2022-08-22 17:15:46 +03:00
import argparse , os , sys , glob
2022-08-24 16:07:57 +03:00
import gradio as gr
import k_diffusion as K
import math
import mimetypes
import numpy as np
import pynvml
import random
2022-08-25 15:08:24 +03:00
import threading , asyncio
2022-08-24 16:07:57 +03:00
import time
2022-08-22 17:15:46 +03:00
import torch
import torch . nn as nn
2022-08-25 15:20:29 +03:00
import yaml
from typing import List , Union
2022-08-24 16:07:57 +03:00
from contextlib import contextmanager , nullcontext
from einops import rearrange , repeat
from itertools import islice
2022-08-22 17:15:46 +03:00
from omegaconf import OmegaConf
2022-08-25 02:03:47 +03:00
from PIL import Image , ImageFont , ImageDraw , ImageFilter , ImageOps
2022-08-22 17:15:46 +03:00
from torch import autocast
from ldm . models . diffusion . ddim import DDIMSampler
from ldm . models . diffusion . plms import PLMSSampler
2022-08-24 16:07:57 +03:00
from ldm . util import instantiate_from_config
2022-08-22 17:15:46 +03:00
2022-08-23 11:58:50 +03:00
try :
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
from transformers import logging
logging . set_verbosity_error ( )
except :
pass
2022-08-22 17:15:46 +03:00
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI
mimetypes . init ( )
mimetypes . add_type ( ' application/javascript ' , ' .js ' )
# some of those options should not be changed at all because they would break the model, so I removed them from options.
opt_C = 4
opt_f = 8
2022-08-24 01:08:59 +03:00
LANCZOS = ( Image . Resampling . LANCZOS if hasattr ( Image , ' Resampling ' ) else Image . LANCZOS )
2022-08-23 11:58:50 +03:00
invalid_filename_chars = ' <>: " / \ |?* \n '
2022-08-23 00:34:49 +03:00
2022-08-22 17:15:46 +03:00
parser = argparse . ArgumentParser ( )
parser . add_argument ( " --outdir " , type = str , nargs = " ? " , help = " dir to write results to " , default = None )
2022-08-25 07:44:53 +03:00
parser . add_argument ( " --outdir_txt2img " , type = str , nargs = " ? " , help = " dir to write txt2img results to (overrides --outdir) " , default = None )
parser . add_argument ( " --outdir_img2img " , type = str , nargs = " ? " , help = " dir to write img2img results to (overrides --outdir) " , default = None )
2022-08-22 17:15:46 +03:00
parser . add_argument ( " --skip_grid " , action = ' store_true ' , help = " do not save a grid, only individual samples. Helpful when evaluating lots of samples " , )
parser . add_argument ( " --skip_save " , action = ' store_true ' , help = " do not save indiviual samples. For speed measurements. " , )
2022-08-22 20:08:32 +03:00
parser . add_argument ( " --n_rows " , type = int , default = - 1 , help = " rows in the grid; use -1 for autodetect and 0 for n_rows to be same as batch_size (default: -1) " , )
2022-08-22 17:15:46 +03:00
parser . add_argument ( " --config " , type = str , default = " configs/stable-diffusion/v1-inference.yaml " , help = " path to config which constructs model " , )
parser . add_argument ( " --ckpt " , type = str , default = " models/ldm/stable-diffusion-v1/model.ckpt " , help = " path to checkpoint of model " , )
parser . add_argument ( " --precision " , type = str , help = " evaluate at this precision " , choices = [ " full " , " autocast " ] , default = " autocast " )
2022-08-24 16:21:29 +03:00
parser . add_argument ( " --gfpgan-dir " , type = str , help = " GFPGAN directory " , default = ( ' ./src/gfpgan ' if os . path . exists ( ' ./src/gfpgan ' ) else ' ./GFPGAN ' ) ) # i disagree with where you're putting it but since all guidefags are doing it this way, there you go
2022-08-24 00:02:43 +03:00
parser . add_argument ( " --no-verify-input " , action = ' store_true ' , help = " do not verify input to check if it ' s too long " )
2022-08-24 00:38:53 +03:00
parser . add_argument ( " --no-half " , action = ' store_true ' , help = " do not switch the model to 16-bit floats " )
2022-08-24 09:06:36 +03:00
parser . add_argument ( " --no-progressbar-hiding " , action = ' store_true ' , help = " do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware accleration in browser) " )
2022-08-25 15:20:29 +03:00
parser . add_argument ( " --cli " , type = str , help = " don ' t launch web server, take Python function kwargs from this file. " , default = None )
2022-08-22 17:15:46 +03:00
opt = parser . parse_args ( )
GFPGAN_dir = opt . gfpgan_dir
2022-08-24 09:06:36 +03:00
css_hide_progressbar = """
. wrap . m - 12 svg { display : none ! important ; }
. wrap . m - 12 : : before { content : " Loading... " }
. progress - bar { display : none ! important ; }
. meta - text { display : none ! important ; }
"""
2022-08-22 17:15:46 +03:00
def chunk ( it , size ) :
it = iter ( it )
return iter ( lambda : tuple ( islice ( it , size ) ) , ( ) )
def load_model_from_config ( config , ckpt , verbose = False ) :
print ( f " Loading model from { ckpt } " )
pl_sd = torch . load ( ckpt , map_location = " cpu " )
if " global_step " in pl_sd :
print ( f " Global Step: { pl_sd [ ' global_step ' ] } " )
sd = pl_sd [ " state_dict " ]
model = instantiate_from_config ( config . model )
m , u = model . load_state_dict ( sd , strict = False )
if len ( m ) > 0 and verbose :
print ( " missing keys: " )
print ( m )
if len ( u ) > 0 and verbose :
print ( " unexpected keys: " )
print ( u )
model . cuda ( )
model . eval ( )
return model
2022-08-24 16:07:57 +03:00
def crash ( e , s ) :
global model
global device
print ( s , ' \n ' , e )
del model
del device
print ( ' exiting...calling os._exit(0) ' )
t = threading . Timer ( 0.25 , os . _exit , args = [ 0 ] )
t . start ( )
class MemUsageMonitor ( threading . Thread ) :
stop_flag = False
max_usage = 0
total = 0
2022-08-25 02:03:47 +03:00
2022-08-24 16:07:57 +03:00
def __init__ ( self , name ) :
threading . Thread . __init__ ( self )
self . name = name
2022-08-25 02:03:47 +03:00
2022-08-24 16:07:57 +03:00
def run ( self ) :
print ( f " [ { self . name } ] Recording max memory usage... \n " )
pynvml . nvmlInit ( )
handle = pynvml . nvmlDeviceGetHandleByIndex ( 0 )
self . total = pynvml . nvmlDeviceGetMemoryInfo ( handle ) . total
while not self . stop_flag :
