-Added the Update Image Preview option to be part of the current tab options under Preview Settings.

- Added Dynamic Preview Frequency option for the txt2vid tab which tries to find the lowest value for update_preview_frequency at which we can update the preview image during generation while at the same time minimizing the impact it has in performance.
- Added option to save a video file on the outputs/txt2vid-samples folder after the generation is complete similar to how the save_grid option works on other tabs.
- Added a video preview which shows a video on the txt2vid tab when the generation is completed.
- Formated some lines of code to make it use less space and fit on the a single screen.
- Added a script called Settings.py to the script folder in which Settings for the Setting page will be placed. Empty for now.
This commit is contained in:
ZeroCool940711 2022-09-12 11:44:00 -07:00
parent 4bb6f9d92b
commit 1117b5604a
3 changed files with 195 additions and 78 deletions

View File

@ -44,6 +44,8 @@ txt2img:
sampling_steps: 30 sampling_steps: 30
default_sampler: "k_euler" default_sampler: "k_euler"
separate_prompts: False separate_prompts: False
update_preview: True
update_preview_frequency: 5
normalize_prompt_weights: True normalize_prompt_weights: True
save_individual_images: True save_individual_images: True
save_grid: True save_grid: True
@ -71,6 +73,9 @@ txt2vid:
default_sampler: "k_euler" default_sampler: "k_euler"
scheduler_name: "klms" scheduler_name: "klms"
separate_prompts: False separate_prompts: False
update_preview: True
update_preview_frequency: 5
dynamic_preview_frequency: True
normalize_prompt_weights: True normalize_prompt_weights: True
save_individual_images: True save_individual_images: True
save_video: True save_video: True
@ -85,7 +90,7 @@ txt2vid:
variant_seed: "" variant_seed: ""
beta_start: 0.00085 beta_start: 0.00085
beta_end: 0.012 beta_end: 0.012
beta_scheduler_type: "scaled_linear" beta_scheduler_type: "linear"
max_frames: 1000 max_frames: 1000
img2img: img2img:
@ -125,6 +130,8 @@ img2img:
loopback: True loopback: True
random_seed_loopback: True random_seed_loopback: True
separate_prompts: False separate_prompts: False
update_preview: True
update_preview_frequency: 5
normalize_prompt_weights: True normalize_prompt_weights: True
save_individual_images: True save_individual_images: True
save_grid: True save_grid: True

6
scripts/Settings.py Normal file
View File

@ -0,0 +1,6 @@
import streamlit as st
from webui_streamlit import defaults
# The global settings section will be moved to the Settings page.
#with st.expander("Global Settings:"):
st.write("Global Settings:")

View File

@ -564,6 +564,20 @@ def slerp(device, t, v0:torch.Tensor, v1:torch.Tensor, DOT_THRESHOLD=0.9995):
return v2 return v2
def optimize_update_preview_frequency(current_chunk_speed, previous_chunk_speed, update_preview_frequency):
"""Find the optimal update_preview_frequency value maximizing
performance while minimizing the time between updates."""
if current_chunk_speed >= previous_chunk_speed:
print(f"{current_chunk_speed} >= {previous_chunk_speed}")
update_preview_frequency +=1
previous_chunk_speed = current_chunk_speed
else:
print(f"{current_chunk_speed} <= {previous_chunk_speed}")
update_preview_frequency -=1
previous_chunk_speed = current_chunk_speed
return current_chunk_speed, previous_chunk_speed, update_preview_frequency
# ----------------------------------------------------------------------------- # -----------------------------------------------------------------------------
@torch.no_grad() @torch.no_grad()
