From ede343a269da44d7997213e31aa7ac37e29bc9e7 Mon Sep 17 00:00:00 2001 From: ZeroCool940711 Date: Tue, 13 Sep 2022 14:08:40 -0700 Subject: [PATCH] The webui_streamlit.py file has been split into multiple modules containing their own code making it easier to work with than a single big file. The list of modules is as follow: - webuit_streamlit.py: contains the main layout as well as the functions that load the css which is needed by the layout. - webui_streamlit_old.py: contains the code for the previous version of the WebUI. Will be removed once the new UI code starts to get used and if everything works as it should. - txt2img.py: contains the code for the txt2img tab. - img2img.py: contains the code for the img2img tab. - txt2vid.py: contains the code for the txt2vid tab. - sd_utils.py: contains utility functions used by more than one module, any function that meets such condition should be placed here. - ModelManager.py: contains the code for the Model Manager page on the sidebar menu. - Settings.py: contains the code for the Settings page on the sidebar menu. - home.py: contains the code for the Home tab, history and gallery implemented by @devilismyfriend. - imglab.py: contains the code for the Image Lab tab implemented by @devilismyfriend --- frontend/css/streamlit.main.css | 4 +- scripts/ModelManager.py | 32 + scripts/home.py | 142 ++ scripts/img2img.py | 569 +++++++ scripts/imglab.py | 153 ++ scripts/sd_utils.py | 1256 ++++++++++++++ scripts/stable_diffusion_walk.py | 18 +- scripts/txt2img.py | 332 ++++ scripts/txt2vid.py | 678 ++++++++ scripts/webui_streamlit.py | 2699 +---------------------------- scripts/webui_streamlit_old.py | 2738 ++++++++++++++++++++++++++++++ 11 files changed, 5952 insertions(+), 2669 deletions(-) create mode 100644 scripts/ModelManager.py create mode 100644 scripts/home.py create mode 100644 scripts/img2img.py create mode 100644 scripts/imglab.py create mode 100644 scripts/sd_utils.py create mode 100644 scripts/txt2img.py create mode 100644 scripts/txt2vid.py create mode 100644 scripts/webui_streamlit_old.py diff --git a/frontend/css/streamlit.main.css b/frontend/css/streamlit.main.css index b225bb0..37f8000 100644 --- a/frontend/css/streamlit.main.css +++ b/frontend/css/streamlit.main.css @@ -58,8 +58,8 @@ button[kind="header"] { /* added to avoid main sectors (all element to the right of sidebar from) moving */ section[data-testid="stSidebar"] { - width: 3% !important; - min-width: 3% !important; + width: 3.5% !important; + min-width: 3.5% !important; } /* The navigation menu specs and size */ diff --git a/scripts/ModelManager.py b/scripts/ModelManager.py new file mode 100644 index 0000000..babee83 --- /dev/null +++ b/scripts/ModelManager.py @@ -0,0 +1,32 @@ +from webui_streamlit import st + +from sd_utils import * + +def layout(): + #search = st.text_input(label="Search", placeholder="Type the name of the model you want to search for.", help="") + + csvString = f""" + ,Stable Diffusion v1.4 , ./models/ldm/stable-diffusion-v1 , https://www.googleapis.com/storage/v1/b/aai-blog-files/o/sd-v1-4.ckpt?alt=media + ,GFPGAN v1.3 , ./src/gfpgan/experiments/pretrained_models , https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth + ,RealESRGAN_x4plus , ./src/realesrgan/experiments/pretrained_models , https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth + ,RealESRGAN_x4plus_anime_6B , ./src/realesrgan/experiments/pretrained_models , https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth + ,Waifu Diffusion v1.2 , ./models/custom , http://wd.links.sd:8880/wd-v1-2-full-ema.ckpt + ,TrinArt Stable Diffusion v2 , ./models/custom , https://huggingface.co/naclbit/trinart_stable_diffusion_v2/resolve/main/trinart2_step115000.ckpt + """ + colms = st.columns((1, 3, 5, 5)) + columns = ["№",'Model Name','Save Location','Download Link'] + + # Convert String into StringIO + csvStringIO = StringIO(csvString) + df = pd.read_csv(csvStringIO, sep=",", header=None, names=columns) + + for col, field_name in zip(colms, columns): + # table header + col.write(field_name) + + for x, model_name in enumerate(df["Model Name"]): + col1, col2, col3, col4 = st.columns((1, 3, 4, 6)) + col1.write(x) # index + col2.write(df['Model Name'][x]) + col3.write(df['Save Location'][x]) + col4.write(df['Download Link'][x]) \ No newline at end of file diff --git a/scripts/home.py b/scripts/home.py new file mode 100644 index 0000000..f6653ac --- /dev/null +++ b/scripts/home.py @@ -0,0 +1,142 @@ +from webui_streamlit import st +from sd_utils import * +import os +from PIL import Image + +try: + # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. + from transformers import logging + + logging.set_verbosity_error() +except: + pass + +class plugin_info(): + plugname = "home" + description = "Home" + isTab = True + displayPriority = 0 + +def getLatestGeneratedImagesFromPath(): + #get the latest images from the generated images folder + #get the path to the generated images folder + generatedImagesPath = os.path.join(os.getcwd(),'outputs') + #get all the files from the folders and subfolders + files = [] + #get the laest 10 images from the output folder without walking the subfolders + for r, d, f in os.walk(generatedImagesPath): + for file in f: + if '.png' in file: + files.append(os.path.join(r, file)) + #sort the files by date + files.sort(key=os.path.getmtime) + #reverse the list so the latest images are first + for f in files: + img = Image.open(f) + files[files.index(f)] = img + #get the latest 10 files + #get all the files with the .png or .jpg extension + #sort files by date + #get the latest 10 files + latestFiles = files[-10:] + #reverse the list + latestFiles.reverse() + return latestFiles + +def get_images_from_lexica(): + #scrape images from lexica.art + #get the html from the page + #get the html with cookies and javascript + apiEndpoint = r'https://lexica.art/api/trpc/prompts.infinitePrompts?batch=1&input=%7B%220%22%3A%7B%22json%22%3A%7B%22limit%22%3A10%2C%22text%22%3A%22%22%2C%22cursor%22%3A10%7D%7D%7D' + #REST API call + # + from requests_html import HTMLSession + session = HTMLSession() + + response = session.get(apiEndpoint) + #req = requests.Session() + #req.headers['user-agent'] = 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36' + #response = req.get(apiEndpoint) + print(response.status_code) + print(response.text) + #get the json from the response + #json = response.json() + #get the prompts from the json + print(response) + #session = requests.Session() + #parseEndpointJson = session.get(apiEndpoint,headers=headers,verify=False) + #print(parseEndpointJson) + #print('test2') + #page = requests.get("https://lexica.art/", headers={'User-Agent': 'Mozilla/5.0'}) + #parse the html + #soup = BeautifulSoup(page.content, 'html.parser') + #find all the images + #print(soup) + #images = soup.find_all('alt-image') + #create a list to store the image urls + image_urls = [] + #loop through the images + for image in images: + #get the url + image_url = image['src'] + #add it to the list + image_urls.append('http://www.lexica.art/'+image_url) + #return the list + print(image_urls) + return image_urls + +def layout(): + #streamlit home page layout + #center the title + st.markdown("

Welcome, let's make some 🎨

", unsafe_allow_html=True) + #make a gallery of images + #st.markdown("

Gallery

", unsafe_allow_html=True) + #create a gallery of images using columns + #col1, col2, col3 = st.columns(3) + #load the images + #create 3 columns + # create a tab for the gallery + #st.markdown("

Gallery

", unsafe_allow_html=True) + #st.markdown("

Gallery

", unsafe_allow_html=True) + history_tab, discover_tabs, settings_tab = st.tabs(["History","Discover","Settings"]) + with discover_tabs: + st.markdown("

Soon :)

", unsafe_allow_html=True) + with settings_tab: + st.markdown("

Soon :)

", unsafe_allow_html=True) + with history_tab: + placeholder = st.empty() + + + + latestImages = getLatestGeneratedImagesFromPath() + st.session_state['latestImages'] = latestImages + + #populate the 3 images per column + with placeholder.container(): + col1, col2, col3 = st.columns(3) + col1_cont = st.container() + col2_cont = st.container() + col3_cont = st.container() + with col1_cont: + with col1: + st.image(st.session_state['latestImages'][0]) + st.image(st.session_state['latestImages'][3]) + st.image(st.session_state['latestImages'][6]) + with col2_cont: + with col2: + st.image(st.session_state['latestImages'][1]) + st.image(st.session_state['latestImages'][4]) + st.image(st.session_state['latestImages'][7]) + with col3_cont: + with col3: + st.image(st.session_state['latestImages'][2]) + st.image(st.session_state['latestImages'][5]) + st.image(st.session_state['latestImages'][8]) + st.session_state['historyTab'] = [history_tab,col1,col2,col3,placeholder,col1_cont,col2_cont,col3_cont] + #display the images + #add a button to the gallery + #st.markdown("

