::strtab->size += file->local_strtab_size + file->global_strtab_size;
}
}
// Add ELF and program header to the output.
std::vector<OutputChunk *> output_chunks;
output_chunks.push_back(out::ehdr);
output_chunks.push_back(out::phdr);
// Add .interp section.
// output_chunks.push_back(out::interp);
// Add other output sections.
std::vector<OutputSection *> output_sections = get_output_sections();
for (OutputSection *osec : output_sections)
output_chunks.push_back(osec);
// Add a string table for section names.
output_chunks.push_back(out::shstrtab);
// Add a section header.
output_chunks.push_back(out::shdr);
// Add .symtab and .strtab.
output_chunks.push_back(out::symtab);
output_chunks.push_back(out::strtab);
// Fix .shstrtab contents.
for (OutputChunk *chunk : output_chunks)
if (!chunk->name.empty())
chunk->shdr.sh_name = out::shstrtab->add_string(chunk->name);
// Create section header and program header contents.
out::shdr->entries = create_shdrs(output_chunks);
out::phdr->construct(output_chunks);
out::symtab->shdr.sh_link = out::strtab->idx;
// Fill section header.
fill_shdrs(output_chunks);
// Assign offsets to input sections
uint64_t filesize = 0;
{
MyTimer t("osec_offset", before_copy);
filesize = set_osec_offsets(output_chunks);
}
{
MyTimer t("sym_addr");
for_each(files, [](ObjectFile *file) { file->fix_sym_addrs(); });
}
tbb::task_group unlink_tg;
{
MyTimer t("unlink");
unlink_async(unlink_tg, config.output);
}
// Create an output file
Expected<std::unique_ptr<FileOutputBuffer>> buf_or_err =
FileOutputBuffer::create(config.output, filesize, FileOutputBuffer::F_executable);
if (!buf_or_err)
error("failed to open " + config.output + ": " +
llvm::toString(buf_or_err.takeError()));
std::unique_ptr<FileOutputBuffer> output_buffer = std::move(*buf_or_err);
uint8_t *buf = output_buffer->getBufferStart();
// Fill .symtab and .strtab
tbb::task_group tg_symtab;
tg_symtab.run([&]() {
MyTimer t("write_symtab");
write_symtab(buf, files);
});
// Copy input sections to the output file
{
MyTimer t("copy");
for_each(output_chunks, [&](OutputChunk *chunk) { chunk->copy_to(buf); });
}
{
MyTimer t("reloc");
for_each(output_chunks, [&](OutputChunk *chunk) { chunk->relocate(buf); });
}
{
MyTimer t("symtab_wait");
tg_symtab.wait();
}
{
MyTimer t("commit");
if (auto e = output_buffer->commit())
error("failed to write to the output file: " + toString(std::move(e)));
}
int num_input_chunks = 0;
for (ObjectFile *file : files)
num_input_chunks += file->sections.size();
{
MyTimer t("unlink_wait");
unlink_tg.wait();
}
#if 0
for (ObjectFile *file : files)
for (InputSection *isec : file->sections)
if (isec)
llvm::outs() << toString(isec) << "\n";
#endif
#if 1
llvm::outs() << " input_chunks=" << num_input_chunks << "\n"
<< "output_chunks=" << output_chunks.size() << "\n"
<< " files=" << files.size() << "\n"
<< " filesize=" << filesize << "\n"
<< " num_all_syms=" << num_all_syms << "\n"
<< " num_defined=" << num_defined << "\n"
<< "num_undefined=" << num_undefined << "\n"
<< " num_comdats=" << num_comdats << "\n"
<< "num_regular_sections=" << num_regular_sections << "\n"
<< " num_relocs=" << num_relocs << "\n"
<< "num_relocs_alloc=" << num_relocs_alloc << "\n"
<< " num_str=" << num_string_pieces << "\n";
llvm::TimerGroup::printAll(llvm::outs());
#endif
llvm::outs().flush();
_exit(0);
}