@ -607,6 +621,8 @@ def diffuse(
step_counter = 0 step_counter = 0
inference_counter = 0 inference_counter = 0
current_chunk_speed = 0
previous_chunk_speed = 0
# diffuse! # diffuse!
for i, t in enumerate(pipe.scheduler.timesteps): for i, t in enumerate(pipe.scheduler.timesteps):
@ -633,23 +649,32 @@ def diffuse(
else: else:
cond_latents = pipe.scheduler.step(noise_pred, t, cond_latents, **extra_step_kwargs)["prev_sample"] cond_latents = pipe.scheduler.step(noise_pred, t, cond_latents, **extra_step_kwargs)["prev_sample"]
#print (st.session_state["update_preview_frequency"])
#update the preview image if it is enabled and the frequency matches the step_counter #update the preview image if it is enabled and the frequency matches the step_counter
#if st.session_state["update_preview"]: if defaults.general.update_preview:
# if st.session_state["update_preview_frequency"] == step_counter: step_counter += 1
# scale and decode the image latents with vae
cond_latents_2 = 1 / 0.18215 * cond_latents if st.session_state.dynamic_preview_frequency:
image_2 = pipe.vae.decode(cond_latents_2) current_chunk_speed, previous_chunk_speed, defaults.general.update_preview_frequency = optimize_update_preview_frequency(
current_chunk_speed, previous_chunk_speed, defaults.general.update_preview_frequency)
# generate output numpy image as uint8
image_2 = (image_2 / 2 + 0.5).clamp(0, 1) if defaults.general.update_preview_frequency == step_counter or step_counter == st.session_state.sampling_steps:
image_2 = image_2.cpu().permute(0, 2, 3, 1).numpy() #scale and decode the image latents with vae
image_2 = (image_2[0] * 255).astype(np.uint8) cond_latents_2 = 1 / 0.18215 * cond_latents
image_2 = pipe.vae.decode(cond_latents_2)
st.session_state["preview_image"].image(image_2)
#step_counter = 0 # generate output numpy image as uint8
image_2 = (image_2 / 2 + 0.5).clamp(0, 1)
image_2 = image_2.cpu().permute(0, 2, 3, 1).numpy()
image_2 = (image_2[0] * 255).astype(np.uint8)
st.session_state["preview_image"].image(image_2)
step_counter = 0
duration = timeit.default_timer() - start duration = timeit.default_timer() - start
current_chunk_speed = duration
if duration >= 1: if duration >= 1:
speed = "s/it" speed = "s/it"
@ -1823,7 +1848,11 @@ def txt2vid(
mem_mon.start() mem_mon.start()
seeds = seed_to_int(seeds) seeds = seed_to_int(seeds)
# We add an extra frame because most
# of the time the first frame is just the noise.
max_frames +=1
assert torch.cuda.is_available() assert torch.cuda.is_available()
assert height % 8 == 0 and width % 8 == 0 assert height % 8 == 0 and width % 8 == 0
@ -1843,7 +1872,7 @@ def txt2vid(
# Write prompt info to file in output dir so we can keep track of what we did # Write prompt info to file in output dir so we can keep track of what we did
if st.session_state.write_info_files: if st.session_state.write_info_files:
with open(os.path.join(full_path , f'{slugify(prompts)}_{slugify(str(seeds))}_config.json' if len(prompts) > 1 else "prompts_config.json"), "w") as outfile: with open(os.path.join(full_path , f'{slugify(str(seeds))}_config.json' if len(prompts) > 1 else "prompts_config.json"), "w") as outfile:
outfile.write(json.dumps( outfile.write(json.dumps(
dict( dict(
prompts = prompts, prompts = prompts,
@ -1912,7 +1941,7 @@ def txt2vid(
weights_path, weights_path,
use_local_file=True, use_local_file=True,
use_auth_token=True, use_auth_token=True,
torch_dtype=torch.float16, #torch_dtype=torch.float16,
#revision="fp16" #revision="fp16"
) )
@ -1922,6 +1951,25 @@ def txt2vid(
print("Tx2Vid Model Loaded") print("Tx2Vid Model Loaded")
else: else:
print("Tx2Vid Model already Loaded") print("Tx2Vid Model already Loaded")
except RuntimeError:
#del st.session_state["weights_path"]
#del st.session_state["pipe"]
st.session_state["weights_path"] = weights_path
st.session_state["pipe"] = StableDiffusionPipeline.from_pretrained(
weights_path,
use_local_file=True,
use_auth_token=True,
#torch_dtype=torch.float16,
revision="fp16"
)
st.session_state["pipe"].unet.to(torch_device)
st.session_state["pipe"].vae.to(torch_device)