Try it out

", unsafe_allow_html=True) + #create a button to the gallery + #if st.button("Try it out"): + #if the button is clicked, go to the gallery + #st.experimental_rerun() diff --git a/scripts/img2img.py b/scripts/img2img.py new file mode 100644 index 0000000..a75dc62 --- /dev/null +++ b/scripts/img2img.py @@ -0,0 +1,569 @@ +from webui_streamlit import st +from sd_utils import * + +from streamlit import StopException + +from PIL import Image, ImageOps +import torch +import k_diffusion as K +import numpy as np +import time +import torch +import skimage +from ldm.models.diffusion.ddim import DDIMSampler +from ldm.models.diffusion.plms import PLMSSampler + +try: + # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. + from transformers import logging + + logging.set_verbosity_error() +except: + pass + +def img2img(prompt: str = '', init_info: any = None, init_info_mask: any = None, mask_mode: int = 0, mask_blur_strength: int = 3, + mask_restore: bool = False, ddim_steps: int = 50, sampler_name: str = 'DDIM', + n_iter: int = 1, cfg_scale: float = 7.5, denoising_strength: float = 0.8, + seed: int = -1, noise_mode: int = 0, find_noise_steps: str = "", height: int = 512, width: int = 512, resize_mode: int = 0, fp = None, + variant_amount: float = None, variant_seed: int = None, ddim_eta:float = 0.0, + write_info_files:bool = True, RealESRGAN_model: str = "RealESRGAN_x4plus_anime_6B", + separate_prompts:bool = False, normalize_prompt_weights:bool = True, + save_individual_images: bool = True, save_grid: bool = True, group_by_prompt: bool = True, + save_as_jpg: bool = True, use_GFPGAN: bool = True, use_RealESRGAN: bool = True, loopback: bool = False, + random_seed_loopback: bool = False + ): + + outpath = defaults.general.outdir_img2img or defaults.general.outdir or "outputs/img2img-samples" + #err = False + #loopback = False + #skip_save = False + seed = seed_to_int(seed) + + batch_size = 1 + + #prompt_matrix = 0 + #normalize_prompt_weights = 1 in toggles + #loopback = 2 in toggles + #random_seed_loopback = 3 in toggles + #skip_save = 4 not in toggles + #save_grid = 5 in toggles + #sort_samples = 6 in toggles + #write_info_files = 7 in toggles + #write_sample_info_to_log_file = 8 in toggles + #jpg_sample = 9 in toggles + #use_GFPGAN = 10 in toggles + #use_RealESRGAN = 11 in toggles + + if sampler_name == 'PLMS': + sampler = PLMSSampler(st.session_state["model"]) + elif sampler_name == 'DDIM': + sampler = DDIMSampler(st.session_state["model"]) + elif sampler_name == 'k_dpm_2_a': + sampler = KDiffusionSampler(st.session_state["model"],'dpm_2_ancestral') + elif sampler_name == 'k_dpm_2': + sampler = KDiffusionSampler(st.session_state["model"],'dpm_2') + elif sampler_name == 'k_euler_a': + sampler = KDiffusionSampler(st.session_state["model"],'euler_ancestral') + elif sampler_name == 'k_euler': + sampler = KDiffusionSampler(st.session_state["model"],'euler') + elif sampler_name == 'k_heun': + sampler = KDiffusionSampler(st.session_state["model"],'heun') + elif sampler_name == 'k_lms': + sampler = KDiffusionSampler(st.session_state["model"],'lms') + else: + raise Exception("Unknown sampler: " + sampler_name) + + def process_init_mask(init_mask: Image): + if init_mask.mode == "RGBA": + init_mask = init_mask.convert('RGBA') + background = Image.new('RGBA', init_mask.size, (0, 0, 0)) + init_mask = Image.alpha_composite(background, init_mask) + init_mask = init_mask.convert('RGB') + return init_mask + + init_img = init_info + init_mask = None + if mask_mode == 0: + if init_info_mask: + init_mask = process_init_mask(init_info_mask) + elif mask_mode == 1: + if init_info_mask: + init_mask = process_init_mask(init_info_mask) + init_mask = ImageOps.invert(init_mask) + elif mask_mode == 2: + init_img_transparency = init_img.split()[-1].convert('L')#.point(lambda x: 255 if x > 0 else 0, mode='1') + init_mask = init_img_transparency + init_mask = init_mask.convert("RGB") + init_mask = resize_image(resize_mode, init_mask, width, height) + init_mask = init_mask.convert("RGB") + + assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' + t_enc = int(denoising_strength * ddim_steps) + + if init_mask is not None and (noise_mode == 2 or noise_mode == 3) and init_img is not None: + noise_q = 0.99 + color_variation = 0.0 + mask_blend_factor = 1.0 + + np_init = (np.asarray(init_img.convert("RGB"))/255.0).astype(np.float64) # annoyingly complex mask fixing + np_mask_rgb = 1. - (np.asarray(ImageOps.invert(init_mask).convert("RGB"))/255.0).astype(np.float64) + np_mask_rgb -= np.min(np_mask_rgb) + np_mask_rgb /= np.max(np_mask_rgb) + np_mask_rgb = 1. - np_mask_rgb + np_mask_rgb_hardened = 1. - (np_mask_rgb < 0.99).astype(np.float64) + blurred = skimage.filters.gaussian(np_mask_rgb_hardened[:], sigma=16., channel_axis=2, truncate=32.) + blurred2 = skimage.filters.gaussian(np_mask_rgb_hardened[:], sigma=16., channel_axis=2, truncate=32.) + #np_mask_rgb_dilated = np_mask_rgb + blurred # fixup mask todo: derive magic constants + #np_mask_rgb = np_mask_rgb + blurred + np_mask_rgb_dilated = np.clip((np_mask_rgb + blurred2) * 0.7071, 0., 1.) + np_mask_rgb = np.clip((np_mask_rgb + blurred) * 0.7071, 0., 1.) + + noise_rgb = matched_noise.get_matched_noise(np_init, np_mask_rgb, noise_q, color_variation) + blend_mask_rgb = np.clip(np_mask_rgb_dilated,0.,1.) ** (mask_blend_factor) + noised = noise_rgb[:] + blend_mask_rgb **= (2.) + noised = np_init[:] * (1. - blend_mask_rgb) + noised * blend_mask_rgb + + np_mask_grey = np.sum(np_mask_rgb, axis=2)/3. + ref_mask = np_mask_grey < 1e-3 + + all_mask = np.ones((height, width), dtype=bool) + noised[all_mask,:] = skimage.exposure.match_histograms(noised[all_mask,:]**1., noised[ref_mask,:], channel_axis=1) + + init_img = Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB") + st.session_state["editor_image"].image(init_img) # debug + + def init(): + image = init_img.convert('RGB') + image = np.array(image).astype(np.float32) / 255.0 + image = image[None].transpose(0, 3, 1, 2) + image = torch.from_numpy(image) + + mask_channel = None + if init_mask: + alpha = resize_image(resize_mode, init_mask, width // 8, height // 8) + mask_channel = alpha.split()[-1] + + mask = None + if mask_channel is not None: + mask = np.array(mask_channel).astype(np.float32) / 255.0 + mask = (1 - mask) + mask = np.tile(mask, (4, 1, 1)) + mask = mask[None].transpose(0, 1, 2, 3) + mask = torch.from_numpy(mask).to(st.session_state["device"]) + + if defaults.general.optimized: + modelFS.to(st.session_state["device"] ) + + init_image = 2. * image - 1. + init_image = init_image.to(st.session_state["device"]) + init_latent = (st.session_state["model"] if not defaults.general.optimized else modelFS).get_first_stage_encoding((st.session_state["model"] if not defaults.general.optimized else modelFS).encode_first_stage(init_image)) # move to latent space + + if defaults.general.optimized: + mem = torch.cuda.memory_allocated()/1e6 + modelFS.to("cpu") + while(torch.cuda.memory_allocated()/1e6 >= mem): + time.sleep(1) + + return init_latent, mask, + + def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name): + t_enc_steps = t_enc + obliterate = False + if ddim_steps == t_enc_steps: + t_enc_steps = t_enc_steps - 1 + obliterate = True + + if sampler_name != 'DDIM': + x0, z_mask = init_data + + sigmas = sampler.model_wrap.get_sigmas(ddim_steps) + noise = x * sigmas[ddim_steps - t_enc_steps - 1] + + xi = x0 + noise + + # Obliterate masked image + if z_mask is not None and obliterate: + random = torch.randn(z_mask.shape, device=xi.device) + xi = (z_mask * noise) + ((1-z_mask) * xi) + + sigma_sched = sigmas[ddim_steps - t_enc_steps - 1:] + model_wrap_cfg = CFGMaskedDenoiser(sampler.model_wrap) + samples_ddim = K.sampling.__dict__[f'sample_{sampler.get_sampler_name()}'](model_wrap_cfg, xi, sigma_sched, + extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, + 'cond_scale': cfg_scale, 'mask': z_mask, 'x0': x0, 'xi': xi}, disable=False, + callback=generation_callback) + else: + + x0, z_mask = init_data + + sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=0.0, verbose=False) + z_enc = sampler.stochastic_encode(x0, torch.tensor([t_enc_steps]*batch_size).to(st.session_state["device"] )) + + # Obliterate masked image + if z_mask is not None and obliterate: + random = torch.randn(z_mask.shape, device=z_enc.device) + z_enc = (z_mask * random) + ((1-z_mask) * z_enc) + + # decode it + samples_ddim = sampler.decode(z_enc, conditioning, t_enc_steps, + unconditional_guidance_scale=cfg_scale, + unconditional_conditioning=unconditional_conditioning, + z_mask=z_mask, x0=x0) + return samples_ddim + + + + if loopback: + output_images, info = None, None + history = [] + initial_seed = None + + do_color_correction = False + try: + from skimage import exposure + do_color_correction = True + except: + print("Install scikit-image to perform color correction on loopback") + + for i in range(n_iter): + if do_color_correction and i == 0: + correction_target = cv2.cvtColor(np.asarray(init_img.copy()), cv2.COLOR_RGB2LAB) + + output_images, seed, info, stats = process_images( + outpath=outpath, + func_init=init, + func_sample=sample, + prompt=prompt, + seed=seed, + sampler_name=sampler_name, + save_grid=save_grid, + batch_size=1, + n_iter=1, + steps=ddim_steps, + cfg_scale=cfg_scale, + width=width, + height=height, + prompt_matrix=separate_prompts, + use_GFPGAN=use_GFPGAN, + use_RealESRGAN=use_RealESRGAN, # Forcefully disable upscaling when using loopback + realesrgan_model_name=RealESRGAN_model, + fp=fp, + normalize_prompt_weights=normalize_prompt_weights, + save_individual_images=save_individual_images, + init_img=init_img, + init_mask=init_mask, + mask_blur_strength=mask_blur_strength, + mask_restore=mask_restore, + denoising_strength=denoising_strength, + noise_mode=noise_mode, + find_noise_steps=find_noise_steps, + resize_mode=resize_mode, + uses_loopback=loopback, + uses_random_seed_loopback=random_seed_loopback, + sort_samples=group_by_prompt, + write_info_files=write_info_files, + jpg_sample=save_as_jpg + ) + + if initial_seed is None: + initial_seed = seed + + init_img = output_images[0] + + if do_color_correction and correction_target is not None: + init_img = Image.fromarray(cv2.cvtColor(exposure.match_histograms( + cv2.cvtColor( + np.asarray(init_img), + cv2.COLOR_RGB2LAB + ), + correction_target, + channel_axis=2 + ), cv2.COLOR_LAB2RGB).astype("uint8")) + + if not random_seed_loopback: + seed = seed + 1 + else: + seed = seed_to_int(None) + + denoising_strength = max(denoising_strength * 0.95, 0.1) + history.append(init_img) + + output_images = history + seed = initial_seed + + else: + output_images, seed, info, stats = process_images( + outpath=outpath, + func_init=init, + func_sample=sample, + prompt=prompt, + seed=seed, + sampler_name=sampler_name, + save_grid=save_grid, + batch_size=batch_size, + n_iter=n_iter, + steps=ddim_steps, + cfg_scale=cfg_scale, + width=width, + height=height, + prompt_matrix=separate_prompts, + use_GFPGAN=use_GFPGAN, + use_RealESRGAN=use_RealESRGAN, + realesrgan_model_name=RealESRGAN_model, + fp=fp, + normalize_prompt_weights=normalize_prompt_weights, + save_individual_images=save_individual_images, + init_img=init_img, + init_mask=init_mask, + mask_blur_strength=mask_blur_strength, + denoising_strength=denoising_strength, + noise_mode=noise_mode, + find_noise_steps=find_noise_steps, + mask_restore=mask_restore, + resize_mode=resize_mode, + uses_loopback=loopback, + sort_samples=group_by_prompt, + write_info_files=write_info_files, + jpg_sample=save_as_jpg + ) + + del sampler + + return output_images, seed, info, stats + +# + + +def layout(): + with st.form("img2img-inputs"): + st.session_state["generation_mode"] = "img2img" + + img2img_input_col, img2img_generate_col = st.columns([10,1]) + with img2img_input_col: + #prompt = st.text_area("Input Text","") + prompt = st.text_input("Input Text","", placeholder="A corgi wearing a top hat as an oil painting.") + + # Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way. + img2img_generate_col.write("") + img2img_generate_col.write("") + generate_button = img2img_generate_col.form_submit_button("Generate") + + + # creating the page layout using columns + col1_img2img_layout, col2_img2img_layout, col3_img2img_layout = st.columns([1,2,2], gap="small") + + with col1_img2img_layout: + # If we have custom models available on the "models/custom" + #folder then we show a menu to select which model we want to use, otherwise we use the main model for SD + if st.session_state["CustomModel_available"]: + st.session_state["custom_model"] = st.selectbox("Custom Model:", st.session_state["custom_models"], + index=st.session_state["custom_models"].index(defaults.general.default_model), + help="Select the model you want to use. This option is only available if you have custom models \ + on your 'models/custom' folder. The model name that will be shown here is the same as the name\ + the file for the model has on said folder, it is recommended to give the .ckpt file a name that \ + will make it easier for you to distinguish it from other models. Default: Stable Diffusion v1.4") + else: + st.session_state["custom_model"] = "Stable Diffusion v1.4" + + + st.session_state["sampling_steps"] = st.slider("Sampling Steps", value=defaults.img2img.sampling_steps, min_value=1, max_value=500) + + sampler_name_list = ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"] + st.session_state["sampler_name"] = st.selectbox("Sampling method",sampler_name_list, + index=sampler_name_list.index(defaults.img2img.sampler_name), help="Sampling method to use.") + + mask_mode_list = ["Mask", "Inverted mask", "Image alpha"] + mask_mode = st.selectbox("Mask Mode", mask_mode_list, + help="Select how you want your image to be masked.