m = pynvml . nvmlDeviceGetMemoryInfo ( handle )
self . max_usage = max ( self . max_usage , m . used )
# print(self.max_usage)
time . sleep ( 0.1 )
print ( f " [ { self . name } ] Stopped recording. \n " )
pynvml . nvmlShutdown ( )
2022-08-25 02:03:47 +03:00
2022-08-24 16:07:57 +03:00
def read ( self ) :
return self . max_usage , self . total
2022-08-25 02:03:47 +03:00
2022-08-24 16:07:57 +03:00
def stop ( self ) :
self . stop_flag = True
2022-08-25 02:03:47 +03:00
2022-08-24 16:07:57 +03:00
def read_and_stop ( self ) :
self . stop_flag = True
return self . max_usage , self . total
2022-08-22 17:15:46 +03:00
class CFGDenoiser ( nn . Module ) :
def __init__ ( self , model ) :
super ( ) . __init__ ( )
self . inner_model = model
def forward ( self , x , sigma , uncond , cond , cond_scale ) :
x_in = torch . cat ( [ x ] * 2 )
sigma_in = torch . cat ( [ sigma ] * 2 )
cond_in = torch . cat ( [ uncond , cond ] )
uncond , cond = self . inner_model ( x_in , sigma_in , cond = cond_in ) . chunk ( 2 )
return uncond + ( cond - uncond ) * cond_scale
2022-08-23 14:07:37 +03:00
class KDiffusionSampler :
2022-08-25 05:55:15 +03:00
def __init__ ( self , m , sampler ) :
2022-08-23 14:07:37 +03:00
self . model = m
self . model_wrap = K . external . CompVisDenoiser ( m )
2022-08-25 05:55:15 +03:00
self . schedule = sampler
2022-08-23 14:07:37 +03:00
def sample ( self , S , conditioning , batch_size , shape , verbose , unconditional_guidance_scale , unconditional_conditioning , eta , x_T ) :
sigmas = self . model_wrap . get_sigmas ( S )
x = x_T * sigmas [ 0 ]
model_wrap_cfg = CFGDenoiser ( self . model_wrap )
2022-08-23 22:42:43 +03:00
2022-08-25 06:19:55 +03:00
samples_ddim = K . sampling . __dict__ [ f ' sample_ { self . schedule } ' ] ( model_wrap_cfg , x , sigmas , extra_args = { ' cond ' : conditioning , ' uncond ' : unconditional_conditioning , ' cond_scale ' : unconditional_guidance_scale } , disable = False )
2022-08-23 14:07:37 +03:00
return samples_ddim , None
2022-08-24 18:45:55 +03:00
class MemUsageMonitor ( threading . Thread ) :
stop_flag = False
max_usage = 0
total = 0
2022-08-25 02:03:47 +03:00
2022-08-24 18:45:55 +03:00
def __init__ ( self , name ) :
threading . Thread . __init__ ( self )
self . name = name
2022-08-25 02:03:47 +03:00
2022-08-24 18:45:55 +03:00
def run ( self ) :
print ( f " [ { self . name } ] Recording max memory usage... \n " )
pynvml . nvmlInit ( )
handle = pynvml . nvmlDeviceGetHandleByIndex ( 0 )
self . total = pynvml . nvmlDeviceGetMemoryInfo ( handle ) . total
while not self . stop_flag :
m = pynvml . nvmlDeviceGetMemoryInfo ( handle )
self . max_usage = max ( self . max_usage , m . used )
# print(self.max_usage)
time . sleep ( 0.1 )
print ( f " [ { self . name } ] Stopped recording. \n " )
pynvml . nvmlShutdown ( )
2022-08-25 02:03:47 +03:00
2022-08-24 18:45:55 +03:00
def read ( self ) :
return self . max_usage , self . total
2022-08-25 02:03:47 +03:00
2022-08-24 18:45:55 +03:00
def stop ( self ) :
self . stop_flag = True
2022-08-25 02:03:47 +03:00
2022-08-24 18:45:55 +03:00
def read_and_stop ( self ) :
self . stop_flag = True
return self . max_usage , self . total
2022-08-23 14:07:37 +03:00
2022-08-23 22:42:43 +03:00
def create_random_tensors ( shape , seeds ) :
2022-08-23 14:07:37 +03:00
xs = [ ]
2022-08-23 22:42:43 +03:00
for seed in seeds :
torch . manual_seed ( seed )
# randn results depend on device; gpu and cpu get different results for same seed;
# the way I see it, it's better to do this on CPU, so that everyone gets same result;
# but the original script had it like this so i do not dare change it for now because
# it will break everyone's seeds.
2022-08-23 14:07:37 +03:00
xs . append ( torch . randn ( shape , device = device ) )
x = torch . stack ( xs )
return x
2022-08-24 16:21:29 +03:00
def torch_gc ( ) :
torch . cuda . empty_cache ( )
torch . cuda . ipc_collect ( )
2022-08-23 14:07:37 +03:00
2022-08-22 17:15:46 +03:00
def load_GFPGAN ( ) :
model_name = ' GFPGANv1.3 '
model_path = os . path . join ( GFPGAN_dir , ' experiments/pretrained_models ' , model_name + ' .pth ' )
if not os . path . isfile ( model_path ) :
raise Exception ( " GFPGAN model not found at path " + model_path )
sys . path . append ( os . path . abspath ( GFPGAN_dir ) )
from gfpgan import GFPGANer
return GFPGANer ( model_path = model_path , upscale = 1 , arch = ' clean ' , channel_multiplier = 2 , bg_upsampler = None )
GFPGAN = None
if os . path . exists ( GFPGAN_dir ) :
try :
GFPGAN = load_GFPGAN ( )
print ( " Loaded GFPGAN " )
except Exception :
import traceback
print ( " Error loading GFPGAN: " , file = sys . stderr )
print ( traceback . format_exc ( ) , file = sys . stderr )
config = OmegaConf . load ( " configs/stable-diffusion/v1-inference.yaml " )
model = load_model_from_config ( config , " models/ldm/stable-diffusion-v1/model.ckpt " )
device = torch . device ( " cuda " ) if torch . cuda . is_available ( ) else torch . device ( " cpu " )
2022-08-24 00:38:53 +03:00
model = ( model if opt . no_half else model . half ( ) ) . to ( device )
2022-08-22 17:15:46 +03:00
2022-08-25 00:28:32 +03:00
def load_embeddings ( fp ) :
if fp is not None and hasattr ( model , " embedding_manager " ) :
model . embedding_manager . load ( fp . name )
2022-08-22 17:15:46 +03:00
2022-08-24 18:53:35 +03:00
def image_grid ( imgs , batch_size , round_down = False , force_n_rows = None ) :
if force_n_rows is not None :
rows = force_n_rows
elif opt . n_rows > 0 :
2022-08-22 20:08:32 +03:00
rows = opt . n_rows
elif opt . n_rows == 0 :
rows = batch_size
else :
2022-08-23 00:34:49 +03:00
rows = math . sqrt ( len ( imgs ) )
rows = int ( rows ) if round_down else round ( rows )
2022-08-22 20:08:32 +03:00
cols = math . ceil ( len ( imgs ) / rows )
2022-08-22 17:15:46 +03:00
w , h = imgs [ 0 ] . size
2022-08-22 20:08:32 +03:00
grid = Image . new ( ' RGB ' , size = ( cols * w , rows * h ) , color = ' black ' )
2022-08-22 17:15:46 +03:00
for i , img in enumerate ( imgs ) :
grid . paste ( img , box = ( i % cols * w , i / / cols * h ) )
return grid
2022-08-24 20:51:28 +03:00
def seed_to_int ( s ) :
2022-08-25 15:20:29 +03:00
if type ( s ) is int :
return s
if s is None or s == ' ' :