st.session_state["pipe"].text_encoder.to(torch_device)
print("Tx2Vid Model Loaded")
except: except:
#del st.session_state["weights_path"] #del st.session_state["weights_path"]
#del st.session_state["pipe"] #del st.session_state["pipe"]
@ -1950,10 +1998,11 @@ def txt2vid(
init1 = torch.randn((1, st.session_state["pipe"].unet.in_channels, height // 8, width // 8), device=torch_device) init1 = torch.randn((1, st.session_state["pipe"].unet.in_channels, height // 8, width // 8), device=torch_device)
if do_loop: if do_loop:
prompts = list(prompts) prompts = [prompts, prompts]
seeds = list(seeds) seeds = [seeds, seeds]
prompts.append(prompts) #first_seed, *seeds = seeds
seeds.append(first_seed) #prompts.append(prompts)
#seeds.append(first_seed)
# iterate the loop # iterate the loop
@ -1982,8 +2031,7 @@ def txt2vid(
#init = slerp(gpu, float(t), init1, init2) #init = slerp(gpu, float(t), init1, init2)
init = slerp(gpu, float(t), init1, init2) init = slerp(gpu, float(t), init1, init2)
#print("dreaming... ", frame_index)
with autocast("cuda"): with autocast("cuda"):
image = diffuse(st.session_state["pipe"], cond_embeddings, init, num_inference_steps, cfg_scale, eta) image = diffuse(st.session_state["pipe"], cond_embeddings, init, num_inference_steps, cfg_scale, eta)
@ -2018,26 +2066,34 @@ def txt2vid(
except StopException: except StopException:
pass pass
# write video to memory
#output = io.BytesIO() if st.session_state['save_video']:
#writer = imageio.get_writer(output, im, plugin="pillow", extension=".png", fps=30) # write video to memory
#for frame in frames: #output = io.BytesIO()
# writer.append_data(frame) #writer = imageio.get_writer(os.path.join(os.getcwd(), defaults.general.outdir, "txt2vid-samples"), im, extension=".mp4", fps=30)
#writer.close() try:
video_path = os.path.join(os.getcwd(), defaults.general.outdir, "txt2vid-samples","temp.mp4")
writer = imageio.get_writer(video_path, fps=24)
for frame in frames:
writer.append_data(frame)
writer.close()
except:
print("Can't save video, skipping.")
# show video preview on the UI
st.session_state["preview_video"].video(open(video_path, 'rb').read())
mem_max_used, mem_total = mem_mon.read_and_stop() mem_max_used, mem_total = mem_mon.read_and_stop()
time_diff = time.time()- start time_diff = time.time()- start
info = f""" info = f"""
{prompts} {prompts}
Sampling Steps: {num_steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seeds}, Max Frames: {max_frames} Sampling Steps: {num_steps}, Sampler: {scheduler}, CFG scale: {cfg_scale}, Seed: {seeds}, Max Frames: {max_frames}""".strip()
{', GFPGAN' if use_GFPGAN and st.session_state["GFPGAN"] is not None else ''}{', '+realesrgan_model_name if use_RealESRGAN and st.session_state["RealESRGAN"] is not None else ''}
{', Prompt Matrix Mode.' if prompt_matrix else ''}""".strip()
stats = f''' stats = f'''
Took { round(time_diff, 2) }s total ({ round(time_diff/(len(all_prompts)),2) }s per image) Took { round(time_diff, 2) }s total ({ round(time_diff/(max_frames),2) }s per image)
Peak memory usage: { -(mem_max_used // -1_048_576) } MiB / { -(mem_total // -1_048_576) } MiB / { round(mem_max_used/mem_total*100, 3) }%''' Peak memory usage: { -(mem_max_used // -1_048_576) } MiB / { -(mem_total // -1_048_576) } MiB / { round(mem_max_used/mem_total*100, 3) }%'''
return im, seed, info return im, seeds, info, stats
# functions to load css locally OR remotely starts here. Options exist for future flexibility. Called as st.markdown with unsafe_allow_html as css injection # functions to load css locally OR remotely starts here. Options exist for future flexibility. Called as st.markdown with unsafe_allow_html as css injection
@ -2064,7 +2120,7 @@ def layout():
with st.empty(): with st.empty():
# load css as an external file, function has an option to local or remote url. Potential use when running from cloud infra that might not have access to local path. # load css as an external file, function has an option to local or remote url. Potential use when running from cloud infra that might not have access to local path.