\"Mask\" modifies the image where the mask is white.\n\ + \"Inverted mask\" modifies the image where the mask is black. \"Image alpha\" modifies the image where the image is transparent." + ) + mask_mode = mask_mode_list.index(mask_mode) + + width = st.slider("Width:", min_value=64, max_value=1024, value=defaults.img2img.width, step=64) + height = st.slider("Height:", min_value=64, max_value=1024, value=defaults.img2img.height, step=64) + seed = st.text_input("Seed:", value=defaults.img2img.seed, help=" The seed to use, if left blank a random seed will be generated.") + noise_mode_list = ["Seed", "Find Noise", "Matched Noise", "Find+Matched Noise"] + noise_mode = st.selectbox( + "Noise Mode", noise_mode_list, + help="" + ) + noise_mode = noise_mode_list.index(noise_mode) + find_noise_steps = st.slider("Find Noise Steps", value=100, min_value=1, max_value=500) + batch_count = st.slider("Batch count.", min_value=1, max_value=100, value=defaults.img2img.batch_count, step=1, + help="How many iterations or batches of images to generate in total.") + + # + with st.expander("Advanced"): + separate_prompts = st.checkbox("Create Prompt Matrix.", value=defaults.img2img.separate_prompts, + help="Separate multiple prompts using the `|` character, and get all combinations of them.") + normalize_prompt_weights = st.checkbox("Normalize Prompt Weights.", value=defaults.img2img.normalize_prompt_weights, + help="Ensure the sum of all weights add up to 1.0") + loopback = st.checkbox("Loopback.", value=defaults.img2img.loopback, help="Use images from previous batch when creating next batch.") + random_seed_loopback = st.checkbox("Random loopback seed.", value=defaults.img2img.random_seed_loopback, help="Random loopback seed") + save_individual_images = st.checkbox("Save individual images.", value=defaults.img2img.save_individual_images, + help="Save each image generated before any filter or enhancement is applied.") + save_grid = st.checkbox("Save grid",value=defaults.img2img.save_grid, help="Save a grid with all the images generated into a single image.") + group_by_prompt = st.checkbox("Group results by prompt", value=defaults.img2img.group_by_prompt, + help="Saves all the images with the same prompt into the same folder. \ + When using a prompt matrix each prompt combination will have its own folder.") + write_info_files = st.checkbox("Write Info file", value=defaults.img2img.write_info_files, + help="Save a file next to the image with informartion about the generation.") + save_as_jpg = st.checkbox("Save samples as jpg", value=defaults.img2img.save_as_jpg, help="Saves the images as jpg instead of png.") + + if st.session_state["GFPGAN_available"]: + use_GFPGAN = st.checkbox("Use GFPGAN", value=defaults.img2img.use_GFPGAN, help="Uses the GFPGAN model to improve faces after the generation.\ + This greatly improve the quality and consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.") + else: + use_GFPGAN = False + + if st.session_state["RealESRGAN_available"]: + st.session_state["use_RealESRGAN"] = st.checkbox("Use RealESRGAN", value=defaults.img2img.use_RealESRGAN, + help="Uses the RealESRGAN model to upscale the images after the generation.\ + This greatly improve the quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.") + st.session_state["RealESRGAN_model"] = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0) + else: + st.session_state["use_RealESRGAN"] = False + st.session_state["RealESRGAN_model"] = "RealESRGAN_x4plus" + + variant_amount = st.slider("Variant Amount:", value=defaults.img2img.variant_amount, min_value=0.0, max_value=1.0, step=0.01) + variant_seed = st.text_input("Variant Seed:", value=defaults.img2img.variant_seed, + help="The seed to use when generating a variant, if left blank a random seed will be generated.") + cfg_scale = st.slider("CFG (Classifier Free Guidance Scale):", min_value=1.0, max_value=30.0, value=defaults.img2img.cfg_scale, step=0.5, + help="How strongly the image should follow the prompt.") + batch_size = st.slider("Batch size", min_value=1, max_value=100, value=defaults.img2img.batch_size, step=1, + help="How many images are at once in a batch.\ + It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish \ + generation as more images are generated at once.\ + Default: 1") + + st.session_state["denoising_strength"] = st.slider("Denoising Strength:", value=defaults.img2img.denoising_strength, + min_value=0.01, max_value=1.0, step=0.01) + + with st.expander("Preview Settings"): + st.session_state["update_preview"] = st.checkbox("Update Image Preview", value=defaults.img2img.update_preview, + help="If enabled the image preview will be updated during the generation instead of at the end. \ + You can use the Update Preview \Frequency option bellow to customize how frequent it's updated. \ + By default this is enabled and the frequency is set to 1 step.") + + st.session_state["update_preview_frequency"] = st.text_input("Update Image Preview Frequency", value=defaults.img2img.update_preview_frequency, + help="Frequency in steps at which the the preview image is updated. By default the frequency \ + is set to 1 step.") + + with col2_img2img_layout: + editor_tab = st.tabs(["Editor"]) + + editor_image = st.empty() + st.session_state["editor_image"] = editor_image + + st.form_submit_button("Refresh") + + masked_image_holder = st.empty() + image_holder = st.empty() + + uploaded_images = st.file_uploader( + "Upload Image", accept_multiple_files=False, type=["png", "jpg", "jpeg"], + help="Upload an image which will be used for the image to image generation.", + ) + if uploaded_images: + image = Image.open(uploaded_images).convert('RGBA') + new_img = image.resize((width, height)) + image_holder.image(new_img) + + mask_holder = st.empty() + + uploaded_masks = st.file_uploader( + "Upload Mask", accept_multiple_files=False, type=["png", "jpg", "jpeg"], + help="Upload an mask image which will be used for masking the image to image generation.", + ) + if uploaded_masks: + mask = Image.open(uploaded_masks) + if mask.mode == "RGBA": + mask = mask.convert('RGBA') + background = Image.new('RGBA', mask.size, (0, 0, 0)) + mask = Image.alpha_composite(background, mask) + mask = mask.resize((width, height)) + mask_holder.image(mask) + + if uploaded_images and uploaded_masks: + if mask_mode != 2: + final_img = new_img.copy() + alpha_layer = mask.convert('L') + strength = st.session_state["denoising_strength"] + if mask_mode == 0: + alpha_layer = ImageOps.invert(alpha_layer) + alpha_layer = alpha_layer.point(lambda a: a * strength) + alpha_layer = ImageOps.invert(alpha_layer) + elif mask_mode == 1: + alpha_layer = alpha_layer.point(lambda a: a * strength) + alpha_layer = ImageOps.invert(alpha_layer) + + final_img.putalpha(alpha_layer) + + with masked_image_holder.container(): + st.text("Masked Image Preview") + st.image(final_img) + + + with col3_img2img_layout: + result_tab = st.tabs(["Result"]) + + # create an empty container for the image, progress bar, etc so we can update it later and use session_state to hold them globally. + preview_image = st.empty() + st.session_state["preview_image"] = preview_image + + #st.session_state["loading"] = st.empty() + + st.session_state["progress_bar_text"] = st.empty() + st.session_state["progress_bar"] = st.empty() + + + message = st.empty() + + #if uploaded_images: + #image = Image.open(uploaded_images).convert('RGB') + ##img_array = np.array(image) # if you want to pass it to OpenCV + #new_img = image.resize((width, height)) + #st.image(new_img, use_column_width=True) + + + if generate_button: + #print("Loading models") + # load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry. + load_models(False, use_GFPGAN, st.session_state["use_RealESRGAN"], st.session_state["RealESRGAN_model"], st.session_state["CustomModel_available"], + st.session_state["custom_model"]) + + if uploaded_images: + image = Image.open(uploaded_images).convert('RGBA') + new_img = image.resize((width, height)) + #img_array = np.array(image) # if you want to pass it to OpenCV + new_mask = None + if uploaded_masks: + mask = Image.open(uploaded_masks).convert('RGBA') + new_mask = mask.resize((width, height)) + + try: + output_images, seed, info, stats = img2img(prompt=prompt, init_info=new_img, init_info_mask=new_mask, mask_mode=mask_mode, + ddim_steps=st.session_state["sampling_steps"], + sampler_name=st.session_state["sampler_name"], n_iter=batch_count, + cfg_scale=cfg_scale, denoising_strength=st.session_state["denoising_strength"], variant_seed=variant_seed, + seed=seed, noise_mode=noise_mode, find_noise_steps=find_noise_steps, width=width, + height=height, fp=defaults.general.fp, variant_amount=variant_amount, + ddim_eta=0.0, write_info_files=write_info_files, RealESRGAN_model=st.session_state["RealESRGAN_model"], + separate_prompts=separate_prompts, normalize_prompt_weights=normalize_prompt_weights, + save_individual_images=save_individual_images, save_grid=save_grid, + group_by_prompt=group_by_prompt, save_as_jpg=save_as_jpg, use_GFPGAN=use_GFPGAN, + use_RealESRGAN=st.session_state["use_RealESRGAN"] if not loopback else False, loopback=loopback + ) + + #show a message when the generation is complete. + message.success('Render Complete: ' + info + '; Stats: ' + stats, icon="✅") + + except (StopException, KeyError): + print(f"Received Streamlit StopException") + + # this will render all the images at the end of the generation but its better if its moved to a second tab inside col2 and shown as a gallery. + # use the current col2 first tab to show the preview_img and update it as its generated. + #preview_image.image(output_images, width=750) + +#on import run init diff --git a/scripts/imglab.py b/scripts/imglab.py new file mode 100644 index 0000000..2b9b945 --- /dev/null +++ b/scripts/imglab.py @@ -0,0 +1,153 @@ +from webui_streamlit import st, defaults +from sd_utils import * + +#home plugin +import os +from PIL import Image +#from bs4 import BeautifulSoup +from streamlit.runtime.in_memory_file_manager import in_memory_file_manager +from streamlit.elements import image as STImage +try: + # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. + from transformers import logging + + logging.set_verbosity_error() +except: + pass + +class plugin_info(): + plugname = "imglab" + description = "Image Lab" + isTab = True + displayPriority = 3 + +def getLatestGeneratedImagesFromPath(): + #get the latest images from the generated images folder + #get the path to the generated images folder + generatedImagesPath = os.path.join(os.getcwd(),'outputs') + #get all the files from the folders and subfolders + files = [] + #get the laest 10 images from the output folder without walking the subfolders + for r, d, f in os.walk(generatedImagesPath): + for file in f: + if '.png' in file: + files.append(os.path.join(r, file)) + #sort the files by date + files.sort(key=os.path.getmtime) + #reverse the list so the latest images are first + for f in files: + img = Image.open(f) + files[files.index(f)] = img + #get the latest 10 files + #get all the files with the .png or .jpg extension + #sort files by date + #get the latest 10 files + latestFiles = files[-10:] + #reverse the list + latestFiles.reverse() + return latestFiles + +def getImagesFromLexica(): + #scrape images from lexica.art + #get the html from the page + #get the html with cookies and javascript + apiEndpoint = r'https://lexica.art/api/trpc/prompts.infinitePrompts?batch=1&input=%7B%220%22%3A%7B%22json%22%3A%7B%22limit%22%3A10%2C%22text%22%3A%22%22%2C%22cursor%22%3A10%7D%7D%7D' + #REST API call + # + from requests_html import HTMLSession + session = HTMLSession() + + response = session.get(apiEndpoint) + #req = requests.Session() + #req.headers['user-agent'] = 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36' + #response = req.get(apiEndpoint) + print(response.status_code) + print(response.text) + #get the json from the response + #json = response.json() + #get the prompts from the json + print(response) + #session = requests.Session() + #parseEndpointJson = session.get(apiEndpoint,headers=headers,verify=False) + #print(parseEndpointJson) + #print('test2') + #page = requests.get("https://lexica.art/", headers={'User-Agent': 'Mozilla/5.0'}) + #parse the html + #soup = BeautifulSoup(page.content, 'html.parser') + #find all the images + #print(soup) + #images = soup.find_all('alt-image') + #create a list to store the image urls + image_urls = [] + #loop through the