2022-08-29 01:40:48 +03:00
|
|
|
import re
|
|
|
|
import gradio as gr
|
|
|
|
from PIL import Image, ImageFont, ImageDraw, ImageFilter, ImageOps
|
|
|
|
from io import BytesIO
|
|
|
|
import base64
|
|
|
|
import re
|
|
|
|
|
|
|
|
|
2022-09-07 04:56:27 +03:00
|
|
|
def change_image_editor_mode(choice, cropped_image, masked_image, resize_mode, width, height):
|
2022-08-29 01:40:48 +03:00
|
|
|
if choice == "Mask":
|
2022-09-07 04:56:27 +03:00
|
|
|
update_image_result = update_image_mask(cropped_image, resize_mode, width, height)
|
|
|
|
return [gr.update(visible=False), update_image_result, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)]
|
|
|
|
|
|
|
|
update_image_result = update_image_mask(masked_image["image"], resize_mode, width, height)
|
|
|
|
return [update_image_result, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)]
|
2022-08-29 01:40:48 +03:00
|
|
|
|
|
|
|
def update_image_mask(cropped_image, resize_mode, width, height):
|
|
|
|
resized_cropped_image = resize_image(resize_mode, cropped_image, width, height) if cropped_image else None
|
2022-09-07 04:56:27 +03:00
|
|
|
return gr.update(value=resized_cropped_image, visible=True)
|
2022-08-29 01:40:48 +03:00
|
|
|
|
2022-09-03 11:07:17 +03:00
|
|
|
def toggle_options_gfpgan(selection):
|
|
|
|
if 0 in selection:
|
|
|
|
return gr.update(visible=True)
|
|
|
|
else:
|
|
|
|
return gr.update(visible=False)
|
|
|
|
|
|
|
|
def toggle_options_upscalers(selection):
|
|
|
|
if 1 in selection:
|
|
|
|
return gr.update(visible=True)
|
|
|
|
else:
|
|
|
|
return gr.update(visible=False)
|
|
|
|
|
|
|
|
def toggle_options_realesrgan(selection):
|
|
|
|
if selection == 0 or selection == 1 or selection == 3:
|
|
|
|
return gr.update(visible=True)
|
|
|
|
else:
|
|
|
|
return gr.update(visible=False)
|
|
|
|
|
|
|
|
def toggle_options_gobig(selection):
|
|
|
|
if selection == 1:
|
|
|
|
#print(selection)
|
|
|
|
return gr.update(visible=True)
|
|
|
|
if selection == 3:
|
|
|
|
return gr.update(visible=True)
|
|
|
|
else:
|
|
|
|
return gr.update(visible=False)
|
|
|
|
|
|
|
|
def toggle_options_ldsr(selection):
|
|
|
|
if selection == 2 or selection == 3:
|
|
|
|
return gr.update(visible=True)
|
|
|
|
else:
|
|
|
|
return gr.update(visible=False)
|
|
|
|
|
|
|
|
def increment_down(value):
|
|
|
|
return value - 1
|
|
|
|
|
|
|
|
def increment_up(value):
|
|
|
|
return value + 1
|
|
|
|
|
2022-09-01 20:48:51 +03:00
|
|
|
def copy_img_to_lab(img):
|
|
|
|
try:
|
|
|
|
image_data = re.sub('^data:image/.+;base64,', '', img)
|
|
|
|
processed_image = Image.open(BytesIO(base64.b64decode(image_data)))
|
|
|
|
tab_update = gr.update(selected='imgproc_tab')
|
|
|
|
img_update = gr.update(value=processed_image)
|
2022-09-03 11:07:17 +03:00
|
|
|
return processed_image, tab_update,
|
|
|
|
except IndexError:
|
|
|
|
return [None, None]
|
|
|
|
def copy_img_params_to_lab(params):
|
|
|
|
try:
|
|
|
|
prompt = params[0][0].replace('\n', ' ').replace('\r', '')