load_css(True, 'frontend/css/streamlit.main.css') load_css(True, 'frontend/css/streamlit.main.css')
# check if the models exist on their respective folders # check if the models exist on their respective folders
if os.path.exists(os.path.join(defaults.general.GFPGAN_dir, "experiments", "pretrained_models", "GFPGANv1.3.pth")): if os.path.exists(os.path.join(defaults.general.GFPGAN_dir, "experiments", "pretrained_models", "GFPGANv1.3.pth")):
GFPGAN_available = True GFPGAN_available = True
@ -2138,6 +2194,16 @@ def layout():
#help="How many images are at once in a batch.\ #help="How many images are at once in a batch.\
#It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish generation as more images are generated at once.\ #It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish generation as more images are generated at once.\
#Default: 1") #Default: 1")
with st.expander("Preview Settings"):
st.session_state["update_preview"] = st.checkbox("Update Image Preview", value=defaults.txt2img.update_preview,
help="If enabled the image preview will be updated during the generation instead of at the end. \
You can use the Update Preview \Frequency option bellow to customize how frequent it's updated. \
By default this is enabled and the frequency is set to 1 step.")
st.session_state["update_preview_frequency"] = st.text_input("Update Image Preview Frequency", value=defaults.txt2img.update_preview_frequency,
help="Frequency in steps at which the the preview image is updated. By default the frequency \
is set to 1 step.")
with col2: with col2:
preview_tab, gallery_tab = st.tabs(["Preview", "Gallery"]) preview_tab, gallery_tab = st.tabs(["Preview", "Gallery"])
@ -2191,29 +2257,39 @@ def layout():
#help="Press the Enter key to summit, when 'No' is selected you can use the Enter key to write multiple lines.") #help="Press the Enter key to summit, when 'No' is selected you can use the Enter key to write multiple lines.")
with st.expander("Advanced"): with st.expander("Advanced"):
separate_prompts = st.checkbox("Create Prompt Matrix.", value=False, help="Separate multiple prompts using the `|` character, and get all combinations of them.") separate_prompts = st.checkbox("Create Prompt Matrix.", value=False,
normalize_prompt_weights = st.checkbox("Normalize Prompt Weights.", value=defaults.txt2img.normalize_prompt_weights, help="Ensure the sum of all weights add up to 1.0") help="Separate multiple prompts using the `|` character, and get all combinations of them.")
save_individual_images = st.checkbox("Save individual images.", value=defaults.txt2img.save_individual_images, help="Save each image generated before any filter or enhancement is applied.") normalize_prompt_weights = st.checkbox("Normalize Prompt Weights.",
value=defaults.txt2img.normalize_prompt_weights, help="Ensure the sum of all weights add up to 1.0")
save_individual_images = st.checkbox("Save individual images.", value=defaults.txt2img.save_individual_images,
help="Save each image generated before any filter or enhancement is applied.")
save_grid = st.checkbox("Save grid",value=defaults.txt2img.save_grid, help="Save a grid with all the images generated into a single image.") save_grid = st.checkbox("Save grid",value=defaults.txt2img.save_grid, help="Save a grid with all the images generated into a single image.")
group_by_prompt = st.checkbox("Group results by prompt", value=defaults.txt2img.group_by_prompt, group_by_prompt = st.checkbox("Group results by prompt", value=defaults.txt2img.group_by_prompt,
help="Saves all the images with the same prompt into the same folder. When using a prompt matrix each prompt combination will have its own folder.") help="Saves all the images with the same prompt into the same folder. \
write_info_files = st.checkbox("Write Info file", value=defaults.txt2img.write_info_files, help="Save a file next to the image with informartion about the generation.") When using a prompt matrix each prompt combination will have its own folder.")
write_info_files = st.checkbox("Write Info file", value=defaults.txt2img.write_info_files,
help="Save a file next to the image with informartion about the generation.")
save_as_jpg = st.checkbox("Save samples as jpg", value=defaults.txt2img.save_as_jpg, help="Saves the images as jpg instead of png.") save_as_jpg = st.checkbox("Save samples as jpg", value=defaults.txt2img.save_as_jpg, help="Saves the images as jpg instead of png.")
if GFPGAN_available: if GFPGAN_available:
use_GFPGAN = st.checkbox("Use GFPGAN", value=defaults.txt2img.use_GFPGAN, help="Uses the GFPGAN model to improve faces after the generation. This greatly improve the quality and consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.") use_GFPGAN = st.checkbox("Use GFPGAN", value=defaults.txt2img.use_GFPGAN,
help="Uses the GFPGAN model to improve faces after the generation. This greatly improve the quality and \
consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.")
else: else:
use_GFPGAN = False use_GFPGAN = False
if RealESRGAN_available: if RealESRGAN_available:
use_RealESRGAN = st.checkbox("Use RealESRGAN", value=defaults.txt2img.use_RealESRGAN, help="Uses the RealESRGAN model to upscale the images after the generation. This greatly improve the quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.") use_RealESRGAN = st.checkbox("Use RealESRGAN", value=defaults.txt2img.use_RealESRGAN,
help="Uses the RealESRGAN model to upscale the images after the generation. This greatly improve the \
quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.")