2022-08-24 20:51:28 +03:00
return random . randint ( 0 , 2 * * 32 )
n = abs ( int ( s ) if s . isdigit ( ) else hash ( s ) )
while n > 2 * * 32 :
n = n >> 32
return n
2022-08-24 18:45:55 +03:00
2022-08-23 18:04:13 +03:00
def draw_prompt_matrix ( im , width , height , all_prompts ) :
def wrap ( text , d , font , line_length ) :
lines = [ ' ' ]
for word in text . split ( ) :
line = f ' { lines [ - 1 ] } { word } ' . strip ( )
if d . textlength ( line , font = font ) < = line_length :
lines [ - 1 ] = line
else :
lines . append ( word )
return ' \n ' . join ( lines )
def draw_texts ( pos , x , y , texts , sizes ) :
for i , ( text , size ) in enumerate ( zip ( texts , sizes ) ) :
active = pos & ( 1 << i ) != 0
if not active :
text = ' \u0336 ' . join ( text ) + ' \u0336 '
d . multiline_text ( ( x , y + size [ 1 ] / 2 ) , text , font = fnt , fill = color_active if active else color_inactive , anchor = " mm " , align = " center " )
y + = size [ 1 ] + line_spacing
fontsize = ( width + height ) / / 25
line_spacing = fontsize / / 2
2022-08-26 01:10:49 +03:00
fonts = [ " arial.ttf " , " DejaVuSans.ttf " ]
for font_name in fonts :
try :
fnt = ImageFont . truetype ( font_name , fontsize )
break
except OSError :
pass
else :
# ImageFont.load_default() is practically unusable as it only supports
# latin1, so raise an exception instead
raise Exception ( f " No usable font found (tried { ' , ' . join ( fonts ) } ) " )
2022-08-23 18:04:13 +03:00
color_active = ( 0 , 0 , 0 )
color_inactive = ( 153 , 153 , 153 )
pad_top = height / / 4
2022-08-23 22:42:43 +03:00
pad_left = width * 3 / / 4 if len ( all_prompts ) > 2 else 0
2022-08-23 18:04:13 +03:00
cols = im . width / / width
rows = im . height / / height
prompts = all_prompts [ 1 : ]
result = Image . new ( " RGB " , ( im . width + pad_left , im . height + pad_top ) , " white " )
result . paste ( im , ( pad_left , pad_top ) )
d = ImageDraw . Draw ( result )
boundary = math . ceil ( len ( prompts ) / 2 )
prompts_horiz = [ wrap ( x , d , fnt , width ) for x in prompts [ : boundary ] ]
prompts_vert = [ wrap ( x , d , fnt , pad_left ) for x in prompts [ boundary : ] ]
sizes_hor = [ ( x [ 2 ] - x [ 0 ] , x [ 3 ] - x [ 1 ] ) for x in [ d . multiline_textbbox ( ( 0 , 0 ) , x , font = fnt ) for x in prompts_horiz ] ]
sizes_ver = [ ( x [ 2 ] - x [ 0 ] , x [ 3 ] - x [ 1 ] ) for x in [ d . multiline_textbbox ( ( 0 , 0 ) , x , font = fnt ) for x in prompts_vert ] ]
hor_text_height = sum ( [ x [ 1 ] + line_spacing for x in sizes_hor ] ) - line_spacing
ver_text_height = sum ( [ x [ 1 ] + line_spacing for x in sizes_ver ] ) - line_spacing
for col in range ( cols ) :
x = pad_left + width * col + width / 2
y = pad_top / 2 - hor_text_height / 2
draw_texts ( col , x , y , prompts_horiz , sizes_hor )
for row in range ( rows ) :
x = pad_left / 2
y = pad_top + height * row + height / 2 - ver_text_height / 2
draw_texts ( row , x , y , prompts_vert , sizes_ver )
return result
2022-08-24 10:52:41 +03:00
def resize_image ( resize_mode , im , width , height ) :
if resize_mode == 0 :
res = im . resize ( ( width , height ) , resample = LANCZOS )
elif resize_mode == 1 :
ratio = width / height
src_ratio = im . width / im . height
src_w = width if ratio > src_ratio else im . width * height / / im . height
src_h = height if ratio < = src_ratio else im . height * width / / im . width
resized = im . resize ( ( src_w , src_h ) , resample = LANCZOS )
res = Image . new ( " RGB " , ( width , height ) )
res . paste ( resized , box = ( width / / 2 - src_w / / 2 , height / / 2 - src_h / / 2 ) )
else :
ratio = width / height
src_ratio = im . width / im . height
src_w = width if ratio < src_ratio else im . width * height / / im . height
src_h = height if ratio > = src_ratio else im . height * width / / im . width
resized = im . resize ( ( src_w , src_h ) , resample = LANCZOS )
res = Image . new ( " RGB " , ( width , height ) )
res . paste ( resized , box = ( width / / 2 - src_w / / 2 , height / / 2 - src_h / / 2 ) )
if ratio < src_ratio :
fill_height = height / / 2 - src_h / / 2
res . paste ( resized . resize ( ( width , fill_height ) , box = ( 0 , 0 , width , 0 ) ) , box = ( 0 , 0 ) )
res . paste ( resized . resize ( ( width , fill_height ) , box = ( 0 , resized . height , width , resized . height ) ) , box = ( 0 , fill_height + src_h ) )
2022-08-24 16:21:29 +03:00
elif ratio > src_ratio :
2022-08-24 10:52:41 +03:00
fill_width = width / / 2 - src_w / / 2
res . paste ( resized . resize ( ( fill_width , height ) , box = ( 0 , 0 , 0 , height ) ) , box = ( 0 , 0 ) )
res . paste ( resized . resize ( ( fill_width , height ) , box = ( resized . width , 0 , resized . width , height ) ) , box = ( fill_width + src_w , 0 ) )
return res
2022-08-24 00:02:43 +03:00
def check_prompt_length ( prompt , comments ) :
""" this function tests if prompt is too long, and if so, adds a message to comments """
tokenizer = model . cond_stage_model . tokenizer
max_length = model . cond_stage_model . max_length
info = model . cond_stage_model . tokenizer ( [ prompt ] , truncation = True , max_length = max_length , return_overflowing_tokens = True , padding = " max_length " , return_tensors = " pt " )
ovf = info [ ' overflowing_tokens ' ] [ 0 ]
overflowing_count = ovf . shape [ 0 ]
if overflowing_count == 0 :
return
vocab = { v : k for k , v in tokenizer . get_vocab ( ) . items ( ) }
overflowing_words = [ vocab . get ( int ( x ) , " " ) for x in ovf ]
overflowing_text = tokenizer . convert_tokens_to_string ( ' ' . join ( overflowing_words ) )
comments . append ( f " Warning: too many input tokens; some ( { len ( overflowing_words ) } ) have been truncated: \n { overflowing_text } \n " )
2022-08-25 08:06:54 +03:00
def process_images ( outpath , func_init , func_sample , prompt , seed , sampler_name , skip_grid , skip_save , batch_size , n_iter , steps , cfg_scale , width , height , prompt_matrix , use_GFPGAN , fp , do_not_save_grid = False , normalize_prompt_weights = True , init_img = None , init_mask = None , keep_mask = False ) :
2022-08-23 22:42:43 +03:00
""" this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch """
2022-08-24 18:45:55 +03:00
assert prompt is not None
torch_gc ( )