|
|
|
|
seed = int(params[1][1])
|
|
|
|
steps = int(params[7][1])
|
|
|
|
cfg_scale = float(params[9][1])
|
|
|
|
sampler = params[11][1]
|
|
|
|
return prompt,seed,steps,cfg_scale,sampler
|
2022-09-01 20:48:51 +03:00
|
|
|
except IndexError:
|
|
|
|
return [None, None]
|
2022-08-29 01:40:48 +03:00
|
|
|
def copy_img_to_input(img):
|
|
|
|
try:
|
|
|
|
image_data = re.sub('^data:image/.+;base64,', '', img)
|
|
|
|
processed_image = Image.open(BytesIO(base64.b64decode(image_data)))
|
|
|
|
tab_update = gr.update(selected='img2img_tab')
|
|
|
|
img_update = gr.update(value=processed_image)
|
|
|
|
return processed_image, processed_image , tab_update
|
|
|
|
except IndexError:
|
|
|
|
return [None, None]
|
|
|
|
|
|
|
|
def copy_img_to_edit(img):
|
|
|
|
try:
|
|
|
|
image_data = re.sub('^data:image/.+;base64,', '', img)
|
|
|
|
processed_image = Image.open(BytesIO(base64.b64decode(image_data)))
|
|
|
|
tab_update = gr.update(selected='img2img_tab')
|
|
|
|
img_update = gr.update(value=processed_image)
|
|
|
|
mode_update = gr.update(value='Crop')
|
|
|
|
return processed_image, tab_update, mode_update
|
|
|
|
except IndexError:
|
|
|
|
return [None, None]
|
|
|
|
|
|
|
|
def copy_img_to_mask(img):
|
|
|
|
try:
|
|
|
|
image_data = re.sub('^data:image/.+;base64,', '', img)
|
|
|
|
processed_image = Image.open(BytesIO(base64.b64decode(image_data)))
|
|
|
|
tab_update = gr.update(selected='img2img_tab')
|
|
|
|
img_update = gr.update(value=processed_image)
|
|
|
|
mode_update = gr.update(value='Mask')
|
|
|
|
return processed_image, tab_update, mode_update
|
|
|
|
except IndexError:
|
|
|
|
return [None, None]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def copy_img_to_upscale_esrgan(img):
|
|
|
|
tabs_update = gr.update(selected='realesrgan_tab')
|
|
|
|
image_data = re.sub('^data:image/.+;base64,', '', img)
|
|
|
|
processed_image = Image.open(BytesIO(base64.b64decode(image_data)))
|
|
|
|
return processed_image, tabs_update
|
|
|
|
|
|
|
|
|
|
|
|
help_text = """
|
|
|
|
## Mask/Crop
|
2022-08-30 04:05:54 +03:00
|
|
|
* Masking is not inpainting. You will probably get better results manually masking your images in photoshop instead.
|
|
|
|
* Built-in masking/cropping is very temperamental.
|
2022-08-29 01:40:48 +03:00
|
|
|
* It may take some time for the image to show when switching from Crop to Mask.
|
|
|
|
* If the image doesn't appear after switching to Mask, switch back to Crop and then back again to Mask
|
|
|
|
* If the mask appears distorted (the brush is weirdly shaped instead of round), switch back to Crop and then back again to Mask.
|
|
|
|
|
|
|
|
## Advanced Editor
|
2022-08-30 04:05:54 +03:00
|
|
|
* Click 💾 Save to send your editor changes to the img2img workflow
|
|
|
|
* Click ❌ Clear to discard your editor changes
|
2022-08-29 01:40:48 +03:00
|
|
|
|
2022-08-30 04:05:54 +03:00
|
|
|
If anything breaks, try switching modes again, switch tabs, clear the image, or reload.