RealESRGAN_model = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0) RealESRGAN_model = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0)
else: else:
use_RealESRGAN = False use_RealESRGAN = False
RealESRGAN_model = "RealESRGAN_x4plus" RealESRGAN_model = "RealESRGAN_x4plus"
variant_amount = st.slider("Variant Amount:", value=defaults.txt2img.variant_amount, min_value=0.0, max_value=1.0, step=0.01) variant_amount = st.slider("Variant Amount:", value=defaults.txt2img.variant_amount, min_value=0.0, max_value=1.0, step=0.01)
variant_seed = st.text_input("Variant Seed:", value=defaults.txt2img.seed, help="The seed to use when generating a variant, if left blank a random seed will be generated.") variant_seed = st.text_input("Variant Seed:", value=defaults.txt2img.seed,
help="The seed to use when generating a variant, if left blank a random seed will be generated.")
if generate_button: if generate_button:
@ -2277,17 +2353,14 @@ def layout():
st.session_state["sampling_steps"] = st.slider("Sampling Steps", value=defaults.img2img.sampling_steps, min_value=1, max_value=500) st.session_state["sampling_steps"] = st.slider("Sampling Steps", value=defaults.img2img.sampling_steps, min_value=1, max_value=500)
st.session_state["sampler_name"] = st.selectbox("Sampling method", st.session_state["sampler_name"] = st.selectbox("Sampling method",
["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"], ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"],
index=sampler_name_list.index(defaults.img2img.sampler_name), index=sampler_name_list.index(defaults.img2img.sampler_name),
help="Sampling method to use.") help="Sampling method to use.")
mask_mode_list = ["Mask", "Inverted mask", "Image alpha"] mask_mode_list = ["Mask", "Inverted mask", "Image alpha"]
mask_mode = st.selectbox( mask_mode = st.selectbox("Mask Mode", mask_mode_list,
"Mask Mode", mask_mode_list, help="Select how you want your image to be masked.\"Mask\" modifies the image where the mask is white.\n\
help="Select how you want your image to be masked.\n\ \"Inverted mask\" modifies the image where the mask is black. \"Image alpha\" modifies the image where the image is transparent."
\"Mask\" modifies the image where the mask is white.\n\
\"Inverted mask\" modifies the image where the mask is black.\n\
\"Image alpha\" modifies the image where the image is transparent."
) )
mask_mode = mask_mode_list.index(mask_mode) mask_mode = mask_mode_list.index(mask_mode)
@ -2301,19 +2374,25 @@ def layout():
) )
noise_mode = noise_mode_list.index(noise_mode) noise_mode = noise_mode_list.index(noise_mode)
find_noise_steps = st.slider("Find Noise Steps", value=100, min_value=1, max_value=500) find_noise_steps = st.slider("Find Noise Steps", value=100, min_value=1, max_value=500)
batch_count = st.slider("Batch count.", min_value=1, max_value=100, value=defaults.img2img.batch_count, step=1, help="How many iterations or batches of images to generate in total.") batch_count = st.slider("Batch count.", min_value=1, max_value=100, value=defaults.img2img.batch_count, step=1,
help="How many iterations or batches of images to generate in total.")