# start time after garbage collection (or before?)
2022-08-24 16:07:57 +03:00
start_time = time . time ( )
2022-08-22 17:15:46 +03:00
2022-08-24 18:45:55 +03:00
mem_mon = MemUsageMonitor ( ' MemMon ' )
mem_mon . start ( )
2022-08-22 17:15:46 +03:00
2022-08-25 00:28:32 +03:00
if hasattr ( model , " embedding_manager " ) :
load_embeddings ( fp )
2022-08-22 17:15:46 +03:00
os . makedirs ( outpath , exist_ok = True )
sample_path = os . path . join ( outpath , " samples " )
os . makedirs ( sample_path , exist_ok = True )
base_count = len ( os . listdir ( sample_path ) )
grid_count = len ( os . listdir ( outpath ) ) - 1
2022-08-24 00:02:43 +03:00
comments = [ ]
2022-08-23 18:04:13 +03:00
prompt_matrix_parts = [ ]
2022-08-23 00:34:49 +03:00
if prompt_matrix :
2022-08-23 22:42:43 +03:00
all_prompts = [ ]
2022-08-23 18:04:13 +03:00
prompt_matrix_parts = prompt . split ( " | " )
2022-08-23 22:42:43 +03:00
combination_count = 2 * * ( len ( prompt_matrix_parts ) - 1 )
2022-08-23 00:34:49 +03:00
for combination_num in range ( combination_count ) :
2022-08-23 18:04:13 +03:00
current = prompt_matrix_parts [ 0 ]
2022-08-23 00:34:49 +03:00
2022-08-23 18:04:13 +03:00
for n , text in enumerate ( prompt_matrix_parts [ 1 : ] ) :
2022-08-23 22:42:43 +03:00
if combination_num & ( 2 * * n ) > 0 :
2022-08-23 00:34:49 +03:00
current + = ( " " if text . strip ( ) . startswith ( " , " ) else " , " ) + text
2022-08-23 22:42:43 +03:00
all_prompts . append ( current )
2022-08-23 00:34:49 +03:00
2022-08-23 22:42:43 +03:00
n_iter = math . ceil ( len ( all_prompts ) / batch_size )
all_seeds = len ( all_prompts ) * [ seed ]
print ( f " Prompt matrix will create { len ( all_prompts ) } images using a total of { n_iter } batches. " )
else :
2022-08-24 00:02:43 +03:00
if not opt . no_verify_input :
try :
check_prompt_length ( prompt , comments )
except :
import traceback
print ( " Error verifying input: " , file = sys . stderr )
print ( traceback . format_exc ( ) , file = sys . stderr )
2022-08-23 22:42:43 +03:00
all_prompts = batch_size * n_iter * [ prompt ]
all_seeds = [ seed + x for x in range ( len ( all_prompts ) ) ]
2022-08-23 00:34:49 +03:00
2022-08-22 17:15:46 +03:00
precision_scope = autocast if opt . precision == " autocast " else nullcontext
output_images = [ ]
2022-08-24 16:46:39 +03:00
stats = [ ]
2022-08-22 17:15:46 +03:00
with torch . no_grad ( ) , precision_scope ( " cuda " ) , model . ema_scope ( ) :
2022-08-23 22:42:43 +03:00
init_data = func_init ( )
2022-08-24 16:07:57 +03:00
tic = time . time ( )
2022-08-23 22:42:43 +03:00
2022-08-22 17:15:46 +03:00
for n in range ( n_iter ) :
2022-08-23 22:42:43 +03:00
prompts = all_prompts [ n * batch_size : ( n + 1 ) * batch_size ]
seeds = all_seeds [ n * batch_size : ( n + 1 ) * batch_size ]
2022-08-23 00:34:49 +03:00
2022-08-25 09:28:01 +03:00
uc = model . get_learned_conditioning ( len ( prompts ) * [ " " ] )
2022-08-23 00:34:49 +03:00
if isinstance ( prompts , tuple ) :
prompts = list ( prompts )
2022-08-25 02:03:47 +03:00
2022-08-24 19:51:22 +03:00
# split the prompt if it has : for weighting
# TODO for speed it might help to have this occur when all_prompts filled??
subprompts , weights = split_weighted_subprompts ( prompts [ 0 ] )
# get total weight for normalizing, this gets weird if large negative values used
totalPromptWeight = sum ( weights )
# sub-prompt weighting used if more than 1
if len ( subprompts ) > 1 :
c = torch . zeros_like ( uc ) # i dont know if this is correct.. but it works
for i in range ( 0 , len ( subprompts ) ) : # normalize each prompt and add it
weight = weights [ i ]
if normalize_prompt_weights :
weight = weight / totalPromptWeight
#print(f"{subprompts[i]} {weight*100.0}%")
# note if alpha negative, it functions same as torch.sub
2022-08-25 02:03:47 +03:00
c = torch . add ( c , model . get_learned_conditioning ( subprompts [ i ] ) , alpha = weight )
2022-08-24 19:51:22 +03:00
else : # just behave like usual
c = model . get_learned_conditioning ( prompts )
2022-08-25 02:03:47 +03:00
2022-08-24 19:32:55 +03:00
shape = [ opt_C , height / / opt_f , width / / opt_f ]
2022-08-23 00:34:49 +03:00
# we manually generate all input noises because each one should have a specific seed
2022-08-23 22:42:43 +03:00
x = create_random_tensors ( [ opt_C , height / / opt_f , width / / opt_f ] , seeds = seeds )
2022-08-24 19:32:55 +03:00
samples_ddim = func_sample ( init_data = init_data , x = x , conditioning = c , unconditional_conditioning = uc , sampler_name = sampler_name )
2022-08-25 02:03:47 +03:00
2022-08-22 17:15:46 +03:00
2022-08-23 00:34:49 +03:00
x_samples_ddim = model . decode_first_stage ( samples_ddim )
x_samples_ddim = torch . clamp ( ( x_samples_ddim + 1.0 ) / 2.0 , min = 0.0 , max = 1.0 )
2022-08-24 20:51:28 +03:00
for i , x_sample in enumerate ( x_samples_ddim ) :
x_sample = 255. * rearrange ( x_sample . cpu ( ) . numpy ( ) , ' c h w -> h w c ' )
x_sample = x_sample . astype ( np . uint8 )
2022-08-23 00:34:49 +03:00
2022-08-24 20:51:28 +03:00
if use_GFPGAN and GFPGAN is not None :
2022-08-25 06:18:29 +03:00
cropped_faces , restored_faces , restored_img = GFPGAN . enhance ( x_sample [ : , : , : : - 1 ] , has_aligned = False , only_center_face = False , paste_back = True )
x_sample = restored_img [ : , : , : : - 1 ]
2022-08-23 00:34:49 +03:00
2022-08-24 20:51:28 +03:00
image = Image . fromarray ( x_sample )
2022-08-25 02:03:47 +03:00
if init_mask :
2022-08-25 19:59:57 +03:00
#init_mask = init_mask if keep_mask else ImageOps.invert(init_mask)
2022-08-25 02:03:47 +03:00
init_mask = init_mask . filter ( ImageFilter . GaussianBlur ( 3 ) )
init_mask = init_mask . convert ( ' L ' )
init_img = init_img . convert ( ' RGB ' )
image = image . convert ( ' RGB ' )
image = Image . composite ( init_img , image , init_mask )
2022-08-24 20:51:28 +03:00
filename = f " { base_count : 05 } - { seeds [ i ] } _ { prompts [ i ] . replace ( ' ' , ' _ ' ) . translate ( { ord ( x ) : ' ' for x in invalid_filename_chars } ) [ : 128 ] } .png "
if not skip_save :
2022-08-23 00:34:49 +03:00
image . save ( os . path . join ( sample_path , filename ) )
2022-08-24 20:51:28 +03:00
output_images . append ( image )
base_count + = 1
2022-08-22 17:15:46 +03:00
2022-08-24 19:32:55 +03:00
if ( prompt_matrix or not skip_grid ) and not do_not_save_grid :
2022-08-23 00:34:49 +03:00
grid = image_grid ( output_images , batch_size , round_down = prompt_matrix )
2022-08-23 18:04:13 +03:00
if prompt_matrix :
2022-08-23 22:42:43 +03:00
try :
grid = draw_prompt_matrix ( grid , width , height , prompt_matrix_parts )
