Reported in #1191 the fix requires us to get a bit creative I think. The
general gist is that a block like this:
#[wasm_bindgen]
impl Foo {
pub fn foo() {}
}
was previously expanded all in one go. Now, however, it's expanded into:
impl Foo {
#[__wasm_bindgen_class_marker(Foo = "Foo")]
pub fn foo() {}
}
// goop generated by orginal #[wasm_bindgen]
This method of expansion takes advantage of rustc's recursive expansion
feature. It also allows us to expand `impl` blocks and allow inner items
to not be fully expanded yet, such as still having `#[cfg]` attributes
(like in the original bug report).
We use theinternal `__wasm_bindgen_class_marker` to indicate that we're
parsing an `ImplItemMethod` unconditionally, and then generation
proceeds as usual. The only final catch is that when we're expanding in
an `impl` block we have to generate tokens for the `Program`
(wasm-bindgen injected goop like the custom section) inside the body
of the function itself instead of next to it. Otherwise we'd get syntax
errors inside of impl blocks!
Closes#1191
This method will return `Err(self)` **is** `self.is_instance_of::<T>()` returns `false`
should be
This method will return `Err(self)` **if** `self.is_instance_of::<T>()` returns `false`
This commit switches strategies for storing `JsValue` from a heap/stack
to just one heap. This mirrors the new strategy for `JsValue` storage
in #1002 and should make multiplexing those strategies at
`wasm-bindgen`-time much easier.
Instead of having one array which acts as a stack for borrowed values
and one array for a heap of borrowed values, only one JS array is used
for storage of JS values now. This makes `getObject` far simpler by
simply being an array access, but it means that cloning an object now
reserves a new slot instead of reference counting it. If the old
reference counting behavior is needed it's thought that `Rc<JsValue>`
can be used in Rust.
The new "heap" has an initial stack pointer which grows downwards, and a
heap which grows upwards. The heap is a singly-linked-list which is
allocated/deallocated from. The stack grows downwards to zero and
presumably starts generating errors once it underflows. An initial stack
size of 32 is chosen as that should encompass all use cases today, but
we can eventually probably add configuration for this!
Note that the heap is initialized to all `null` for the stack and then
the initial JS values (`undefined`, `null`, `true`, `false`) are pushed
onto the heap in reserved locations.
Currently closure shims are communicated to JS at runtime, although at
runtime the same constant value is always passed to JS! More pressing,
however, work in #1002 requires knowledge of closure descriptor indices
at `wasm-bindgen` time which is not currently known.
Since the closure descriptor shims and such are already constant values,
this commit moves the descriptor function indices into the *descriptor*
for a closure/function pointer. This way we can learn about these values
at `wasm-bindgen` time instead of only knowing them at runtime.
This should have no semantic change on users of `wasm-bindgen`, although
some closure invocations may be slightly speedier because there's less
arguments being transferred over the boundary. Overall though this will
help #1002 as the closure shims that the Rust compiler generates may not
be the exact ones we hand out to JS, but rather wrappers around them
which do `anyref` business things.
This commit updates the `__wbindgen_malloc` shim to avoid throwing a
descriptive error in release mode. This is primarily done for two
reasons:
* If the function is gc'd out in release mode the `"invalid malloc
request"` string is part of data and can't be gc'd automatically.
* In some esoteric JS environments `TextDecoder` isn't always available,
and this relatively core function is very quick to bring in that
requirement early on. For example some recent experimentation with
WebAudio worklets shows that they currently don't have the
`TextDecoder` type available!
While technically correct the current implementation sort of made it
only roundaboutedly so. Tweak the logic a bit and the associated comment
to ensure that stack values are never dropped and the global constants
are all skipped.
... and add a parallel raytracing demo!
This commit adds enough support to `wasm-bindgen` to produce a workable
wasm binary *today* with the experimental WebAssembly threads support
implemented in Firefox Nightly. I've tried to comment what's going on in
the commits and such, but at a high level the changes made here are:
* A new transformation, living in a new `wasm-bindgen-threads-xform`
crate, prepares a wasm module for parallel execution. This performs a
number of mundane tasks which I hope to detail in a blog post later on.
* The `--no-modules` output is enhanced with more support for when
shared memory is enabled, allowing passing in the module/memory to
initialize the wasm instance on multiple threads (sharing both module
and memory).
* The `wasm-bindgen` crate now offers the ability, in `--no-modules`
mode, to get a handle on the `WebAssembly.Module` instance.
* The example itself requires Xargo to recompile the standard library
with atomics and an experimental feature enabled. Afterwards it
experimentally also enables threading support in wasm-bindgen.
I've also added hopefully enough CI support to compile this example in a
builder so we can upload it and poke around live online. I hope to
detail more about the technical details here in a blog post soon as
well!
The `JsValue` type wraps a slab/heap of js objects which is managed by
the wasm-bindgen shim, and everything here is not actually able to cross
any thread boundaries. When wasm actually has threads, for example, each
thread will have to have its own slab of objects generated by
wasm-bindgen, and indices in one slab aren't valid in any other slabs.
This is technically a breaking change because `JsValue` was previously
`Send` and `Sync`, but I'm hoping that in practice this isn't actually a
breaking change because nothing in wasm can be using threads which in
theory shouldn't activate the `Send` and/or `Sync` bounds.