# #
with st.expander("Advanced"): with st.expander("Advanced"):
separate_prompts = st.checkbox("Create Prompt Matrix.", value=defaults.img2img.separate_prompts, help="Separate multiple prompts using the `|` character, and get all combinations of them.") separate_prompts = st.checkbox("Create Prompt Matrix.", value=defaults.img2img.separate_prompts,
normalize_prompt_weights = st.checkbox("Normalize Prompt Weights.", value=defaults.img2img.normalize_prompt_weights, help="Ensure the sum of all weights add up to 1.0") help="Separate multiple prompts using the `|` character, and get all combinations of them.")
normalize_prompt_weights = st.checkbox("Normalize Prompt Weights.", value=defaults.img2img.normalize_prompt_weights,
help="Ensure the sum of all weights add up to 1.0")
loopback = st.checkbox("Loopback.", value=defaults.img2img.loopback, help="Use images from previous batch when creating next batch.") loopback = st.checkbox("Loopback.", value=defaults.img2img.loopback, help="Use images from previous batch when creating next batch.")
random_seed_loopback = st.checkbox("Random loopback seed.", value=defaults.img2img.random_seed_loopback, help="Random loopback seed") random_seed_loopback = st.checkbox("Random loopback seed.", value=defaults.img2img.random_seed_loopback, help="Random loopback seed")
save_individual_images = st.checkbox("Save individual images.", value=defaults.img2img.save_individual_images, help="Save each image generated before any filter or enhancement is applied.") save_individual_images = st.checkbox("Save individual images.", value=defaults.img2img.save_individual_images,
help="Save each image generated before any filter or enhancement is applied.")
save_grid = st.checkbox("Save grid",value=defaults.img2img.save_grid, help="Save a grid with all the images generated into a single image.") save_grid = st.checkbox("Save grid",value=defaults.img2img.save_grid, help="Save a grid with all the images generated into a single image.")
group_by_prompt = st.checkbox("Group results by prompt", value=defaults.img2img.group_by_prompt, group_by_prompt = st.checkbox("Group results by prompt", value=defaults.img2img.group_by_prompt,
help="Saves all the images with the same prompt into the same folder. When using a prompt matrix each prompt combination will have its own folder.") help="Saves all the images with the same prompt into the same folder. \
write_info_files = st.checkbox("Write Info file", value=defaults.img2img.write_info_files, help="Save a file next to the image with informartion about the generation.") When using a prompt matrix each prompt combination will have its own folder.")
write_info_files = st.checkbox("Write Info file", value=defaults.img2img.write_info_files,
help="Save a file next to the image with informartion about the generation.")
save_as_jpg = st.checkbox("Save samples as jpg", value=defaults.img2img.save_as_jpg, help="Saves the images as jpg instead of png.") save_as_jpg = st.checkbox("Save samples as jpg", value=defaults.img2img.save_as_jpg, help="Saves the images as jpg instead of png.")
if GFPGAN_available: if GFPGAN_available:
@ -2323,7 +2402,8 @@ def layout():
use_GFPGAN = False use_GFPGAN = False
if RealESRGAN_available: if RealESRGAN_available:
use_RealESRGAN = st.checkbox("Use RealESRGAN", value=defaults.img2img.use_RealESRGAN, help="Uses the RealESRGAN model to upscale the images after the generation.\ use_RealESRGAN = st.checkbox("Use RealESRGAN", value=defaults.img2img.use_RealESRGAN,
help="Uses the RealESRGAN model to upscale the images after the generation.\
This greatly improve the quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.") This greatly improve the quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.")
RealESRGAN_model = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0) RealESRGAN_model = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0)
else: else:
@ -2331,16 +2411,29 @@ def layout():
RealESRGAN_model = "RealESRGAN_x4plus" RealESRGAN_model = "RealESRGAN_x4plus"
variant_amount = st.slider("Variant Amount:", value=defaults.img2img.variant_amount, min_value=0.0, max_value=1.0, step=0.01) variant_amount = st.slider("Variant Amount:", value=defaults.img2img.variant_amount, min_value=0.0, max_value=1.0, step=0.01)
variant_seed = st.text_input("Variant Seed:", value=defaults.img2img.variant_seed, help="The seed to use when generating a variant, if left blank a random seed will be generated.") variant_seed = st.text_input("Variant Seed:", value=defaults.img2img.variant_seed,
cfg_scale = st.slider("CFG (Classifier Free Guidance Scale):", min_value=1.0, max_value=30.0, value=defaults.img2img.cfg_scale, step=0.5, help="How strongly the image should follow the prompt.") help="The seed to use when generating a variant, if left blank a random seed will be generated.")
cfg_scale = st.slider("CFG (Classifier Free Guidance Scale):", min_value=1.0, max_value=30.0, value=defaults.img2img.cfg_scale, step=0.5,
help="How strongly the image should follow the prompt.")