images + for image in images: + #get the url + image_url = image['src'] + #add it to the list + image_urls.append('http://www.lexica.art/'+image_url) + #return the list + print(image_urls) + return image_urls +def changeImage(): + #change the image in the image holder + #check if the file is not empty + if len(st.session_state['uploaded_file']) > 0: + #read the file + print('test2') + uploaded = st.session_state['uploaded_file'][0].read() + #show the image in the image holder + st.session_state['previewImg'].empty() + st.session_state['previewImg'].image(uploaded,use_column_width=True) +def createHTMLGallery(images): + html3 = """ + ' + return html3 +def layout(): + + col1, col2 = st.columns(2) + with col1: + st.session_state['uploaded_file'] = st.file_uploader("Choose an image or images", type=["png", "jpg", "jpeg"],accept_multiple_files=True,on_change=changeImage) + if 'previewImg' not in st.session_state: + st.session_state['previewImg'] = st.empty() + else: + if len(st.session_state['uploaded_file']) > 0: + st.session_state['previewImg'].empty() + st.session_state['previewImg'].image(st.session_state['uploaded_file'][0],use_column_width=True) + else: + st.session_state['previewImg'] = st.empty() + diff --git a/scripts/sd_utils.py b/scripts/sd_utils.py new file mode 100644 index 0000000..4425a95 --- /dev/null +++ b/scripts/sd_utils.py @@ -0,0 +1,1256 @@ +import warnings + +import piexif +import piexif.helper +import json + +import streamlit as st +from streamlit import StopException + +#streamlit components section +from st_on_hover_tabs import on_hover_tabs + +import base64, cv2 +import os, sys, re, random, datetime, timeit +from PIL import Image, ImageFont, ImageDraw, ImageFilter, ImageOps +from PIL.PngImagePlugin import PngInfo +from scipy import integrate +import pandas as pd +import torch +from torchdiffeq import odeint +import k_diffusion as K +import math +import mimetypes +import numpy as np +import pynvml +import threading +import time, inspect +import torch +from torch import autocast +from torchvision import transforms +import torch.nn as nn +import yaml +from typing import Union +from pathlib import Path +#from tqdm import tqdm +from contextlib import nullcontext +from einops import rearrange +from omegaconf import OmegaConf +from io import StringIO +from ldm.models.diffusion.ddim import DDIMSampler +from ldm.models.diffusion.plms import PLMSSampler +from ldm.util import instantiate_from_config +from retry import retry +import find_noise_for_image +import matched_noise + +# these are for testing txt2vid, should be removed and we should use things from our own code. +from diffusers import StableDiffusionPipeline +from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler + +#will be used for saving and reading a video made by the txt2vid function +import imageio, io + +# we use python-slugify to make the filenames safe for windows and linux, its better than doing it manually +# install it with 'pip install python-slugify' +from slugify import slugify + +try: + # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. + from transformers import logging + + logging.set_verbosity_error() +except: + pass + +# remove some annoying deprecation warnings that show every now and then. +warnings.filterwarnings("ignore", category=DeprecationWarning) + +defaults = OmegaConf.load("configs/webui/webui_streamlit.yaml") +if (os.path.exists("configs/webui/userconfig_streamlit.yaml")): + user_defaults = OmegaConf.load("configs/webui/userconfig_streamlit.yaml"); + defaults = OmegaConf.merge(defaults, user_defaults) + +# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI +mimetypes.init() +mimetypes.add_type('application/javascript', '.js') + +# some of those options should not be changed at all because they would break the model, so I removed them from options. +opt_C = 4 +opt_f = 8 + +# should and will be moved to a settings menu in the UI at some point +grid_format = [s.lower() for s in defaults.general.grid_format.split(':')] +grid_lossless = False +grid_quality = 100 +if grid_format[0] == 'png': + grid_ext = 'png' + grid_format = 'png' +elif grid_format[0] in ['jpg', 'jpeg']: + grid_quality = int(grid_format[1]) if len(grid_format) > 1 else 100 + grid_ext = 'jpg' + grid_format = 'jpeg' +elif grid_format[0] == 'webp': + grid_quality = int(grid_format[1]) if len(grid_format) > 1 else 100 + grid_ext = 'webp' + grid_format = 'webp' + if grid_quality < 0: # e.g. webp:-100 for lossless mode + grid_lossless = True + grid_quality = abs(grid_quality) + +# should and will be moved to a settings menu in the UI at some point +save_format = [s.lower() for s in defaults.general.save_format.split(':')] +save_lossless = False +save_quality = 100 +if save_format[0] == 'png': + save_ext = 'png' + save_format = 'png' +elif save_format[0] in ['jpg', 'jpeg']: + save_quality = int(save_format[1]) if len(save_format) > 1 else 100 + save_ext = 'jpg' + save_format = 'jpeg' +elif save_format[0] == 'webp': + save_quality = int(save_format[1]) if len(save_format) > 1 else 100 + save_ext = 'webp' + save_format = 'webp' + if save_quality < 0: # e.g. webp:-100 for lossless mode + save_lossless = True + save_quality = abs(save_quality) + +# this should force GFPGAN and RealESRGAN onto the selected gpu as well +os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152 +os.environ["CUDA_VISIBLE_DEVICES"] = str(defaults.general.gpu) + +@retry(tries=5) +def load_models(continue_prev_run = False, use_GFPGAN=False, use_RealESRGAN=False, RealESRGAN_model="RealESRGAN_x4plus", + CustomModel_available=False, custom_model="Stable Diffusion v1.4"): + """Load the different models. We also reuse the models that are already in memory to speed things up instead of loading them again. """ + + print ("Loading models.") + + st.session_state["progress_bar_text"].text("Loading models...") + + # Generate random run ID + # Used to link runs linked w/ continue_prev_run which is not yet implemented + # Use URL and filesystem safe version just in case. + st.session_state["run_id"] = base64.urlsafe_b64encode( + os.urandom(6) + ).decode("ascii") + + # check what models we want to use and if the they are already loaded. + + if use_GFPGAN: + if "GFPGAN" in st.session_state: + print("GFPGAN already loaded") + else: + # Load GFPGAN + if os.path.exists(defaults.general.GFPGAN_dir): + try: + st.session_state["GFPGAN"] = load_GFPGAN() + print("Loaded GFPGAN") + except Exception: + import traceback + print("Error loading GFPGAN:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + else: + if "GFPGAN" in st.session_state: + del st.session_state["GFPGAN"] + + if use_RealESRGAN: + if "RealESRGAN" in st.session_state and st.session_state["RealESRGAN"].model.name == RealESRGAN_model: + print("RealESRGAN already loaded") + else: + #Load RealESRGAN + try: + # We first remove the variable in case it has something there, + # some errors can load the model incorrectly and leave things in memory. + del st.session_state["RealESRGAN"] + except KeyError: + pass + + if os.path.exists(defaults.general.RealESRGAN_dir): + # st.session_state is used for keeping the models in memory across multiple pages or runs. + st.session_state["RealESRGAN"] = load_RealESRGAN(RealESRGAN_model) + print("Loaded RealESRGAN with model "+ st.session_state["RealESRGAN"].model.name) + + else: + if "RealESRGAN" in st.session_state: + del st.session_state["RealESRGAN"] + + + + if "model" in st.session_state: + if "model" in st.session_state and st.session_state["custom_model"] == custom_model: + print("Model already loaded") + else: + try: + del st.session_state["model"] + except KeyError: + pass + + config = OmegaConf.load(defaults.general.default_model_config) + + if custom_model == defaults.general.default_model: + model = load_model_from_config(config, defaults.general.default_model_path) + else: + model = load_model_from_config(config, os.path.join("models","custom", f"{custom_model}.ckpt")) + + st.session_state["custom_model"] = custom_model + st.session_state["device"] = torch.device(f"cuda:{defaults.general.gpu}") if torch.cuda.is_available() else torch.device("cpu") + st.session_state["model"] = (model if defaults.general.no_half else model.half()).to(st.session_state["device"] ) + else: + config = OmegaConf.load(defaults.general.default_model_config) + + if custom_model == defaults.general.default_model: + model = load_model_from_config(config, defaults.general.default_model_path) + else: + model = load_model_from_config(config, os.path.join("models","custom", f"{custom_model}.ckpt")) + + st.session_state["custom_model"] = custom_model + st.session_state["device"] = torch.device(f"cuda:{defaults.general.gpu}") if torch.cuda.is_available() else torch.device("cpu") + st.session_state["model"] = (model if defaults.general.no_half else model.half()).to(st.session_state["device"] ) + + print("Model loaded.") + + +def load_model_from_config(config, ckpt, verbose=False): + + print(f"Loading model from {ckpt}") + + pl_sd = torch.load(ckpt, map_location="cpu") + if "global_step" in pl_sd: + print(f"Global Step: {pl_sd['global_step']}") + sd = pl_sd["state_dict"] + model = instantiate_from_config(config.model) + m, u = model.load_state_dict(sd, strict=False) + if len(m) > 0 and verbose: + print("missing keys:") + print(m) + if len(u) > 0 and verbose: + print("unexpected keys:") + print(u) + + model.cuda() + model.eval() + return model + +def load_sd_from_config(ckpt, verbose=False): + print(f"Loading model from {ckpt}") + pl_sd = torch.load(ckpt, map_location="cpu") + if "global_step" in pl_sd: + print(f"Global Step: {pl_sd['global_step']}") + sd = pl_sd["state_dict"] + return sd +# +@retry(tries=5) +def generation_callback(img, i=0): + + try: + if i == 0: + if img['i']: i = img['i'] + except TypeError: + pass + + + if i % int(defaults.general.update_preview_frequency) == 0 and defaults.general.update_preview: + #print (img) + #print (type(img)) + # The following lines will convert the tensor we got on img to an actual image we can render on the UI. + # It can probably be done in a better way for someone who knows what they're doing. I don't. + #print (img,isinstance(img, torch.Tensor)) + if isinstance(img, torch.Tensor): + x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(img) + else: + # When using the k Diffusion samplers they return a dict instead of a tensor that look like this: + # {'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised} + x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(img["denoised"]) + + x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) + + pil_image = transforms.ToPILImage()(x_samples_ddim.squeeze_(0)) + + # update image on the UI so we can see the progress + st.session_state["preview_image"].image(pil_image) + + # Show a progress bar so we can keep track of the progress even when the image progress is not been shown, + # Dont worry, it doesnt affect the performance. + if st.session_state["generation_mode"] == "txt2img": + percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps)) + st.session_state["progress_bar_text"].text( + f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps} {percent if percent < 100 else 100}%") + else: + if st.session_state["generation_mode"] == "img2img": + round_sampling_steps = round(st.session_state.sampling_steps * st.session_state["denoising_strength"]) + percent = int(100 * float(i+1 if i+1 < round_sampling_steps else round_sampling_steps)/float(round_sampling_steps)) + st.session_state["progress_bar_text"].text( + f"""Running step: {i+1 if i+1 < round_sampling_steps else round_sampling_steps}/{round_sampling_steps} {percent if percent < 100 else 100}%""") + else: + if st.session_state["generation_mode"] == "txt2vid": + percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps)) + st.session_state["progress_bar_text"].text( + f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps}" + f"{percent if percent < 100 else 100}%") + + st.session_state["progress_bar"].progress(percent if percent < 100 else 100) + + + +class MemUsageMonitor(threading.Thread): + stop_flag = False + max_usage = 0 + total = -1 + + def __init__(self, name): + threading.Thread.__init__(self) + self.name = name + + def run(self): + try: + pynvml.nvmlInit() + except: + print(f"[{self.name}] Unable to initialize NVIDIA management. No memory stats. \n") + return + print(f"[{self.name}] Recording max memory usage...\n") + handle = pynvml.nvmlDeviceGetHandleByIndex(defaults.general.gpu) + self.total = pynvml.nvmlDeviceGetMemoryInfo(handle).total + while not self.stop_flag: + m = pynvml.nvmlDeviceGetMemoryInfo(handle) + self.max_usage = max(self.max_usage, m.used) + # print(self.max_usage) + time.sleep(0.1) + print(f"[{self.name}] Stopped recording.\n") + pynvml.nvmlShutdown() + + def read(self): + return self.max_usage, self.total + + def stop(self): + self.stop_flag = True + + def read_and_stop(self): + self.stop_flag = True + return self.max_usage, self.total + +class CFGMaskedDenoiser(nn.Module): + def __init__(self, model): + super().