stable-diffusion-webui/scripts/textual_inversion.py

57 lines
1.7 KiB
Python
Raw Normal View History

# base webui import and utils.
from webui_streamlit import st
from sd_utils import *
# streamlit imports
#other imports
#from transformers import CLIPTextModel, CLIPTokenizer
# Temp imports
# end of imports
#---------------------------------------------------------------------------------------------------------------
#def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
#loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
## separate token and the embeds
#print (loaded_learned_embeds)
#trained_token = list(loaded_learned_embeds.keys())[0]
#embeds = loaded_learned_embeds[trained_token]
## cast to dtype of text_encoder
#dtype = text_encoder.get_input_embeddings().weight.dtype
#embeds.to(dtype)
## add the token in tokenizer
#token = token if token is not None else trained_token
#num_added_tokens = tokenizer.add_tokens(token)
#i = 1
#while(num_added_tokens == 0):
#print(f"The tokenizer already contains the token {token}.")
#token = f"{token[:-1]}-{i}>"
#print(f"Attempting to add the token {token}.")
#num_added_tokens = tokenizer.add_tokens(token)
#i+=1
## resize the token embeddings
#text_encoder.resize_token_embeddings(len(tokenizer))
## get the id for the token and assign the embeds
#token_id = tokenizer.convert_tokens_to_ids(token)
#text_encoder.get_input_embeddings().weight.data[token_id] = embeds
#return token
##def token_loader()
#learned_token = load_learned_embed_in_clip(f"models/custom/embeddings/Custom Ami.pt", st.session_state.pipe.text_encoder, st.session_state.pipe.tokenizer, "*")
#model_content["token"] = learned_token
#models.append(model_content)
model_id = "./models/custom/embeddings/"
def layout():
st.write("Textual Inversion")