except Exception :
import traceback
print ( " Error creating prompt_matrix text: " , file = sys . stderr )
print ( traceback . format_exc ( ) , file = sys . stderr )
2022-08-23 18:04:13 +03:00
output_images . insert ( 0 , grid )
2022-08-24 18:45:55 +03:00
grid_file = f " grid- { grid_count : 05 } - { seed } _ { prompts [ i ] . replace ( ' ' , ' _ ' ) . translate ( { ord ( x ) : ' ' for x in invalid_filename_chars } ) [ : 128 ] } .jpg "
2022-08-24 20:51:28 +03:00
grid . save ( os . path . join ( outpath , grid_file ) , ' jpeg ' , quality = 100 , optimize = True )
2022-08-22 17:15:46 +03:00
grid_count + = 1
2022-08-24 16:07:57 +03:00
toc = time . time ( )
mem_max_used , mem_total = mem_mon . read_and_stop ( )
time_diff = time . time ( ) - start_time
2022-08-22 17:15:46 +03:00
info = f """
{ prompt }
2022-08-24 16:46:39 +03:00
Steps : { steps } , Sampler : { sampler_name } , CFG scale : { cfg_scale } , Seed : { seed } { ' , GFPGAN ' if use_GFPGAN and GFPGAN is not None else ' ' } { ' , Prompt Matrix Mode. ' if prompt_matrix else ' ' } """ .strip()
stats = f '''
Took { round ( time_diff , 2 ) } s total ( { round ( time_diff / ( len ( all_prompts ) ) , 2 ) } s per image )
Peak memory usage : { - ( mem_max_used / / - 1_048_576 ) } MiB / { - ( mem_total / / - 1_048_576 ) } MiB / { round ( mem_max_used / mem_total * 100 , 3 ) } % '''
2022-08-25 02:03:47 +03:00
2022-08-24 00:02:43 +03:00
for comment in comments :
info + = " \n \n " + comment
2022-08-25 02:03:47 +03:00
2022-08-24 16:46:39 +03:00
#mem_mon.stop()
#del mem_mon
2022-08-24 16:21:29 +03:00
torch_gc ( )
2022-08-24 18:45:55 +03:00
2022-08-24 16:46:39 +03:00
return output_images , seed , info , stats
2022-08-22 17:15:46 +03:00
2022-08-24 18:45:55 +03:00
2022-08-25 15:20:29 +03:00
def txt2img ( prompt : str , ddim_steps : int , sampler_name : str , toggles : List [ int ] , ddim_eta : float , n_iter : int ,
batch_size : int , cfg_scale : float , seed : Union [ int , str , None ] , height : int , width : int , fp ) :
2022-08-25 07:44:53 +03:00
outpath = opt . outdir_txt2img or opt . outdir or " outputs/txt2img-samples "
2022-08-24 16:07:57 +03:00
err = False
2022-08-24 20:51:28 +03:00
seed = seed_to_int ( seed )
2022-08-23 22:42:43 +03:00
2022-08-25 06:31:49 +03:00
prompt_matrix = 0 in toggles
2022-08-25 08:47:01 +03:00
normalize_prompt_weights = 1 in toggles
2022-08-25 06:31:49 +03:00
skip_save = 2 not in toggles
skip_grid = 3 not in toggles
use_GFPGAN = 4 in toggles
2022-08-23 22:42:43 +03:00
if sampler_name == ' PLMS ' :
sampler = PLMSSampler ( model )
elif sampler_name == ' DDIM ' :
sampler = DDIMSampler ( model )
2022-08-25 05:31:40 +03:00
elif sampler_name == ' k_dpm_2_a ' :
sampler = KDiffusionSampler ( model , ' dpm_2_ancestral ' )
elif sampler_name == ' k_dpm_2 ' :
sampler = KDiffusionSampler ( model , ' dpm_2 ' )
elif sampler_name == ' k_euler_a ' :
sampler = KDiffusionSampler ( model , ' euler_ancestral ' )
elif sampler_name == ' k_euler ' :
sampler = KDiffusionSampler ( model , ' euler ' )
elif sampler_name == ' k_heun ' :
sampler = KDiffusionSampler ( model , ' heun ' )
elif sampler_name == ' k_lms ' :
sampler = KDiffusionSampler ( model , ' lms ' )
2022-08-23 22:42:43 +03:00
else :
raise Exception ( " Unknown sampler: " + sampler_name )
def init ( ) :
pass
2022-08-24 19:32:55 +03:00
def sample ( init_data , x , conditioning , unconditional_conditioning , sampler_name ) :
2022-08-23 22:42:43 +03:00
samples_ddim , _ = sampler . sample ( S = ddim_steps , conditioning = conditioning , batch_size = int ( x . shape [ 0 ] ) , shape = x [ 0 ] . shape , verbose = False , unconditional_guidance_scale = cfg_scale , unconditional_conditioning = unconditional_conditioning , eta = ddim_eta , x_T = x )
return samples_ddim
2022-08-24 19:32:55 +03:00
2022-08-24 16:07:57 +03:00
try :
2022-08-24 16:46:39 +03:00
output_images , seed , info , stats = process_images (
2022-08-24 16:07:57 +03:00
outpath = outpath ,
func_init = init ,
func_sample = sample ,
prompt = prompt ,
seed = seed ,
sampler_name = sampler_name ,
2022-08-24 19:32:55 +03:00
skip_save = skip_save ,
skip_grid = skip_grid ,
2022-08-24 16:07:57 +03:00
batch_size = batch_size ,
n_iter = n_iter ,
steps = ddim_steps ,
cfg_scale = cfg_scale ,
width = width ,
height = height ,
prompt_matrix = prompt_matrix ,
2022-08-24 20:58:45 +03:00
use_GFPGAN = use_GFPGAN ,
2022-08-25 00:28:32 +03:00
fp = fp ,
2022-08-24 20:58:45 +03:00
normalize_prompt_weights = normalize_prompt_weights
2022-08-24 16:07:57 +03:00
)
del sampler
2022-08-24 16:46:39 +03:00
return output_images , seed , info , stats
2022-08-24 16:07:57 +03:00
except RuntimeError as e :
err = e
2022-08-25 03:36:28 +03:00
err_msg = f ' CRASHED:<br><textarea rows= " 5 " style= " color:white;background: black;width: -webkit-fill-available;font-family: monospace;font-size: small;font-weight: bold; " > { str ( e ) } </textarea><br><br>Please wait while the program restarts. '
2022-08-24 19:32:55 +03:00
stats = err_msg
2022-08-25 03:36:28 +03:00
return [ ] , seed , ' err ' , stats
2022-08-24 16:07:57 +03:00
finally :
if err :
2022-08-24 17:14:23 +03:00
crash ( err , ' !!Runtime error (txt2img)!! ' )
2022-08-23 22:42:43 +03:00
2022-08-23 00:34:49 +03:00
class Flagging ( gr . FlaggingCallback ) :
def setup ( self , components , flagging_dir : str ) :
pass
2022-08-23 11:58:50 +03:00
def flag ( self , flag_data , flag_option = None , flag_index = None , username = None ) :
import csv
2022-08-23 00:34:49 +03:00
os . makedirs ( " log/images " , exist_ok = True )
2022-08-25 03:28:23 +03:00
# those must match the "txt2img" function !! + images, seed, comment, stats !! NOTE: changes to UI output must be reflected here too
2022-08-25 07:44:53 +03:00
prompt , ddim_steps , sampler_name , toggles , ddim_eta , n_iter , batch_size , cfg_scale , seed , height , width , fp , images , seed , comment , stats = flag_data
2022-08-23 00:34:49 +03:00
filenames = [ ]
with open ( " log/log.csv " , " a " , encoding = " utf8 " , newline = ' ' ) as file :
import time
import base64
at_start = file . tell ( ) == 0
writer = csv . writer ( file )
if at_start :
2022-08-26 00:52:06 +03:00
writer . writerow ( [ " sep=, " ] )
2022-08-25 07:44:53 +03:00
writer . writerow ( [ " prompt " , " seed " , " width " , " height " , " sampler " , " toggles " , " n_iter " , " n_samples " , " cfg_scale " , " steps " , " filename " ] )
2022-08-23 00:34:49 +03:00
filename_base = str ( int ( time . time ( ) * 1000 ) )
for i , filedata in enumerate ( images ) :