batch_size = st.slider("Batch size", min_value=1, max_value=100, value=defaults.img2img.batch_size, step=1, batch_size = st.slider("Batch size", min_value=1, max_value=100, value=defaults.img2img.batch_size, step=1,
help="How many images are at once in a batch.\ help="How many images are at once in a batch.\
It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish generation as more images are generated at once.\ It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish \
generation as more images are generated at once.\
Default: 1") Default: 1")
st.session_state["denoising_strength"] = st.slider("Denoising Strength:", value=defaults.img2img.denoising_strength, min_value=0.01, max_value=1.0, step=0.01) st.session_state["denoising_strength"] = st.slider("Denoising Strength:", value=defaults.img2img.denoising_strength,
min_value=0.01, max_value=1.0, step=0.01)
with st.expander("Preview Settings"):
st.session_state["update_preview"] = st.checkbox("Update Image Preview", value=defaults.img2img.update_preview,
help="If enabled the image preview will be updated during the generation instead of at the end. \
You can use the Update Preview \Frequency option bellow to customize how frequent it's updated. \
By default this is enabled and the frequency is set to 1 step.")
st.session_state["update_preview_frequency"] = st.text_input("Update Image Preview Frequency", value=defaults.img2img.update_preview_frequency,
help="Frequency in steps at which the the preview image is updated. By default the frequency \
is set to 1 step.")
with col2_img2img_layout: with col2_img2img_layout:
editor_tab = st.tabs(["Editor"]) editor_tab = st.tabs(["Editor"])
@ -2478,7 +2571,16 @@ def layout():
#Default: 1") #Default: 1")
st.session_state["max_frames"] = int(st.text_input("Max Frames:", value=defaults.txt2vid.max_frames, help="Specify the max number of frames you want to generate.")) st.session_state["max_frames"] = int(st.text_input("Max Frames:", value=defaults.txt2vid.max_frames, help="Specify the max number of frames you want to generate."))
with st.expander("Preview Settings"):
st.session_state["update_preview"] = st.checkbox("Update Image Preview", value=defaults.txt2vid.update_preview,
help="If enabled the image preview will be updated during the generation instead of at the end. \
You can use the Update Preview \Frequency option bellow to customize how frequent it's updated. \
By default this is enabled and the frequency is set to 1 step.")
st.session_state["update_preview_frequency"] = st.text_input("Update Image Preview Frequency", value=defaults.txt2vid.update_preview_frequency,
help="Frequency in steps at which the the preview image is updated. By default the frequency \
is set to 1 step.")
with col2: with col2:
preview_tab, gallery_tab = st.tabs(["Preview", "Gallery"]) preview_tab, gallery_tab = st.tabs(["Preview", "Gallery"])
@ -2496,6 +2598,9 @@ def layout():
st.session_state["progress_bar_text"] = st.empty() st.session_state["progress_bar_text"] = st.empty()
st.session_state["progress_bar"] = st.empty() st.session_state["progress_bar"] = st.empty()
generate_video = st.empty()
st.session_state["preview_video"] = st.empty()
message = st.empty() message = st.empty()
@ -2548,11 +2653,14 @@ def layout():
value=defaults.txt2vid.normalize_prompt_weights, help="Ensure the sum of all weights add up to 1.0") value=defaults.txt2vid.normalize_prompt_weights, help="Ensure the sum of all weights add up to 1.0")
st.session_state["save_individual_images"] = st.checkbox("Save individual images.", st.session_state["save_individual_images"] = st.checkbox("Save individual images.",
value=defaults.txt2vid.save_individual_images, help="Save each image generated before any filter or enhancement is applied.") value=defaults.txt2vid.save_individual_images, help="Save each image generated before any filter or enhancement is applied.")
st.session_state["save_grid"] = st.checkbox("Save grid",value=defaults.txt2vid.save_grid, help="Save a grid with all the images generated into a single image.") st.session_state["save_video"] = st.checkbox("Save video",value=defaults.txt2vid.save_video, help="Save a video with all the images generated as frames at the end of the generation.")
st.session_state["group_by_prompt"] = st.checkbox("Group results by prompt", value=defaults.txt2vid.group_by_prompt, st.session_state["group_by_prompt"] = st.checkbox("Group results by prompt", value=defaults.txt2vid.group_by_prompt,
help="Saves all the images with the same prompt into the same folder. When using a prompt matrix each prompt combination will have its own folder.") help="Saves all the images with the same prompt into the same folder. When using a prompt matrix each prompt combination will have its own folder.")