Adding `#[inline]` will typically improve codegen for optimized builds
without LTO (so far the majority in practice) by allowing functions that
otherwise couldn't be inlined across codegen units to get inlined
across codegen units.
Right now `wasm-bindgen` has a lot of functions that are very small and
delegate to other functions, but aren't otherwise candidates for
inlining because they're concrete.
I was poking around in release-mode wasm recently and noticed an
alarming number of functions for tiny pieces of functionality, which
motivates this patch!
This commit improves the codegen for `Closure<T>`, primarily for ZST
where the closure doesn't actually capture anything. Previously
`wasm-bindgen` would unconditionally allocate an `Rc` for a fat pointer,
meaning that it would always hit the allocator even when the `Box<T>`
didn't actually contain an allocation. Now the reference count for the
closure is stored on the JS object rather than in Rust.
Some more advanced tests were added along the way to ensure that
functionality didn't regress, and otherwise the calling convention for
`Closure` changed a good deal but should still be the same user-facing.
The primary change was that the reference count reaching zero may cause
JS to need to run the destructor. It simply returns this information in
`Drop for Closure` and otherwise when calling it now also retains a
function pointer that runs the destructor.
Closes#874
Previously the `link_mem_intrinsics` hack actually had a runtime
overhead by storing a value into a global location, but it turns out we
can actually use a non-inlined function call as part of the *descriptor*
which requires this to be in the final binary, but we'll end up snip'ing
the value at the end.
All in all this should mean that it's not a zero-overhead solution for
linking these intrinsics! The `#[wasm_bindgen]` attribute already has
other problems if the descriptors don't show up, so that's the least of
our issues!
This commit implements support for binding APIs that take
`Uint8ClampedArray` in JS. This is pretty rare but comes up in a
`web-sys` binding or two, and we're now able to bind these APIs instead
of having to omit the bindings.
The `Uint8ClampedArray` type is bound by using the `Clamped` marker
struct in Rust. For example this is declaring a JS API that takes
`Uint8ClampedArray`:
use wasm_bindgen::Clamped;
#[wasm_bindgen]
extern {
fn takes_clamped(a: Clamped<&[u8]>);
}
The `Clamped` type currently only works when wrapping the `&[u8]`, `&mut
[u8]`, and `Vec<u8>` types. Everything else will produce an error at
`wasm-bindgen` time.
Closes#421
This commit adds support for exporting a function defined in Rust that returns a
`Result`, translating the `Ok` variant to the actual return value and the `Err`
variant to an exception that's thrown in JS.
The support for return types and descriptors was rejiggered a bit to be a bit
more abstract and more well suited for this purpose. We no longer distinguish
between functions with a return value and those without a return value.
Additionally a new trait, `ReturnWasmAbi`, is used for converting return values.
This trait is an internal implementation detail, however, and shouldn't surface
itself to users much (if at all).
Closes#841
This commit adds support for the WebIDL `Callback` type by translating all
callbacks to the `js_sys::Function` type. This will enable passing raw JS values
into callbacks as well as Rust valus using the `Closure` type.
This commit doesn't currently implement "callback interfaces" in WebIDL, that's
left for a follow-up commit.
This commit adds an implementation of `AsRef<JsValue>` for the `Closure<T>`
type. Previously this was not possible because the `JsValue` didn't actually
exist until the closure was passed to JS, but the implementation has been
changed to ... something a bit more unconventional. The end result, however, is
that `Closure<T>` now always contains a `JsValue`.
The end result of this work is intended to be a precursor to binding callbacks
in `web-sys` as `JsValue` everywhere but still allowing usage with `Closure<T>`.
In addition to closing #495 this'll be useful eventually when instantiating
multiple wasm modules from Rust as you'd now be able to acquire a reference to
the current module in Rust itself.
I discussed this with @fitzgen awhile back and this sort of casting seems
especially problematic when you have code along the lines of:
let mut x: HtmlElement = ...;
{
let y: &mut JsValue = x.as_ref();
*y = 3.into();
}
x.some_html_element_method();
as that will immediately throw! We didn't have a use case for mutable casting
other than consistency, so this commit removes it for now. We can possibly add
it back in later if motivated, but for now it seems reasonable to try to avoid
these sorts of pitfalls!
This is a pretty heavyweight dependency which accounts for a surprising amount
of runtime for larger modules in `wasm-bindgen`. We don't need 90% of the crate
and so this commit bundles a small interpreter for instructions we know are only
going to appear in describe-related functions.
This commit adds support for generating bindings for dictionaries defined in
WebIDL. Dictionaries are associative arrays which are simply objects in JS with
named keys and some values. In Rust given a dictionary like:
dictionary Foo {
long field;
};
we'll generate a struct like:
pub struct Foo {
obj: js_sys::Object,
}
impl Foo {
pub fn new() -> Foo { /* make a blank object */ }
pub fn field(&mut self, val: i32) -> &mut Self {
// set the field using `js_sys::Reflect`
}
}
// plus a bunch of AsRef, From, and wasm abi impls
At the same time this adds support for partial dictionaries and dictionary
inheritance. All dictionary fields are optional by default and hence only have
builder-style setters, but dictionaries can also have required fields. Required
fields are exposed as arguments to the `new` constructor.
Closes#241