__init__() + self.inner_model = model + + def forward(self, x, sigma, uncond, cond, cond_scale, mask, x0, xi): + x_in = x + x_in = torch.cat([x_in] * 2) + sigma_in = torch.cat([sigma] * 2) + cond_in = torch.cat([uncond, cond]) + uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) + denoised = uncond + (cond - uncond) * cond_scale + + if mask is not None: + assert x0 is not None + img_orig = x0 + mask_inv = 1. - mask + denoised = (img_orig * mask_inv) + (mask * denoised) + + return denoised + +class CFGDenoiser(nn.Module): + def __init__(self, model): + super().__init__() + self.inner_model = model + + def forward(self, x, sigma, uncond, cond, cond_scale): + x_in = torch.cat([x] * 2) + sigma_in = torch.cat([sigma] * 2) + cond_in = torch.cat([uncond, cond]) + uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) + return uncond + (cond - uncond) * cond_scale +def append_zero(x): + return torch.cat([x, x.new_zeros([1])]) +def append_dims(x, target_dims): + """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" + dims_to_append = target_dims - x.ndim + if dims_to_append < 0: + raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') + return x[(...,) + (None,) * dims_to_append] +def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'): + """Constructs the noise schedule of Karras et al. (2022).""" + ramp = torch.linspace(0, 1, n) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return append_zero(sigmas).to(device) + + +def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'): + """Constructs an exponential noise schedule.""" + sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp() + return append_zero(sigmas) + + +def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'): + """Constructs a continuous VP noise schedule.""" + t = torch.linspace(1, eps_s, n, device=device) + sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1) + return append_zero(sigmas) + + +def to_d(x, sigma, denoised): + """Converts a denoiser output to a Karras ODE derivative.""" + return (x - denoised) / append_dims(sigma, x.ndim) +def linear_multistep_coeff(order, t, i, j): + if order - 1 > i: + raise ValueError(f'Order {order} too high for step {i}') + def fn(tau): + prod = 1. + for k in range(order): + if j == k: + continue + prod *= (tau - t[i - k]) / (t[i - j] - t[i - k]) + return prod + return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0] + +class KDiffusionSampler: + def __init__(self, m, sampler): + self.model = m + self.model_wrap = K.external.CompVisDenoiser(m) + self.schedule = sampler + def get_sampler_name(self): + return self.schedule + def sample(self, S, conditioning, batch_size, shape, verbose, unconditional_guidance_scale, unconditional_conditioning, eta, x_T, img_callback=None, log_every_t=None): + sigmas = self.model_wrap.get_sigmas(S) + x = x_T * sigmas[0] + model_wrap_cfg = CFGDenoiser(self.model_wrap) + samples_ddim = None + samples_ddim = K.sampling.__dict__[f'sample_{self.schedule}'](model_wrap_cfg, x, sigmas, + extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, + 'cond_scale': unconditional_guidance_scale}, disable=False, callback=generation_callback) + # + return samples_ddim, None + + +@torch.no_grad() +def log_likelihood(model, x, sigma_min, sigma_max, extra_args=None, atol=1e-4, rtol=1e-4): + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + v = torch.randint_like(x, 2) * 2 - 1 + fevals = 0 + def ode_fn(sigma, x): + nonlocal fevals + with torch.enable_grad(): + x = x[0].detach().requires_grad_() + denoised = model(x, sigma * s_in, **extra_args) + d = to_d(x, sigma, denoised) + fevals += 1 + grad = torch.autograd.grad((d * v).sum(), x)[0] + d_ll = (v * grad).flatten(1).sum(1) + return d.detach(), d_ll + x_min = x, x.new_zeros([x.shape[0]]) + t = x.new_tensor([sigma_min, sigma_max]) + sol = odeint(ode_fn, x_min, t, atol=atol, rtol=rtol, method='dopri5') + latent, delta_ll = sol[0][-1], sol[1][-1] + ll_prior = torch.distributions.Normal(0, sigma_max).log_prob(latent).flatten(1).sum(1) + return ll_prior + delta_ll, {'fevals': fevals} + + +def create_random_tensors(shape, seeds): + xs = [] + for seed in seeds: + torch.manual_seed(seed) + + # randn results depend on device; gpu and cpu get different results for same seed; + # the way I see it, it's better to do this on CPU, so that everyone gets same result; + # but the original script had it like this so i do not dare change it for now because + # it will break everyone's seeds. + xs.append(torch.randn(shape, device=defaults.general.gpu)) + x = torch.stack(xs) + return x + +def torch_gc(): + torch.cuda.empty_cache() + torch.cuda.ipc_collect() + +def load_GFPGAN(): + model_name = 'GFPGANv1.3' + model_path = os.path.join(defaults.general.GFPGAN_dir, 'experiments/pretrained_models', model_name + '.pth') + if not os.path.isfile(model_path): + raise Exception("GFPGAN model not found at path "+model_path) + + sys.path.append(os.path.abspath(defaults.general.GFPGAN_dir)) + from gfpgan import GFPGANer + + if defaults.general.gfpgan_cpu or defaults.general.extra_models_cpu: + instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cpu')) + elif defaults.general.extra_models_gpu: + instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device(f'cuda:{defaults.general.gfpgan_gpu}')) + else: + instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device(f'cuda:{defaults.general.gpu}')) + return instance + +def load_RealESRGAN(model_name: str): + from basicsr.archs.rrdbnet_arch import RRDBNet + RealESRGAN_models = { + 'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4), + 'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) + } + + model_path = os.path.join(defaults.general.RealESRGAN_dir, 'experiments/pretrained_models', model_name + '.pth') + if not os.path.exists(os.path.join(defaults.general.RealESRGAN_dir, "experiments","pretrained_models", f"{model_name}.pth")): + raise Exception(model_name+".pth not found at path "+model_path) + + sys.path.append(os.path.abspath(defaults.general.RealESRGAN_dir)) + from realesrgan import RealESRGANer + + if defaults.general.esrgan_cpu or defaults.general.extra_models_cpu: + instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=False) # cpu does not support half + instance.device = torch.device('cpu') + instance.model.to('cpu') + elif defaults.general.extra_models_gpu: + instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=not defaults.general.no_half, device=torch.device(f'cuda:{defaults.general.esrgan_gpu}')) + else: + instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=not defaults.general.no_half, device=torch.device(f'cuda:{defaults.general.gpu}')) + instance.model.name = model_name + + return instance + +prompt_parser = re.compile(""" + (?P # capture group for 'prompt' + [^:]+ # match one or more non ':' characters + ) # end 'prompt' + (?: # non-capture group + :+ # match one or more ':' characters + (?P # capture group for 'weight' + -?\\d+(?:\\.\\d+)? # match positive or negative decimal number + )? # end weight capture group, make optional + \\s* # strip spaces after weight + | # OR + $ # else, if no ':' then match end of line + ) # end non-capture group +""", re.VERBOSE) + +# grabs all text up to the first occurrence of ':' as sub-prompt +# takes the value following ':' as weight +# if ':' has no value defined, defaults to 1.0 +# repeats until no text remaining +def split_weighted_subprompts(input_string, normalize=True): + parsed_prompts = [(match.group("prompt"), float(match.group("weight") or 1)) for match in re.finditer(prompt_parser, input_string)] + if not normalize: + return parsed_prompts + # this probably still doesn't handle negative weights very well + weight_sum = sum(map(lambda x: x[1], parsed_prompts)) + return [(x[0], x[1] / weight_sum) for x in parsed_prompts] + +def slerp(device, t, v0:torch.Tensor, v1:torch.Tensor, DOT_THRESHOLD=0.9995): + v0 = v0.detach().cpu().numpy() + v1 = v1.detach().cpu().numpy() + + dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) + if np.abs(dot) > DOT_THRESHOLD: + v2 = (1 - t) * v0 + t * v1 + else: + theta_0 = np.arccos(dot) + sin_theta_0 = np.sin(theta_0) + theta_t = theta_0 * t + sin_theta_t = np.sin(theta_t) + s0 = np.sin(theta_0 - theta_t) / sin_theta_0 + s1 = sin_theta_t / sin_theta_0 + v2 = s0 * v0 + s1 * v1 + + v2 = torch.from_numpy(v2).to(device) + + return v2 + +# +def optimize_update_preview_frequency(current_chunk_speed, previous_chunk_speed, update_preview_frequency): + """Find the optimal update_preview_frequency value maximizing + performance while minimizing the time between updates.""" + if current_chunk_speed >= previous_chunk_speed: + #print(f"{current_chunk_speed} >= {previous_chunk_speed}") + update_preview_frequency +=1 + previous_chunk_speed = current_chunk_speed + else: + #print(f"{current_chunk_speed} <= {previous_chunk_speed}") + update_preview_frequency -=1 + previous_chunk_speed = current_chunk_speed + + return current_chunk_speed, previous_chunk_speed, update_preview_frequency + + +# +def ModelLoader(models,load=False,unload=False,imgproc_realesrgan_model_name='RealESRGAN_x4plus'): + #get global variables + global_vars = globals() + #check if m is in globals + if unload: + for m in models: + if m in global_vars: + #if it is, delete it + del global_vars[m] + if defaults.general.optimized: + if m == 'model': + del global_vars[m+'FS'] + del global_vars[m+'CS'] + if m =='model': + m='Stable Diffusion' + print('Unloaded ' + m) + if load: + for m in models: + if m not in global_vars or m in global_vars and type(global_vars[m]) == bool: + #if it isn't, load it + if m == 'GFPGAN': + global_vars[m] = load_GFPGAN() + elif m == 'model': + sdLoader = load_sd_from_config() + global_vars[m] = sdLoader[0] + if defaults.general.optimized: + global_vars[m+'CS'] = sdLoader[1] + global_vars[m+'FS'] = sdLoader[2] + elif m == 'RealESRGAN': + global_vars[m] = load_RealESRGAN(imgproc_realesrgan_model_name) + elif m == 'LDSR': + global_vars[m] = load_LDSR() + if m =='model': + m='Stable Diffusion' + print('Loaded ' + m) + torch_gc() + + + +def get_font(fontsize): + fonts = ["arial.ttf", "DejaVuSans.ttf"] + for font_name in fonts: + try: + return ImageFont.truetype(font_name, fontsize) + except OSError: + pass + + # ImageFont.load_default() is practically unusable as it only supports + # latin1, so raise an exception instead if no usable font was found + raise Exception(f"No usable font found (tried {', '.join(fonts)})") + +def load_embeddings(fp): + if fp is not None and hasattr(st.session_state["model"], "embedding_manager"): + st.session_state["model"].embedding_manager.load(fp['name']) + +def image_grid(imgs, batch_size, force_n_rows=None, captions=None): + #print (len(imgs)) + if force_n_rows is not None: + rows = force_n_rows + elif defaults.general.n_rows > 0: + rows = defaults.general.n_rows + elif defaults.general.n_rows == 0: + rows = batch_size + else: + rows = math.sqrt(len(imgs)) + rows = round(rows) + + cols = math.ceil(len(imgs) / rows) + + w, h = imgs[0].size + grid = Image.new('RGB', size=(cols * w, rows * h), color='black') + + fnt = get_font(30) + + for i, img in enumerate(imgs): + grid.paste(img, box=(i % cols * w, i // cols * h)) + if captions and i= 2**32: + n = n >> 32 + return n + +def check_prompt_length(prompt, comments): + """this function tests if prompt is too long, and if so, adds a message to comments""" + + tokenizer = (st.session_state["model"] if not defaults.general.optimized else modelCS).cond_stage_model.tokenizer + max_length = (st.session_state["model"] if not defaults.general.optimized else modelCS).cond_stage_model.max_length + + info = (st.session_state["model"] if not defaults.general.optimized else modelCS).cond_stage_model.tokenizer([prompt], truncation=True, max_length=max_length, + return_overflowing_tokens=True, padding="max_length", return_tensors="pt") + ovf = info['overflowing_tokens'][0] + overflowing_count = ovf.shape[0] + if overflowing_count == 0: + return + + vocab = {v: k for k, v in tokenizer.get_vocab().items()} + overflowing_words = [vocab.get(int(x), "") for x in ovf] + overflowing_text = tokenizer.convert_tokens_to_string(''.join(overflowing_words)) + + comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") + +def save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, + normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, + save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images): + + filename_i = os.path.join(sample_path_i, filename) + + if defaults.general.save_metadata or write_info_files: + # toggles differ for txt2img vs. img2img: + offset = 0 if init_img is None else 2 + toggles = [] + if prompt_matrix: + toggles.append(0) + if normalize_prompt_weights: + toggles.append(1) + if init_img is not None: + if uses_loopback: + toggles.append(2) + if uses_random_seed_loopback: + toggles.append(3) + if save_individual_images: + toggles.append(2 + offset) + if save_grid: + toggles.append(3 + offset) + if sort_samples: + toggles.append(4 + offset) + if write_info_files: + toggles.append(5 + offset) + if use_GFPGAN: + toggles.append(6 + offset) + metadata = \ + dict( + target="txt2img" if init_img is None else "img2img", + prompt=prompts[i], ddim_steps=steps, toggles=toggles, sampler_name=sampler_name, + ddim_eta=ddim_eta, n_iter=n_iter, batch_size=batch_size, cfg_scale=cfg_scale, + seed=seeds[i], width=width, height=height, normalize_prompt_weights=normalize_prompt_weights) + # Not yet any use for these, but they bloat up the files: + # info_dict["init_img"] = init_img + # info_dict["init_mask"] = init_mask + if init_img is not None: + metadata["denoising_strength"] = str(denoising_strength) + metadata["resize_mode"] = resize_mode + + if write_info_files: + with open(f"{filename_i}.yaml", "w", encoding="utf8") as f: + yaml.dump(metadata, f, allow_unicode=True, width=10000) + + if defaults.general.save_metadata: + # metadata = { + # "SD:prompt": prompts[i], + # "SD:seed": str(seeds[i]), + # "SD:width": str(width), + # "SD:height": str(height), + # "SD:steps": str(steps), + # "SD:cfg_scale": str(cfg_scale), + # "SD:normalize_prompt_weights": str(normalize_prompt_weights), + # } + metadata = {"SD:" + k:v for (k,v) in metadata.items()} + + if save_ext == "png": + mdata = PngInfo() + for key in metadata: + mdata.add_text(key, str(metadata[key])) + image.save(f"{filename_i}.png", pnginfo=mdata) + else: + if jpg_sample: + image.save(f"{filename_i}.jpg", quality=save_quality, + optimize=True) + elif save_ext == "webp": + image.save(f"{filename_i}.