st.session_state["write_info_files"] = st.checkbox("Write Info file", value=defaults.txt2vid.write_info_files, st.session_state["write_info_files"] = st.checkbox("Write Info file", value=defaults.txt2vid.write_info_files,
help="Save a file next to the image with informartion about the generation.") help="Save a file next to the image with informartion about the generation.")
st.session_state["dynamic_preview_frequency"] = st.checkbox("Dynamic Preview Frequency", value=defaults.txt2vid.dynamic_preview_frequency,
help="This option tries to find the best value at which we can update \
the preview image during generation while minimizing the impact it has in performance. Default: True")
st.session_state["do_loop"] = st.checkbox("Do Loop", value=defaults.txt2vid.do_loop, st.session_state["do_loop"] = st.checkbox("Do Loop", value=defaults.txt2vid.do_loop,
help="Do loop") help="Do loop")
st.session_state["save_as_jpg"] = st.checkbox("Save samples as jpg", value=defaults.txt2vid.save_as_jpg, help="Saves the images as jpg instead of png.") st.session_state["save_as_jpg"] = st.checkbox("Save samples as jpg", value=defaults.txt2vid.save_as_jpg, help="Saves the images as jpg instead of png.")
@ -2574,20 +2682,14 @@ def layout():
st.session_state["variant_seed"] = st.text_input("Variant Seed:", value=defaults.txt2vid.seed, help="The seed to use when generating a variant, if left blank a random seed will be generated.") st.session_state["variant_seed"] = st.text_input("Variant Seed:", value=defaults.txt2vid.seed, help="The seed to use when generating a variant, if left blank a random seed will be generated.")
st.session_state["beta_start"] = st.slider("Beta Start:", value=defaults.txt2vid.beta_start, min_value=0.0001, max_value=0.03, step=0.0001, format="%.4f") st.session_state["beta_start"] = st.slider("Beta Start:", value=defaults.txt2vid.beta_start, min_value=0.0001, max_value=0.03, step=0.0001, format="%.4f")
st.session_state["beta_end"] = st.slider("Beta End:", value=defaults.txt2vid.beta_end, min_value=0.0001, max_value=0.03, step=0.0001, format="%.4f") st.session_state["beta_end"] = st.slider("Beta End:", value=defaults.txt2vid.beta_end, min_value=0.0001, max_value=0.03, step=0.0001, format="%.4f")
if generate_button: if generate_button:
#print("Loading models") #print("Loading models")
# load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry. # load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry.
#load_models(False, False, False, RealESRGAN_model, CustomModel_available=CustomModel_available, custom_model=custom_model) #load_models(False, False, False, RealESRGAN_model, CustomModel_available=CustomModel_available, custom_model=custom_model)
#try:
#output_images, seed, info, stats = txt2vid(prompt, st.session_state.sampling_steps, sampler_name, RealESRGAN_model, batch_count, 1,
#cfg_scale, seed, height, width, separate_prompts, normalize_prompt_weights, save_individual_images,
#save_grid, group_by_prompt, save_as_jpg, use_GFPGAN, use_RealESRGAN, RealESRGAN_model, fp=defaults.general.fp,
#variant_amount=variant_amount, variant_seed=variant_seed, write_info_files=write_info_files)
# run video generation
image, seed, info= txt2vid(prompts=prompt, gpu=defaults.general.gpu, image, seed, info, stats = txt2vid(prompts=prompt, gpu=defaults.general.gpu,
num_steps=st.session_state.sampling_steps, max_frames=int(st.session_state.max_frames), num_steps=st.session_state.sampling_steps, max_frames=int(st.session_state.max_frames),
num_inference_steps=st.session_state.num_inference_steps, num_inference_steps=st.session_state.num_inference_steps,
cfg_scale=cfg_scale,do_loop=st.session_state["do_loop"], cfg_scale=cfg_scale,do_loop=st.session_state["do_loop"],
@ -2637,7 +2739,9 @@ def layout():
col4.write(df['Download Link'][x]) col4.write(df['Download Link'][x])
elif tabs == 'Settings': elif tabs == 'Settings':
import Settings
st.write("Settings") st.write("Settings")
if __name__ == '__main__': if __name__ == '__main__':