filename = " log/images/ " + filename_base + ( " " if len ( images ) == 1 else " - " + str ( i + 1 ) ) + " .png "
if filedata . startswith ( " data:image/png;base64, " ) :
filedata = filedata [ len ( " data:image/png;base64, " ) : ]
with open ( filename , " wb " ) as imgfile :
imgfile . write ( base64 . decodebytes ( filedata . encode ( ' utf-8 ' ) ) )
filenames . append ( filename )
2022-08-25 07:44:53 +03:00
writer . writerow ( [ prompt , seed , width , height , sampler_name , toggles , n_iter , batch_size , cfg_scale , ddim_steps , filenames [ 0 ] ] )
2022-08-23 00:34:49 +03:00
print ( " Logged: " , filenames [ 0 ] )
2022-08-22 17:15:46 +03:00
2022-08-25 15:20:29 +03:00
def img2img ( prompt : str , init_info : dict , mask_mode : str , ddim_steps : int , sampler_name : str ,
toggles : List [ int ] , n_iter : int , batch_size : int , cfg_scale : float , denoising_strength : float ,
seed : int , height : int , width : int , resize_mode : int , fp ) :
2022-08-25 07:44:53 +03:00
outpath = opt . outdir_img2img or opt . outdir or " outputs/img2img-samples "
2022-08-24 16:59:44 +03:00
err = False
2022-08-24 20:51:28 +03:00
seed = seed_to_int ( seed )
2022-08-22 17:15:46 +03:00
2022-08-25 07:44:53 +03:00
prompt_matrix = 0 in toggles
2022-08-25 08:47:01 +03:00
normalize_prompt_weights = 1 in toggles
2022-08-25 07:44:53 +03:00
loopback = 2 in toggles
2022-08-26 00:07:23 +03:00
random_seed_loopback = 3 in toggles
skip_save = 4 not in toggles
skip_grid = 5 not in toggles
use_GFPGAN = 6 in toggles
2022-08-25 07:44:53 +03:00
2022-08-24 19:32:55 +03:00
if sampler_name == ' DDIM ' :
sampler = DDIMSampler ( model )
2022-08-25 05:31:40 +03:00
elif sampler_name == ' k_dpm_2_a ' :
sampler = KDiffusionSampler ( model , ' dpm_2_ancestral ' )
elif sampler_name == ' k_dpm_2 ' :
sampler = KDiffusionSampler ( model , ' dpm_2 ' )
elif sampler_name == ' k_euler_a ' :
sampler = KDiffusionSampler ( model , ' euler_ancestral ' )
elif sampler_name == ' k_euler ' :
sampler = KDiffusionSampler ( model , ' euler ' )
elif sampler_name == ' k_heun ' :
sampler = KDiffusionSampler ( model , ' heun ' )
elif sampler_name == ' k_lms ' :
sampler = KDiffusionSampler ( model , ' lms ' )
2022-08-24 19:32:55 +03:00
else :
raise Exception ( " Unknown sampler: " + sampler_name )
2022-08-22 17:15:46 +03:00
2022-08-25 02:03:47 +03:00
init_img = init_info [ " image " ]
init_img = init_img . convert ( " RGB " )
init_img = resize_image ( resize_mode , init_img , width , height )
init_mask = init_info [ " mask " ]
init_mask = init_mask . convert ( " RGB " )
init_mask = resize_image ( resize_mode , init_mask , width , height )
keep_mask = mask_mode == " Keep masked area "
2022-08-25 19:59:57 +03:00
init_mask = init_mask if keep_mask else ImageOps . invert ( init_mask )
2022-08-25 02:03:47 +03:00
2022-08-23 22:42:43 +03:00
assert 0. < = denoising_strength < = 1. , ' can only work with strength in [0.0, 1.0] '
2022-08-24 18:45:55 +03:00
t_enc = int ( denoising_strength * ddim_steps )
2022-08-22 17:15:46 +03:00
2022-08-23 22:42:43 +03:00
def init ( ) :
image = init_img . convert ( " RGB " )
2022-08-24 10:52:41 +03:00
image = resize_image ( resize_mode , image , width , height )
2022-08-23 22:42:43 +03:00
image = np . array ( image ) . astype ( np . float32 ) / 255.0
image = image [ None ] . transpose ( 0 , 3 , 1 , 2 )
image = torch . from_numpy ( image )
2022-08-22 17:15:46 +03:00
2022-08-22 20:08:32 +03:00
init_image = 2. * image - 1.
init_image = init_image . to ( device )
init_image = repeat ( init_image , ' 1 ... -> b ... ' , b = batch_size )
init_latent = model . get_first_stage_encoding ( model . encode_first_stage ( init_image ) ) # move to latent space
2022-08-23 14:07:37 +03:00
2022-08-23 22:42:43 +03:00
return init_latent ,
2022-08-24 19:32:55 +03:00
def sample ( init_data , x , conditioning , unconditional_conditioning , sampler_name ) :
2022-08-25 08:01:15 +03:00
if sampler_name != ' DDIM ' :
2022-08-24 19:32:55 +03:00
x0 , = init_data
2022-08-23 22:42:43 +03:00
2022-08-24 19:32:55 +03:00
sigmas = sampler . model_wrap . get_sigmas ( ddim_steps )
noise = x * sigmas [ ddim_steps - t_enc - 1 ]
2022-08-23 22:42:43 +03:00
2022-08-24 19:32:55 +03:00
xi = x0 + noise
sigma_sched = sigmas [ ddim_steps - t_enc - 1 : ]
model_wrap_cfg = CFGDenoiser ( sampler . model_wrap )
samples_ddim = K . sampling . sample_lms ( model_wrap_cfg , xi , sigma_sched , extra_args = { ' cond ' : conditioning , ' uncond ' : unconditional_conditioning , ' cond_scale ' : cfg_scale } , disable = False )
else :
x0 , = init_data
sampler . make_schedule ( ddim_num_steps = ddim_steps , ddim_eta = 0.0 , verbose = False )
z_enc = sampler . stochastic_encode ( x0 , torch . tensor ( [ t_enc ] * batch_size ) . to ( device ) )
# decode it
samples_ddim = sampler . decode ( z_enc , conditioning , t_enc ,
unconditional_guidance_scale = cfg_scale ,
unconditional_conditioning = unconditional_conditioning , )
2022-08-23 22:42:43 +03:00
return samples_ddim
2022-08-24 18:45:55 +03:00
2022-08-24 16:59:44 +03:00
try :
2022-08-24 17:04:17 +03:00
if loopback :
output_images , info = None , None
history = [ ]
initial_seed = None
for i in range ( n_iter ) :
2022-08-24 17:14:23 +03:00
output_images , seed , info , stats = process_images (
2022-08-24 17:04:17 +03:00
outpath = outpath ,
func_init = init ,
func_sample = sample ,
prompt = prompt ,
seed = seed ,
2022-08-24 19:32:55 +03:00
sampler_name = sampler_name ,
skip_save = skip_save ,
skip_grid = skip_grid ,
2022-08-24 17:04:17 +03:00
batch_size = 1 ,
n_iter = 1 ,
steps = ddim_steps ,
cfg_scale = cfg_scale ,
width = width ,
height = height ,
prompt_matrix = prompt_matrix ,
use_GFPGAN = use_GFPGAN ,
2022-08-25 00:28:32 +03:00
fp = fp ,
2022-08-25 13:40:01 +03:00
do_not_save_grid = True ,
normalize_prompt_weights = normalize_prompt_weights ,
init_img = init_img ,
init_mask = init_mask ,
keep_mask = keep_mask
2022-08-24 17:04:17 +03:00
)
if initial_seed is None :
initial_seed = seed
init_img = output_images [ 0 ]
2022-08-26 00:07:23 +03:00
if not random_seed_loopback :
seed = seed + 1
else :
2022-08-26 00:55:00 +03:00
seed = seed_to_int ( None )
2022-08-24 17:04:17 +03:00
denoising_strength = max ( denoising_strength * 0.95 , 0.1 )
history . append ( init_img )
2022-08-24 20:51:28 +03:00
if not skip_grid :
grid_count = len ( os . listdir ( outpath ) ) - 1
grid = image_grid ( history , batch_size , force_n_rows = 1 )
grid_file = f " grid- { grid_count : 05 } - { seed } _ { prompt . replace ( ' ' , ' _ ' ) . translate ( { ord ( x ) : ' ' for x in invalid_filename_chars } ) [ : 128 ] } .jpg "