|
2022-08-29 01:40:48 +03:00
|
|
|
"""
|
|
|
|
|
|
|
|
def resize_image(resize_mode, im, width, height):
|
|
|
|
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
|
|
|
|
if resize_mode == 0:
|
|
|
|
res = im.resize((width, height), resample=LANCZOS)
|
|
|
|
elif resize_mode == 1:
|
|
|
|
ratio = width / height
|
|
|
|
src_ratio = im.width / im.height
|
|
|
|
|
|
|
|
src_w = width if ratio > src_ratio else im.width * height // im.height
|
|
|
|
src_h = height if ratio <= src_ratio else im.height * width // im.width
|
|
|
|
|
|
|
|
resized = im.resize((src_w, src_h), resample=LANCZOS)
|
2022-08-30 13:32:15 +03:00
|
|
|
res = Image.new("RGBA", (width, height))
|
2022-08-29 01:40:48 +03:00
|
|
|
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
|
|
|
|
else:
|
|
|
|
ratio = width / height
|
|
|
|
src_ratio = im.width / im.height
|
|
|
|
|
|
|
|
src_w = width if ratio < src_ratio else im.width * height // im.height
|
|
|
|
src_h = height if ratio >= src_ratio else im.height * width // im.width
|
|
|
|
|
|
|
|
resized = im.resize((src_w, src_h), resample=LANCZOS)
|
2022-08-30 13:32:15 +03:00
|
|
|
res = Image.new("RGBA", (width, height))
|
2022-08-29 01:40:48 +03:00
|
|
|
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
|
|
|
|
|
|
|
|
if ratio < src_ratio:
|
|
|
|
fill_height = height // 2 - src_h // 2
|
|
|
|
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
|
|
|
|
res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h))
|
|
|
|
elif ratio > src_ratio:
|
|
|
|
fill_width = width // 2 - src_w // 2
|
|
|
|
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
|
|
|
|
res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0))
|
|
|
|
|
|
|
|
return res
|
2022-08-31 02:00:05 +03:00
|
|
|
|
|
|
|
def update_dimensions_info(width, height):
|
|
|
|
pixel_count_formated = "{:,.0f}".format(width * height)
|
|
|
|
return f"Aspect ratio: {round(width / height, 5)}\nTotal pixel count: {pixel_count_formated}"
|
2022-09-03 10:24:03 +03:00
|
|
|
|
2022-09-03 10:40:02 +03:00
|
|
|
def get_png_nfo( image: Image ):
|
|
|
|
info_text = ""
|
|
|
|
visible = bool(image and any(image.info))
|
|
|
|
if visible:
|
|
|
|
for key,value in image.info.items():
|
|
|
|
info_text += f"{key}: {value}\n"
|
|
|
|
info_text = info_text.rstrip('\n')
|
|
|
|
return gr.Textbox.update(value=info_text, visible=visible)
|
|
|
|
|
2022-09-03 10:24:03 +03:00
|
|
|
def load_settings(*values):
|
|
|
|
new_settings, key_names, checkboxgroup_info = values[-3:]
|
|
|
|
values = list(values[:-3])
|
|
|
|
|
|
|
|
if new_settings:
|
|
|
|
if type(new_settings) is str:
|
|
|
|
if os.path.exists(new_settings):
|
|
|
|
with open(new_settings, "r", encoding="utf8") as f:
|
|
|
|
new_settings = yaml.safe_load(f)
|
|
|
|
elif new_settings.startswith("file://") and os.path.exists(new_settings[7:]):
|
|
|
|
with open(new_settings[7:], "r", encoding="utf8") as f:
|
|
|
|
new_settings = yaml.safe_load(f)
|
|
|
|
else:
|
|
|
|
new_settings = yaml.safe_load(new_settings)
|
|
|
|
if type(new_settings) is not dict:
|
|
|
|
new_settings = {"prompt": new_settings}
|
|
|
|
if "txt2img" in new_settings:
|
|
|
|
new_settings = new_settings["txt2img"]
|
|
|
|
target = new_settings.pop("target", "txt2img")
|
|
|
|
if target != "txt2img":
|
|
|
|
print(f"Warning: applying settings to txt2img even though {target} is specified as target.", file=sys.stderr)
|
|
|
|
|
|
|
|
skipped_settings = {}
|
|
|
|
for key in new_settings.keys():
|
|
|
|
if key in key_names:
|
|
|
|
values[key_names.index(key)] = new_settings[key]
|
|
|
|
else:
|
|
|
|
skipped_settings[key] = new_settings[key]
|
|
|
|
if skipped_settings:
|
|
|
|
print(f"Settings could not be applied: {skipped_settings}", file=sys.stderr)
|
|
|
|
|
|
|
|
# Convert lists of checkbox indices to lists of checkbox labels:
|
|
|
|
for (cbg_index, cbg_choices) in checkboxgroup_info:
|
|
|
|
values[cbg_index] = [cbg_choices[i] for i in values[cbg_index]]
|
|
|
|
|
|
|
|
return values
|