{save_ext}", f"webp", quality=save_quality, + lossless=save_lossless) + else: + # not sure what file format this is + image.save(f"{filename_i}.{save_ext}", f"{save_ext}") + try: + exif_dict = piexif.load(f"{filename_i}.{save_ext}") + except: + exif_dict = { "Exif": dict() } + exif_dict["Exif"][piexif.ExifIFD.UserComment] = piexif.helper.UserComment.dump( + json.dumps(metadata), encoding="unicode") + piexif.insert(piexif.dump(exif_dict), f"{filename_i}.{save_ext}") + + # render the image on the frontend + st.session_state["preview_image"].image(image) + +def get_next_sequence_number(path, prefix=''): + """ + Determines and returns the next sequence number to use when saving an + image in the specified directory. + + If a prefix is given, only consider files whose names start with that + prefix, and strip the prefix from filenames before extracting their + sequence number. + + The sequence starts at 0. + """ + result = -1 + for p in Path(path).iterdir(): + if p.name.endswith(('.png', '.jpg')) and p.name.startswith(prefix): + tmp = p.name[len(prefix):] + try: + result = max(int(tmp.split('-')[0]), result) + except ValueError: + pass + return result + 1 + + +def oxlamon_matrix(prompt, seed, n_iter, batch_size): + pattern = re.compile(r'(,\s){2,}') + + class PromptItem: + def __init__(self, text, parts, item): + self.text = text + self.parts = parts + if item: + self.parts.append( item ) + + def clean(txt): + return re.sub(pattern, ', ', txt) + + def getrowcount( txt ): + for data in re.finditer( ".*?\\((.*?)\\).*", txt ): + if data: + return len(data.group(1).split("|")) + break + return None + + def repliter( txt ): + for data in re.finditer( ".*?\\((.*?)\\).*", txt ): + if data: + r = data.span(1) + for item in data.group(1).split("|"): + yield (clean(txt[:r[0]-1] + item.strip() + txt[r[1]+1:]), item.strip()) + break + + def iterlist( items ): + outitems = [] + for item in items: + for newitem, newpart in repliter(item.text): + outitems.append( PromptItem(newitem, item.parts.copy(), newpart) ) + + return outitems + + def getmatrix( prompt ): + dataitems = [ PromptItem( prompt[1:].strip(), [], None ) ] + while True: + newdataitems = iterlist( dataitems ) + if len( newdataitems ) == 0: + return dataitems + dataitems = newdataitems + + def classToArrays( items, seed, n_iter ): + texts = [] + parts = [] + seeds = [] + + for item in items: + itemseed = seed + for i in range(n_iter): + texts.append( item.text ) + parts.append( f"Seed: {itemseed}\n" + "\n".join(item.parts) ) + seeds.append( itemseed ) + itemseed += 1 + + return seeds, texts, parts + + all_seeds, all_prompts, prompt_matrix_parts = classToArrays(getmatrix( prompt ), seed, n_iter) + n_iter = math.ceil(len(all_prompts) / batch_size) + + needrows = getrowcount(prompt) + if needrows: + xrows = math.sqrt(len(all_prompts)) + xrows = round(xrows) + # if columns is to much + cols = math.ceil(len(all_prompts) / xrows) + if cols > needrows*4: + needrows *= 2 + + return all_seeds, n_iter, prompt_matrix_parts, all_prompts, needrows + +# +def process_images( + outpath, func_init, func_sample, prompt, seed, sampler_name, save_grid, batch_size, + n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, use_RealESRGAN, realesrgan_model_name, + fp=None, ddim_eta=0.0, normalize_prompt_weights=True, init_img=None, init_mask=None, + mask_blur_strength=3, mask_restore=False, denoising_strength=0.75, noise_mode=0, find_noise_steps=1, resize_mode=None, uses_loopback=False, + uses_random_seed_loopback=False, sort_samples=True, write_info_files=True, jpg_sample=False, + variant_amount=0.0, variant_seed=None, save_individual_images: bool = True): + """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" + assert prompt is not None + torch_gc() + # start time after garbage collection (or before?) + start_time = time.time() + + # We will use this date here later for the folder name, need to start_time if not need + run_start_dt = datetime.datetime.now() + + mem_mon = MemUsageMonitor('MemMon') + mem_mon.start() + + if hasattr(st.session_state["model"], "embedding_manager"): + load_embeddings(fp) + + os.makedirs(outpath, exist_ok=True) + + sample_path = os.path.join(outpath, "samples") + os.makedirs(sample_path, exist_ok=True) + + if not ("|" in prompt) and prompt.startswith("@"): + prompt = prompt[1:] + + comments = [] + + prompt_matrix_parts = [] + simple_templating = False + add_original_image = not (use_RealESRGAN or use_GFPGAN) + + if prompt_matrix: + if prompt.startswith("@"): + simple_templating = True + add_original_image = not (use_RealESRGAN or use_GFPGAN) + all_seeds, n_iter, prompt_matrix_parts, all_prompts, frows = oxlamon_matrix(prompt, seed, n_iter, batch_size) + else: + all_prompts = [] + prompt_matrix_parts = prompt.split("|") + combination_count = 2 ** (len(prompt_matrix_parts) - 1) + for combination_num in range(combination_count): + current = prompt_matrix_parts[0] + + for n, text in enumerate(prompt_matrix_parts[1:]): + if combination_num & (2 ** n) > 0: + current += ("" if text.strip().startswith(",") else ", ") + text + + all_prompts.append(current) + + n_iter = math.ceil(len(all_prompts) / batch_size) + all_seeds = len(all_prompts) * [seed] + + print(f"Prompt matrix will create {len(all_prompts)} images using a total of {n_iter} batches.") + else: + + if not defaults.general.no_verify_input: + try: + check_prompt_length(prompt, comments) + except: + import traceback + print("Error verifying input:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + + all_prompts = batch_size * n_iter * [prompt] + all_seeds = [seed + x for x in range(len(all_prompts))] + + precision_scope = autocast if defaults.general.precision == "autocast" else nullcontext + output_images = [] + grid_captions = [] + stats = [] + with torch.no_grad(), precision_scope("cuda"), (st.session_state["model"].ema_scope() if not defaults.general.optimized else nullcontext()): + init_data = func_init() + tic = time.time() + + + # if variant_amount > 0.0 create noise from base seed + base_x = None + if variant_amount > 0.0: + target_seed_randomizer = seed_to_int('') # random seed + torch.manual_seed(seed) # this has to be the single starting seed (not per-iteration) + base_x = create_random_tensors([opt_C, height // opt_f, width // opt_f], seeds=[seed]) + # we don't want all_seeds to be sequential from starting seed with variants, + # since that makes the same variants each time, + # so we add target_seed_randomizer as a random offset + for si in range(len(all_seeds)): + all_seeds[si] += target_seed_randomizer + + for n in range(n_iter): + print(f"Iteration: {n+1}/{n_iter}") + prompts = all_prompts[n * batch_size:(n + 1) * batch_size] + captions = prompt_matrix_parts[n * batch_size:(n + 1) * batch_size] + seeds = all_seeds[n * batch_size:(n + 1) * batch_size] + + print(prompt) + + if defaults.general.optimized: + modelCS.to(defaults.general.gpu) + + uc = (st.session_state["model"] if not defaults.general.optimized else modelCS).get_learned_conditioning(len(prompts) * [""]) + + if isinstance(prompts, tuple): + prompts = list(prompts) + + # split the prompt if it has : for weighting + # TODO for speed it might help to have this occur when all_prompts filled?? + weighted_subprompts = split_weighted_subprompts(prompts[0], normalize_prompt_weights) + + # sub-prompt weighting used if more than 1 + if len(weighted_subprompts) > 1: + c = torch.zeros_like(uc) # i dont know if this is correct.. but it works + for i in range(0, len(weighted_subprompts)): + # note if alpha negative, it functions same as torch.sub + c = torch.add(c, (st.session_state["model"] if not defaults.general.optimized else modelCS).get_learned_conditioning(weighted_subprompts[i][0]), alpha=weighted_subprompts[i][1]) + else: # just behave like usual + c = (st.session_state["model"] if not defaults.general.optimized else modelCS).get_learned_conditioning(prompts) + + + shape = [opt_C, height // opt_f, width // opt_f] + + if defaults.general.optimized: + mem = torch.cuda.memory_allocated()/1e6 + modelCS.to("cpu") + while(torch.cuda.memory_allocated()/1e6 >= mem): + time.sleep(1) + + if noise_mode == 1 or noise_mode == 3: + # TODO params for find_noise_to_image + x = torch.cat(batch_size * [find_noise_for_image.find_noise_for_image( + st.session_state["model"], st.session_state["device"], + init_img.convert('RGB'), '', find_noise_steps, 0.0, normalize=True, + generation_callback=generation_callback, + )], dim=0) + else: + # we manually generate all input noises because each one should have a specific seed + x = create_random_tensors(shape, seeds=seeds) + + if variant_amount > 0.0: # we are making variants + # using variant_seed as sneaky toggle, + # when not None or '' use the variant_seed + # otherwise use seeds + if variant_seed != None and variant_seed != '': + specified_variant_seed = seed_to_int(variant_seed) + torch.manual_seed(specified_variant_seed) + seeds = [specified_variant_seed] + # finally, slerp base_x noise to target_x noise for creating a variant + x = slerp(defaults.general.gpu, max(0.0, min(1.0, variant_amount)), base_x, x) + + samples_ddim = func_sample(init_data=init_data, x=x, conditioning=c, unconditional_conditioning=uc, sampler_name=sampler_name) + + if defaults.general.optimized: + modelFS.to(defaults.general.gpu) + + x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(samples_ddim) + x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) + + for i, x_sample in enumerate(x_samples_ddim): + sanitized_prompt = slugify(prompts[i]) + + if sort_samples: + full_path = os.path.join(os.getcwd(), sample_path, sanitized_prompt) + + + sanitized_prompt = sanitized_prompt[:220-len(full_path)] + sample_path_i = os.path.join(sample_path, sanitized_prompt) + + #print(f"output folder length: {len(os.path.join(os.getcwd(), sample_path_i))}") + #print(os.path.join(os.getcwd(), sample_path_i)) + + os.makedirs(sample_path_i, exist_ok=True) + base_count = get_next_sequence_number(sample_path_i) + filename = f"{base_count:05}-{steps}_{sampler_name}_{seeds[i]}" + else: + full_path = os.path.join(os.getcwd(), sample_path) + sample_path_i = sample_path + base_count = get_next_sequence_number(sample_path_i) + filename = f"{base_count:05}-{steps}_{sampler_name}_{seeds[i]}_{sanitized_prompt}"[:220-len(full_path)] #same as before + + x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') + x_sample = x_sample.astype(np.uint8) + image = Image.fromarray(x_sample) + original_sample = x_sample + original_filename = filename + + if use_GFPGAN and st.session_state["GFPGAN"] is not None and not use_RealESRGAN: + #skip_save = True # #287 >_> + torch_gc() + cropped_faces, restored_faces, restored_img = st.session_state["GFPGAN"].enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True) + gfpgan_sample = restored_img[:,:,::-1] + gfpgan_image = Image.fromarray(gfpgan_sample) + gfpgan_filename = original_filename + '-gfpgan' + + save_sample(gfpgan_image, sample_path_i, gfpgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, + normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, + uses_random_seed_loopback, save_grid, sort_samples, sampler_name, ddim_eta, + n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images=False) + + output_images.append(gfpgan_image) #287 + if simple_templating: + grid_captions.append( captions[i] + "\ngfpgan" ) + + if use_RealESRGAN and st.session_state["RealESRGAN"] is not None and not use_GFPGAN: + #skip_save = True # #287 >_> + torch_gc() + + if st.session_state["RealESRGAN"].model.name != realesrgan_model_name: + #try_loading_RealESRGAN(realesrgan_model_name) + load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name) + + output, img_mode = st.session_state["RealESRGAN"].enhance(x_sample[:,:,::-1]) + esrgan_filename = original_filename + '-esrgan4x' + esrgan_sample = output[:,:,::-1] + esrgan_image = Image.fromarray(esrgan_sample) + + #save_sample(image, sample_path_i, original_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, + #normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, + #save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode) + + save_sample(esrgan_image, sample_path_i, esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, + normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, + save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images=False) + + output_images.append(esrgan_image) #287 + if simple_templating: + grid_captions.append( captions[i] + "\nesrgan" ) + + if use_RealESRGAN and st.session_state["RealESRGAN"] is not None and use_GFPGAN and st.session_state["GFPGAN"] is not None: + #skip_save = True # #287 >_> + torch_gc() + cropped_faces, restored_faces, restored_img = st.session_state["GFPGAN"].enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True) + gfpgan_sample = restored_img[:,:,::-1] + + if st.session_state["RealESRGAN"].model.name != realesrgan_model_name: + #try_loading_RealESRGAN(realesrgan_model_name) + load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name) + + output, img_mode = st.session_state["RealESRGAN"].enhance(gfpgan_sample[:,:,::-1]) + gfpgan_esrgan_filename = original_filename + '-gfpgan-esrgan4x' + gfpgan_esrgan_sample = output[:,:,::-1] + gfpgan_esrgan_image = Image.fromarray(gfpgan_esrgan_sample) + + save_sample(gfpgan_esrgan_image, sample_path_i, gfpgan_esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, + normalize_prompt_weights, False, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, + save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images=False) + + output_images.append(gfpgan_esrgan_image) #287 + + if simple_templating: + grid_captions.append( captions[i] + "\ngfpgan_esrgan" ) + + if mask_restore and init_mask: + #init_mask = init_mask if keep_mask else ImageOps.invert(init_mask) + init_mask = init_mask.filter(ImageFilter.GaussianBlur(mask_blur_strength)) + init_mask = init_mask.convert('L') + init_img = init_img.convert('RGB') + image = image.convert('RGB') + + if use_RealESRGAN and st.session_state["RealESRGAN"] is not None: + if st.session_state["RealESRGAN"].model.name != realesrgan_model_name: + #try_loading_RealESRGAN(realesrgan_model_name) + load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name) + + output, img_mode = st.session_state["RealESRGAN"].enhance(np.array(init_img, dtype=np.uint8)) + init_img = Image.fromarray(output) + init_img = init_img.convert('RGB') + + output, img_mode = st.session_state["RealESRGAN"].enhance(np.array(init_mask, dtype=np.uint8)) + init_mask = Image.fromarray(output) + init_mask = init_mask.convert('L') + + image = Image.composite(init_img, image, init_mask) + + if save_individual_images: + save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, + normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, + save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images) + + if not use_GFPGAN or not use_RealESRGAN: + output_images.append(image) + + #if add_original_image or not simple_templating: + #output_images.append(image) + #if simple_templating: + #grid_captions.append( captions[i] ) + + if defaults.general.optimized: + mem = torch.cuda.memory_allocated()/1e6 + modelFS.to("cpu") + while(torch.cuda.memory_allocated()/1e6 >= mem): + time.sleep(1) + + if prompt_matrix or save_grid: + if prompt_matrix: + if simple_templating: + grid = image_grid(output_images, n_iter, force_n_rows=frows, captions=grid_captions) + else: + grid = image_grid(output_images, n_iter, force_n_rows=1 << ((len(prompt_matrix_parts)-1)//2)) + try: + grid = draw_prompt_matrix(grid, width, height, prompt_matrix_parts) + except: + import traceback + print("Error creating prompt_matrix text:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + else: + grid = image_grid(output_images, batch_size) + + if grid and (batch_size > 1 or n_iter > 1): + output_images.insert(0, grid) + + grid_count = get_next_sequence_number(outpath, 'grid-') + grid_file = f"grid-{grid_count:05}-{seed}_{slugify(prompts[i].replace(' ', '_')[:220-len(full_path)])}.{grid_ext}" + grid.save(os.path.join(outpath, grid_file), grid_format, quality=grid_quality, lossless=grid_lossless, optimize=True) + + toc = time.time() + + mem_max_used, mem_total = mem_mon.read_and_stop() + time_diff = time.time()-start_time + + info = f""" + {prompt} + Steps: {steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', Denoising strength: '+str(denoising_strength) if init_img is not None else ''}{', GFPGAN' if use_GFPGAN and st.session_state["GFPGAN"] is not None else ''}{', '+realesrgan_model_name if use_RealESRGAN and st.session_state["RealESRGAN"] is not None else ''}{', Prompt Matrix Mode.' if prompt_matrix else ''}""".strip() + stats = f''' + Took { round(time_diff, 2) }s total ({ round(time_diff/(len(all_prompts)),2) }s per image) + Peak memory usage: { -(mem_max_used // -1_048_576) } MiB / { -(mem_total // -1_048_576) } MiB / { round(mem_max_used/mem_total*100, 3) }%''' + + for comment in comments: + info += "\n\n" + comment + + #mem_mon.stop() + #del mem_mon + torch_gc() + + return output_images, seed, info, stats + + +def resize_image(resize_mode, im, width, height): + LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) + if resize_mode == 0: + res = im.resize((width, height), resample=LANCZOS) + elif resize_mode == 1: + ratio = width / height + src_ratio = im.width / im.height + + src_w = width if ratio > src_ratio else im.width * height // im.height + src_h = height if ratio <= src_ratio else im.height * width // im.width + + resized = im.resize((src_w, src_h), resample=LANCZOS) + res = Image.new("RGBA", (width, height)) + res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) + else: + ratio = width / height + src_ratio = im.width / im.height + + src_w = width if ratio < src_ratio else im.width * height // im.height + src_h = height if ratio >= src_ratio else im.height * width // im.width + + resized = im.resize((src_w, src_h), resample=LANCZOS) + res = Image.new("RGBA", (width, height)) + res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) + + if ratio < src_ratio: + fill_height = height // 2 - src_h // 2 + res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0)) + res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h)) + elif ratio > src_ratio: + fill_width = width // 2 - src_w // 2 + res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) + res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0)) + + return res + +# diff --git a/scripts/stable_diffusion_walk.py b/scripts/stable_diffusion_walk.py index f2a22fd..1ce175d 100644 --- a/scripts/stable_diffusion_walk.py +++ b/scripts/stable_diffusion_walk.py @@ -8,7 +8,7 @@ from diffusers.schedulers import (DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler) from diffusers import ModelMixin -from .stable_diffusion_pipeline import StableDiffusionPipeline +from stable_diffusion_pipeline import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", @@ -86,6 +86,8 @@ def walk( use_lerp_for_text=False, scheduler="klms", # choices: default, ddim, klms disable_tqdm=False, + upsample=False, + fps=30, ): """Generate video frames/a video given a list of prompts and seeds. @@ -105,10 +107,18 @@ def walk( use_lerp_for_text (bool, optional): Use LERP instead of SLERP for text embeddings when walking. Defaults to False. scheduler (str, optional): Which scheduler to use. Defaults to "klms". Choices are "default", "ddim", "klms". disable_tqdm (bool, optional): Whether to turn off the tqdm progress bars. Defaults to False. + upsample (bool, optional): If True, uses Real-ESRGAN to upsample images 4x. Requires it to be installed + which you can do by running: `pip install git+https://github.com/xinntao/Real-ESRGAN.git`. Defaults to False. + fps (int, optional): The frames per second (fps) that you want the video to use. Does nothing if make_video is False. Defaults to 30. Returns: str: Path to video file saved if make_video=True, else None. """ + if upsample: + from .upsampling import PipelineRealESRGAN + + upsampling_pipeline = PipelineRealESRGAN.from_pretrained('nateraw/real-esrgan') + pipeline.set_progress_bar_config(disable=disable_tqdm) pipeline.scheduler = SCHEDULERS[scheduler] @@ -186,8 +196,12 @@ def walk( guidance_scale=guidance_scale, eta=eta, num_inference_steps=num_inference_steps, + output_type='pil' if not upsample else 'numpy' )["sample"][0] + if upsample: + im = upsampling_pipeline(im) + im.save(output_path / ("frame%06d.jpg" % frame_index)) frame_index += 1 @@ -195,7 +209,7 @@ def walk( latents_a = latents_b if make_video: - return make_video_ffmpeg(output_path, f"{name}.mp4") + return make_video_ffmpeg(output_path, f"{name}.mp4", fps=fps) if __name__ == "__main__": diff --git a/scripts/txt2img.py b/scripts/txt2img.py new file mode 100644 index 0000000..073e266 --- /dev/null +++ b/scripts/txt2img.py @@ -0,0 +1,332 @@ +from webui_streamlit import st +from sd_utils import * + +from streamlit import StopException + +import os +from typing import Union +from io import BytesIO +from ldm.models.diffusion.ddim import DDIMSampler +from ldm.models.diffusion.plms import PLMSSampler + +from streamlit.runtime.in_memory_file_manager import in_memory_file_manager +from streamlit.elements import image as STImage +try: + # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. + from transformers import logging + + logging.set_verbosity_error() +except: + pass + +class plugin_info(): + plugname = "txt2img" + description = "Text to Image" + isTab = True + displayPriority = 1 + + +if os.path.exists(os.path.join(defaults.general.GFPGAN_dir, "experiments", "pretrained_models", "GFPGANv1.3.pth")): + GFPGAN_available = True +else: + GFPGAN_available = False + +if os.path.exists(os.path.join(defaults.general.RealESRGAN_dir, "experiments","pretrained_models", f"{defaults.general.RealESRGAN_model}.pth")): + RealESRGAN_available = True +else: + RealESRGAN_available = False + +# +def txt2img(prompt: str, ddim_steps: int, sampler_name: str, realesrgan_model_name: str, + n_iter: int, batch_size: int, cfg_scale: float, seed: Union[int, str, None], + height: int, width: int, separate_prompts:bool = False, normalize_prompt_weights:bool = True, + save_individual_images: bool = True, save_grid: bool = True, group_by_prompt: bool = True, + save_as_jpg: bool = True, use_GFPGAN: bool = True, use_RealESRGAN: bool = True, + RealESRGAN_model: str = "RealESRGAN_x4plus_anime_6B", fp = None, variant_amount: float = None, + variant_seed: int = None, ddim_eta:float = 0.0, write_info_files:bool = True): + + outpath = defaults.general.outdir_txt2img or defaults.general.outdir or "outputs/txt2img-samples" + + seed = seed_to_int(seed) + + #prompt_matrix = 0 in toggles + #normalize_prompt_weights = 1 in toggles + #skip_save = 2 not in toggles + #save_grid = 3 not in toggles + #sort_samples = 4 in toggles + #write_info_files = 5 in toggles + #jpg_sample = 6 in toggles + #use_GFPGAN = 7 in toggles + #use_RealESRGAN = 8 in toggles + + if sampler_name == 'PLMS': + sampler = PLMSSampler(st.session_state["model"]) + elif sampler_name == 'DDIM': + sampler = DDIMSampler(st.session_state["model"]) + elif sampler_name == 'k_dpm_2_a': + sampler = KDiffusionSampler(st.session_state["model"],'dpm_2_ancestral') + elif sampler_name == 'k_dpm_2': + sampler = KDiffusionSampler(st.session_state["model"],'dpm_2') + elif sampler_name == 'k_euler_a': + sampler = KDiffusionSampler(st.session_state["model"],'euler_ancestral') + elif sampler_name == 'k_euler': + sampler = KDiffusionSampler(st.session_state["model"],'euler') + elif sampler_name == 'k_heun': + sampler = KDiffusionSampler(st.session_state["model"],'heun') + elif sampler_name == 'k_lms': + sampler = KDiffusionSampler(st.session_state["model"],'lms') + else: + raise Exception("Unknown sampler: " + sampler_name) + + def init(): + pass + + def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name): + samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=cfg_scale, + unconditional_conditioning=unconditional_conditioning, eta=ddim_eta, x_T=x, img_callback=generation_callback, + log_every_t=int(defaults.general.update_preview_frequency)) + + return samples_ddim + + #try: + output_images, seed, info, stats = process_images( + outpath=outpath, + func_init=init, + func_sample=sample, + prompt=prompt, + seed=seed, + sampler_name=sampler_name, + save_grid=save_grid, + batch_size=batch_size, + n_iter=n_iter, + steps=ddim_steps, + cfg_scale=cfg_scale, + width=width, + height=height, + prompt_matrix=separate_prompts, + use_GFPGAN=use_GFPGAN, + use_RealESRGAN=use_RealESRGAN, + realesrgan_model_name=realesrgan_model_name, + fp=fp, + ddim_eta=ddim_eta, + normalize_prompt_weights=normalize_prompt_weights, + save_individual_images=save_individual_images, + sort_samples=group_by_prompt, + write_info_files=write_info_files, + jpg_sample=save_as_jpg, + variant_amount=variant_amount, + variant_seed=variant_seed, + ) + + del sampler + + return output_images, seed, info, stats + + #except RuntimeError as e: + #err = e + #err_msg = f'CRASHED:


