Turns out `heap.fill(undefined)` is required to ensure it's a dense
array, otherwise we'll accidentally be a sparse array and much slower
than necessary!
This commit switches strategies for storing `JsValue` from a heap/stack
to just one heap. This mirrors the new strategy for `JsValue` storage
in #1002 and should make multiplexing those strategies at
`wasm-bindgen`-time much easier.
Instead of having one array which acts as a stack for borrowed values
and one array for a heap of borrowed values, only one JS array is used
for storage of JS values now. This makes `getObject` far simpler by
simply being an array access, but it means that cloning an object now
reserves a new slot instead of reference counting it. If the old
reference counting behavior is needed it's thought that `Rc<JsValue>`
can be used in Rust.
The new "heap" has an initial stack pointer which grows downwards, and a
heap which grows upwards. The heap is a singly-linked-list which is
allocated/deallocated from. The stack grows downwards to zero and
presumably starts generating errors once it underflows. An initial stack
size of 32 is chosen as that should encompass all use cases today, but
we can eventually probably add configuration for this!
Note that the heap is initialized to all `null` for the stack and then
the initial JS values (`undefined`, `null`, `true`, `false`) are pushed
onto the heap in reserved locations.
Previously `catch` and `variadic` would exopse methods in our JS shims,
but they did so earlier than necessary. Turns out `variadic` didn't
actually need to expose anything and `catch` could do so much later!
Currently closure shims are communicated to JS at runtime, although at
runtime the same constant value is always passed to JS! More pressing,
however, work in #1002 requires knowledge of closure descriptor indices
at `wasm-bindgen` time which is not currently known.
Since the closure descriptor shims and such are already constant values,
this commit moves the descriptor function indices into the *descriptor*
for a closure/function pointer. This way we can learn about these values
at `wasm-bindgen` time instead of only knowing them at runtime.
This should have no semantic change on users of `wasm-bindgen`, although
some closure invocations may be slightly speedier because there's less
arguments being transferred over the boundary. Overall though this will
help #1002 as the closure shims that the Rust compiler generates may not
be the exact ones we hand out to JS, but rather wrappers around them
which do `anyref` business things.
This commit fixes a case in `wasm2es6js` where if an imported function
was reexported it wasn't handled correctly. This doesn't have a direct
test but came up during the development of #1002
This is split out from #1002 and is intended to fix the tool's handling
of the `start` function. For the most accurate emulation of the wasm ESM
spec I believe we need to defer execution of the start function until
all our exports are wired up which should allow valid cyclical
references during instantiation.
The fix here is to remove the start function, if one is present, and
inject an invocation of it at the end of initialization (after our
exports are wired up). This fixes tests on #1002, but doesn't have any
direct analogue for tests here just yet.
Along the way because multiple files now come out of `wasm2es6js` by
default I've added an `--out-dir` argument as well as `-o` to ensure
that a folder for all outputs can be specified.
This commit adds a new attribute to `#[wasm_bindgen]`: `start`. The
`start` attribute can be used to indicate that a function should be
executed when the module is loaded, configuring the `start` function of
the wasm executable. While this doesn't necessarily literally configure
the `start` section, it does its best!
Only one crate in a crate graph may indicate `#[wasm_bindgen(start)]`,
so it's not recommended to be used in libraries but only end-user
applications. Currently this still must be used with the `crate-type =
["cdylib"]` annotation in `Cargo.toml`.
The implementation here is somewhat tricky because of the circular
dependency between our generated JS and the wasm file that we emit. This
circular dependency makes running initialization routines (like the
`start` shim) particularly fraught with complications because one may
need to run before the other but bundlers may not necessarily respect
it. Workarounds have been implemented for various emission strategies,
for example calling the start function directly after exports are wired
up with `--no-modules` and otherwise working around what appears to be
a Webpack bug with initializers running in a different order than we'd
like. In any case, this in theory doesn't show up to the end user!
Closes#74
This commit implements a system that will assert that all
`#[wasm_bindgen]` attributes are actually used during compilation. This
should help ensure that we don't sneak in stray attributes that don't
actually end up having any meaning, and hopefully make it a bit easier
to learn `#[wasm_bindgen]`!
This generates a `*.d.ts` file for the wasm file that wasm-bindgen emits
whenever typescript is enable *in addition* to the `*.d.ts` file that
already exists for the JS shim.