grid . save ( os . path . join ( outpath , grid_file ) , ' jpeg ' , quality = 100 , optimize = True )
2022-08-24 16:42:22 +03:00
2022-08-24 17:04:17 +03:00
output_images = history
seed = initial_seed
else :
2022-08-24 17:14:23 +03:00
output_images , seed , info , stats = process_images (
2022-08-24 16:42:22 +03:00
outpath = outpath ,
func_init = init ,
func_sample = sample ,
prompt = prompt ,
seed = seed ,
2022-08-24 19:32:55 +03:00
sampler_name = sampler_name ,
skip_save = skip_save ,
skip_grid = skip_grid ,
2022-08-24 17:04:17 +03:00
batch_size = batch_size ,
n_iter = n_iter ,
2022-08-24 16:42:22 +03:00
steps = ddim_steps ,
cfg_scale = cfg_scale ,
width = width ,
height = height ,
prompt_matrix = prompt_matrix ,
2022-08-24 20:58:45 +03:00
use_GFPGAN = use_GFPGAN ,
2022-08-25 00:28:32 +03:00
fp = fp ,
2022-08-25 02:03:47 +03:00
normalize_prompt_weights = normalize_prompt_weights ,
init_img = init_img ,
init_mask = init_mask ,
keep_mask = keep_mask
2022-08-24 16:42:22 +03:00
)
2022-08-25 02:03:47 +03:00
2022-08-24 16:59:44 +03:00
del sampler
return output_images , seed , info , stats
except RuntimeError as e :
err = e
2022-08-25 03:36:28 +03:00
err_msg = f ' CRASHED:<br><textarea rows= " 5 " style= " color:white;background: black;width: -webkit-fill-available;font-family: monospace;font-size: small;font-weight: bold; " > { str ( e ) } </textarea><br><br>Please wait while the program restarts. '
2022-08-24 19:32:55 +03:00
stats = err_msg
2022-08-25 03:36:28 +03:00
return [ ] , seed , ' err ' , stats
2022-08-24 16:59:44 +03:00
finally :
if err :
2022-08-24 17:14:23 +03:00
crash ( err , ' !!Runtime error (img2img)!! ' )
2022-08-22 17:15:46 +03:00
2022-08-24 20:58:45 +03:00
# grabs all text up to the first occurrence of ':' as sub-prompt
# takes the value following ':' as weight
# if ':' has no value defined, defaults to 1.0
# repeats until no text remaining
# TODO this could probably be done with less code
def split_weighted_subprompts ( text ) :
print ( text )
remaining = len ( text )
prompts = [ ]
weights = [ ]
while remaining > 0 :
if " : " in text :
idx = text . index ( " : " ) # first occurrence from start
# grab up to index as sub-prompt
prompt = text [ : idx ]
remaining - = idx
# remove from main text
text = text [ idx + 1 : ]
# find value for weight, assume it is followed by a space or comma
idx = len ( text ) # default is read to end of text
if " " in text :
idx = min ( idx , text . index ( " " ) ) # want the closer idx
if " , " in text :
idx = min ( idx , text . index ( " , " ) ) # want the closer idx
if idx != 0 :
try :
weight = float ( text [ : idx ] )
except : # couldn't treat as float
print ( f " Warning: ' { text [ : idx ] } ' is not a value, are you missing a space or comma after a value? " )
weight = 1.0
else : # no value found
weight = 1.0
# remove from main text
remaining - = idx
text = text [ idx + 1 : ]
# append the sub-prompt and its weight
prompts . append ( prompt )
weights . append ( weight )
else : # no : found
if len ( text ) > 0 : # there is still text though
# take remainder as weight 1
prompts . append ( text )
weights . append ( 1.0 )
remaining = 0
return prompts , weights
2022-08-22 20:08:32 +03:00
def run_GFPGAN ( image , strength ) :
image = image . convert ( " RGB " )
cropped_faces , restored_faces , restored_img = GFPGAN . enhance ( np . array ( image , dtype = np . uint8 ) , has_aligned = False , only_center_face = False , paste_back = True )
res = Image . fromarray ( restored_img )
if strength < 1.0 :
2022-08-23 18:04:13 +03:00
res = Image . blend ( image , res , strength )
2022-08-22 20:08:32 +03:00
return res
2022-08-26 01:35:48 +03:00
css = " " if opt . no_progressbar_hiding else css_hide_progressbar
css = css + ' [data-testid= " image " ] { min-height: 512px !important} '
sample_img2img = " assets/stable-samples/img2img/sketch-mountains-input.jpg "
sample_img2img = sample_img2img if os . path . exists ( sample_img2img ) else None
2022-08-22 20:08:32 +03:00
2022-08-26 01:35:48 +03:00
# make sure these indicies line up at the top of txt2img()
txt2img_toggles = [
' Create prompt matrix (separate multiple prompts using |, and get all combinations of them) ' ,
' Normalize Prompt Weights (ensure sum of weights add up to 1.0) ' ,
' Save individual images ' ,
' Save grid ' ,
]
2022-08-22 20:08:32 +03:00
if GFPGAN is not None :
2022-08-26 01:35:48 +03:00
txt2img_toggles . append ( ' Fix faces using GFPGAN ' )
2022-08-22 20:08:32 +03:00
2022-08-26 01:35:48 +03:00
txt2img_toggle_defaults = [
' Normalize Prompt Weights (ensure sum of weights add up to 1.0) ' ,
' Save individual images ' ,
' Save grid '
]
# make sure these indicies line up at the top of img2img()
img2img_toggles = [
' Create prompt matrix (separate multiple prompts using |, and get all combinations of them) ' ,
' Normalize Prompt Weights (ensure sum of weights add up to 1.0) ' ,
' Loopback (use images from previous batch when creating next batch) ' ,
' Random loopback seed ' ,
' Save individual images ' ,
' Save grid ' ,
]
if GFPGAN is not None :
img2img_toggles . append ( ' Fix faces using GFPGAN ' )
2022-08-26 00:42:42 +03:00
2022-08-26 01:35:48 +03:00
img2img_toggle_defaults = [
' Normalize Prompt Weights (ensure sum of weights add up to 1.0) ' ,
' Save individual images ' ,
' Save grid ' ,
]
with gr . Blocks ( css = css ) as demo :
with gr . Tabs ( ) :
with gr . TabItem ( " Stable Diffusion Text-to-Image Unified " ) :
with gr . Row ( ) :
with gr . Column ( ) :
gr . Markdown ( " Generate images from text with Stable Diffusion " )
txt2img_prompt = gr . Textbox ( label = " Prompt " , placeholder = " A corgi wearing a top hat as an oil painting. " , lines = 1 )
txt2img_steps = gr . Slider ( minimum = 1 , maximum = 250 , step = 1 , label = " Sampling Steps " , value = 50 )
txt2img_sampling = gr . Radio ( label = ' Sampling method (k_lms is default k-diffusion sampler) ' , choices = [ " DDIM " , " PLMS " , ' k_dpm_2_a ' , ' k_dpm_2 ' , ' k_euler_a ' , ' k_euler ' , ' k_heun ' , ' k_lms ' ] , value = " k_lms " )
txt2img_toggles = gr . CheckboxGroup ( label = ' ' , choices = txt2img_toggles , value = txt2img_toggle_defaults , type = " index " )
txt2img_ddim_eta = gr . Slider ( minimum = 0.0 , maximum = 1.0 , step = 0.01 , label = " DDIM ETA " , value = 0.0 , visible = False )
txt2img_batch_count = gr . Slider ( minimum = 1 , maximum = 250 , step = 1 , label = ' Batch count (how many batches of images to generate) ' , value = 1 )
txt2img_batch_size = gr . Slider ( minimum = 1 , maximum = 8 , step = 1 , label = ' Batch size (how many images are in a batch; memory-hungry) ' , value = 1 )
txt2img_cfg = gr . Slider ( minimum = 1.0 , maximum = 30.0 , step = 0.5 , label = ' Classifier Free Guidance Scale (how strongly the image should follow the prompt) ' , value = 7.5 )
txt2img_seed = gr . Textbox ( label = " Seed (blank to randomize) " , lines = 1 , value = " " )
txt2img_height = gr . Slider ( minimum = 64 , maximum = 2048 , step = 64 , label = " Height " , value = 512 )
txt2img_width = gr . Slider ( minimum = 64 , maximum = 2048 , step = 64 , label = " Width " , value = 512 )
txt2img_embeddings = gr . File ( label = " Embeddings file for textual inversion " , visible = hasattr ( model , " embedding_manager " ) )
txt2img_btn = gr . Button ( " Generate " )
with gr . Column ( ) :
output_txt2img_gallery = gr . Gallery ( label = " Images " )
output_txt2img_seed = gr . Number ( label = ' Seed ' )
output_txt2img_params = gr . Textbox ( label = " Copy-paste generation parameters " )
output_txt2img_stats = gr . HTML ( label = ' Stats ' )
txt2img_btn . click (
txt2img ,
[ txt2img_prompt , txt2img_steps , txt2img_sampling , txt2img_toggles , txt2img_ddim_eta , txt2img_batch_count , txt2img_batch_size , txt2img_cfg , txt2img_seed , txt2img_height , txt2img_width , txt2img_embeddings ] ,
[ output_txt2img_gallery , output_txt2img_seed , output_txt2img_params , output_txt2img_stats ]
)
with gr . TabItem ( " Stable Diffusion Image-to-Image Unified " ) :
with gr . Row ( ) :
with gr . Column ( ) :
gr . Markdown ( " Generate images from images with Stable Diffusion " )
img2img_prompt = gr . Textbox ( label = " Prompt " , placeholder = " A fantasy landscape, trending on artstation. " , lines = 1 )
img2img_image = gr . Image ( value = sample_img2img , source = " upload " , interactive = True , type = " pil " , tool = " sketch " )
img2img_mask = gr . Radio ( choices = [ " Keep masked area " , " Regenerate only masked area " ] , label = " Mask Mode " , value = " Keep masked area " )
img2img_steps = gr . Slider ( minimum = 1 , maximum = 250 , step = 1 , label = " Sampling Steps " , value = 50 )
img2img_sampling = gr . Radio ( label = ' Sampling method (k_lms is default k-diffusion sampler) ' , choices = [ " DDIM " , ' k_dpm_2_a ' , ' k_dpm_2 ' , ' k_euler_a ' , ' k_euler ' , ' k_heun ' , ' k_lms ' ] , value = " k_lms " )
img2img_toggles = gr . CheckboxGroup ( label = ' ' , choices = img2img_toggles , value = img2img_toggle_defaults , type = " index " )
img2img_batch_count = gr . Slider ( minimum = 1 , maximum = 250 , step = 1 , label = ' Batch count (how many batches of images to generate) ' , value = 1 )
img2img_batch_size = gr . Slider ( minimum = 1 , maximum = 8 , step = 1 , label = ' Batch size (how many images are in a batch; memory-hungry) ' , value = 1 )
img2img_cfg = gr . Slider ( minimum = 1.0 , maximum = 30.0 , step = 0.5 , label = ' Classifier Free Guidance Scale (how strongly the image should follow the prompt) ' , value = 5.0 )
img2img_denoising = gr . Slider ( minimum = 0.0 , maximum = 1.0 , step = 0.01 , label = ' Denoising Strength ' , value = 0.75 )
img2img_seed = gr . Textbox ( label = " Seed (blank to randomize) " , lines = 1 , value = " " )
img2img_height = gr . Slider ( minimum = 64 , maximum = 2048 , step = 64 , label = " Height " , value = 512 )
img2img_width = gr . Slider ( minimum = 64 , maximum = 2048 , step = 64 , label = " Width " , value = 512 )
img2img_resize = gr . Radio ( label = " Resize mode " , choices = [ " Just resize " , " Crop and resize " , " Resize and fill " ] , type = " index " , value = " Just resize " )
img2img_embeddings = gr . File ( label = " Embeddings file for textual inversion " , visible = hasattr ( model , " embedding_manager " ) )
img2img_btn = gr . Button ( " Generate " )
with gr . Column ( ) :
output_img2img_gallery = gr . Gallery ( label = " Images " )
output_img2img_seed = gr . Number ( label = ' Seed ' )
output_img2img_params = gr . Textbox ( label = " Copy-paste generation parameters " )
output_img2img_stats = gr . HTML ( label = ' Stats ' )
img2img_btn . click (
img2img ,
[ img2img_prompt , img2img_image , img2img_mask , img2img_steps , img2img_sampling , img2img_toggles , img2img_batch_count , img2img_batch_size , img2img_cfg , img2img_denoising , img2img_seed , img2img_height , img2img_width , img2img_resize , img2img_embeddings ] ,
[ output_img2img_gallery , output_img2img_seed , output_img2img_params , output_img2img_stats ]
)
if GFPGAN is not None :
with gr . TabItem ( " GFPGAN " ) :
gr . Markdown ( " Fix faces on images " )
with gr . Row ( ) :
with gr . Column ( ) :
gfpgan_source = gr . Image ( label = " Source " , source = " upload " , interactive = True , type = " pil " )
gfpgan_strength = gr . Slider ( minimum = 0.0 , maximum = 1.0 , step = 0.001 , label = " Effect strength " , value = 100 )
gfpgan_btn = gr . Button ( " Generate " )
with gr . Column ( ) :
gfpgan_output = gr . Image ( label = " Output " )
gfpgan_btn . click (
run_GFPGAN ,
[ gfpgan_source , gfpgan_strength ] ,
[ gfpgan_output ]
)
2022-08-25 15:08:24 +03:00
2022-08-24 23:38:29 +03:00
demo . queue ( concurrency_count = 1 )
2022-08-25 15:08:24 +03:00
class ServerLauncher ( threading . Thread ) :
def __init__ ( self , demo ) :
threading . Thread . __init__ ( self )
self . name = ' Gradio Server Thread '
self . demo = demo
def run ( self ) :
loop = asyncio . new_event_loop ( )
asyncio . set_event_loop ( loop )
2022-08-25 15:31:44 +03:00
self . demo . launch ( show_error = True , server_name = ' 0.0.0.0 ' )
2022-08-25 15:08:24 +03:00
def stop ( self ) :
2022-08-25 15:31:44 +03:00
self . demo . close ( ) # this tends to hang
2022-08-25 15:08:24 +03:00
2022-08-25 15:20:29 +03:00
if opt . cli is None :
server_thread = ServerLauncher ( demo )
server_thread . start ( )
2022-08-25 15:08:24 +03:00
2022-08-25 15:20:29 +03:00
try :
while server_thread . is_alive ( ) :
time . sleep ( 60 )
except ( KeyboardInterrupt , OSError ) as e :
crash ( e , ' Shutting down... ' )
else :
with open ( opt . cli , " r " , encoding = " utf8 " ) as f :
kwargs = yaml . safe_load ( f )
target = kwargs . pop ( " target " )
if target == " txt2img " :
target_func = txt2img
elif target == " img2img " :
target_func = img2img
raise NotImplementedError ( )
else :
raise ValueError ( f " Unknown target: { target } " )
kwargs [ " fp " ] = None
output_images , seed , info , stats = target_func ( * * kwargs )
print ( f " Seed: { seed } " )
print ( info )
print ( stats )