Closes#1040
Recently proposed in WebAssembly/tool-conventions#65 each wasm file will
now have an optional `producers` section listing the tooling that went
into producing it. Let's add `wasm-bindgen` in when it processes a wasm
file!
This commit adds an optimization to `wasm-bindgen` to directly import
and invoke other modules' functions from the wasm module, rather than
going through a shim in the imported bindings. This will be an important
optimization in the future for the host bindings proposal, but for now
it's largely just a proof-of-concept to show that we can do it and is
unlikely to bring about many performance benefits.
The implementation in this commit is largely refactoring to reorganize a
bit how functions are imported, but the implementation happens in
`generate_import_function`.
With this commit, 71/287 imports in the `tests/wasm/main.rs` suite get
hooked up directly to the ES modules, no shims needed!
When returning a ptr/length for allocations and such wasm-bindgen's
generated JS would previously return an array with two elements. It
turns out this doesn't optimize well in all engines! (See #1031). It
looks like we can optimize the array destructuring a bit more, but this
is all generated code which doesn't need to be too readable so we can
also remove the temporary allocation entirely and just pass the second
element of this array through a global instead of the return value.
Closes#1031
This fixes a mistake in allowing a `WebAssembly.Module` to be passed to
the initialization function in `--no-modules` mode by ensuring that it
resolves to a map of an instance/module instead of just resolving to an
instance.
This commit adds a `--remove-name-section` flag to the `wasm-bindgen`
command which will remove the `name` section of the wasm file, used to
indicate the names of functions typically used in debugging. This flag
is off-by-default and will primarily be controlled by wasm-pack,
typically being passed by default with `wasm-pack build --release`.
Closes#1021
This commit switches all imports of JS methods to `structural` by
default. Proposed in [RFC 5] this should increase the performance of
bindings today while also providing future-proofing for possible
confusion with the recent addition of the `Deref` trait for all imported
types by default as well.
A new attribute, `host_binding`, is introduced in this PR as well to
recover the old behavior of binding directly to an imported function
which will one day be the precise function on the prototype. Eventually
`web-sys` will switcsh over entirely to being driven via `host_binding`
methods, but for now it's been measured to be not quite as fast so we're
not making that switch yet.
Note that `host_binding` differs from the proposed name of `final` due
to the controversy, and its hoped that `host_binding` is a good
middle-ground!
[RFC 5]: https://rustwasm.github.io/rfcs/005-structural-and-deref.html
This commit removes shims, where possible, for `structural` items.
Instead of generating code that looks like:
const target = function() { this.foo(); };
exports.__wbg_thing = function(a) { target.call(getObject(a)); };
we now instead generate:
exports.__wbg_thing = function(a) { getObject(a).foo(); };
Note that this only applies to `structural` bindings, all default
bindings (as of this commit) are still using imported targets to ensure
that their binding can't change after instantiation.
This change was [detailed in RFC #5][link] as an important optimization
for `structural` bindings to ensure they've got performance parity with
today's non-`structural` default bindings.
[link]: https://rustwasm.github.io/rfcs/005-structural-and-deref.html#why-is-it-ok-to-make-structural-the-default
Previously `arguments` was used to pass around an array of arguments,
but this wasn't actually a `js_sys::Array` but rather a somewhat
esoteric internal object. When switching over `Array` methods to be
`structural` this caused issues because the inherent methods on an
`arguments` object were different than that of `js_sys::Array`.
This commit implements the first half of [RFC #5] where the `Deref`
trait is implemented for all imported types. The target of `Deref` is
either the first entry of the list of `extends` attribute or `JsValue`.
All examples using `.as_ref()` with various `web-sys` types have been
updated to the more ergonomic deref casts now. Additionally the
`web-sys` generation of the `extends` array has been fixed slightly to
explicitly list implementatoins in the hierarchy order to ensure the
correct target for `Deref` is chosen.
[RFC #5]: https://github.com/rustwasm/rfcs/blob/master/text/005-structural-and-deref.md
For example, the constructor in Response.webidl accepts multiple types. However, one of those types is `ReadableStream` which isn't defined yet, and that causes all constructors for Response to be skipped even though the other argument types could be supported.
This commit makes the `to_idl_type` infallible, returning a new enum
variant, `UnknownInterface`, in the one location that we still return
`None`. By making this infallible we can ensure that expansion of unions
which have unknown types still generate methods for all the variants
which we actually have all the methods for!