Please wait while the program restarts.' + #stats = err_msg + #return [], seed, 'err', stats + +def layout(): + with st.form("txt2img-inputs"): + st.session_state["generation_mode"] = "txt2img" + + input_col1, generate_col1 = st.columns([10,1]) + + with input_col1: + #prompt = st.text_area("Input Text","") + prompt = st.text_input("Input Text","", placeholder="A corgi wearing a top hat as an oil painting.") + + # Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way. + generate_col1.write("") + generate_col1.write("") + generate_button = generate_col1.form_submit_button("Generate") + + # creating the page layout using columns + col1, col2, col3 = st.columns([1,2,1], gap="large") + + with col1: + width = st.slider("Width:", min_value=64, max_value=1024, value=defaults.txt2img.width, step=64) + height = st.slider("Height:", min_value=64, max_value=1024, value=defaults.txt2img.height, step=64) + cfg_scale = st.slider("CFG (Classifier Free Guidance Scale):", min_value=1.0, max_value=30.0, value=defaults.txt2img.cfg_scale, step=0.5, help="How strongly the image should follow the prompt.") + seed = st.text_input("Seed:", value=defaults.txt2img.seed, help=" The seed to use, if left blank a random seed will be generated.") + batch_count = st.slider("Batch count.", min_value=1, max_value=100, value=defaults.txt2img.batch_count, step=1, help="How many iterations or batches of images to generate in total.") + #batch_size = st.slider("Batch size", min_value=1, max_value=250, value=defaults.txt2img.batch_size, step=1, + #help="How many images are at once in a batch.\ + #It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish generation as more images are generated at once.\ + #Default: 1") + + with st.expander("Preview Settings"): + st.session_state["update_preview"] = st.checkbox("Update Image Preview", value=defaults.txt2img.update_preview, + help="If enabled the image preview will be updated during the generation instead of at the end. \ + You can use the Update Preview \Frequency option bellow to customize how frequent it's updated. \ + By default this is enabled and the frequency is set to 1 step.") + + st.session_state["update_preview_frequency"] = st.text_input("Update Image Preview Frequency", value=defaults.txt2img.update_preview_frequency, + help="Frequency in steps at which the the preview image is updated. By default the frequency \ + is set to 1 step.") + + with col2: + preview_tab, gallery_tab = st.tabs(["Preview", "Gallery"]) + + with preview_tab: + #st.write("Image") + #Image for testing + #image = Image.open(requests.get("https://icon-library.com/images/image-placeholder-icon/image-placeholder-icon-13.jpg", stream=True).raw).convert('RGB') + #new_image = image.resize((175, 240)) + #preview_image = st.image(image) + + # create an empty container for the image, progress bar, etc so we can update it later and use session_state to hold them globally. + st.session_state["preview_image"] = st.empty() + + st.session_state["loading"] = st.empty() + + st.session_state["progress_bar_text"] = st.empty() + st.session_state["progress_bar"] = st.empty() + + message = st.empty() + + with col3: + st.session_state.sampling_steps = st.slider("Sampling Steps", value=defaults.txt2img.sampling_steps, min_value=1, max_value=250) + + sampler_name_list = ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"] + sampler_name = st.selectbox("Sampling method", sampler_name_list, + index=sampler_name_list.index(defaults.txt2img.default_sampler), help="Sampling method to use. Default: k_euler") + + + + #basic_tab, advanced_tab = st.tabs(["Basic", "Advanced"]) + + #with basic_tab: + #summit_on_enter = st.radio("Submit on enter?", ("Yes", "No"), horizontal=True, + #help="Press the Enter key to summit, when 'No' is selected you can use the Enter key to write multiple lines.") + + with st.expander("Advanced"): + separate_prompts = st.checkbox("Create Prompt Matrix.", value=False, help="Separate multiple prompts using the `|` character, and get all combinations of them.") + normalize_prompt_weights = st.checkbox("Normalize Prompt Weights.", value=True, help="Ensure the sum of all weights add up to 1.0") + save_individual_images = st.checkbox("Save individual images.", value=True, help="Save each image generated before any filter or enhancement is applied.") + save_grid = st.checkbox("Save grid",value=True, help="Save a grid with all the images generated into a single image.") + group_by_prompt = st.checkbox("Group results by prompt", value=True, + help="Saves all the images with the same prompt into the same folder. When using a prompt matrix each prompt combination will have its own folder.") + write_info_files = st.checkbox("Write Info file", value=True, help="Save a file next to the image with informartion about the generation.") + save_as_jpg = st.checkbox("Save samples as jpg", value=False, help="Saves the images as jpg instead of png.") + + if GFPGAN_available: + use_GFPGAN = st.checkbox("Use GFPGAN", value=defaults.txt2img.use_GFPGAN, help="Uses the GFPGAN model to improve faces after the generation. This greatly improve the quality and consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.") + else: + use_GFPGAN = False + + if RealESRGAN_available: + use_RealESRGAN = st.checkbox("Use RealESRGAN", value=defaults.txt2img.use_RealESRGAN, help="Uses the RealESRGAN model to upscale the images after the generation. This greatly improve the quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.") + RealESRGAN_model = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0) + else: + use_RealESRGAN = False + RealESRGAN_model = "RealESRGAN_x4plus" + + variant_amount = st.slider("Variant Amount:", value=defaults.txt2img.variant_amount, min_value=0.0, max_value=1.0, step=0.01) + variant_seed = st.text_input("Variant Seed:", value=defaults.txt2img.seed, help="The seed to use when generating a variant, if left blank a random seed will be generated.") + galleryCont = st.empty() + + if generate_button: + #print("Loading models") + # load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry. + load_models(False, use_GFPGAN, use_RealESRGAN, RealESRGAN_model) + + try: + output_images, seeds, info, stats = txt2img(prompt, st.session_state.sampling_steps, sampler_name, RealESRGAN_model, batch_count, 1, + cfg_scale, seed, height, width, separate_prompts, normalize_prompt_weights, save_individual_images, + save_grid, group_by_prompt, save_as_jpg, use_GFPGAN, use_RealESRGAN, RealESRGAN_model, fp=defaults.general.fp, + variant_amount=variant_amount, variant_seed=variant_seed, write_info_files=write_info_files) + + message.success('Done!', icon="✅") + history_tab,col1,col2,col3,PlaceHolder,col1_cont,col2_cont,col3_cont = st.session_state['historyTab'] + + if 'latestImages' in st.session_state: + for i in output_images: + #push the new image to the list of latest images and remove the oldest one + #remove the last index from the list\ + st.session_state['latestImages'].pop() + #add the new image to the start of the list + st.session_state['latestImages'].insert(0, i) + PlaceHolder.empty() + with PlaceHolder.container(): + col1, col2, col3 = st.columns(3) + col1_cont = st.container() + col2_cont = st.container() + col3_cont = st.container() + with col1_cont: + with col1: + st.image(st.session_state['latestImages'][0]) + st.image(st.session_state['latestImages'][3]) + st.image(st.session_state['latestImages'][6]) + with col2_cont: + with col2: + st.image(st.session_state['latestImages'][1]) + st.image(st.session_state['latestImages'][4]) + st.image(st.session_state['latestImages'][7]) + with col3_cont: + with col3: + st.image(st.session_state['latestImages'][2]) + st.image(st.session_state['latestImages'][5]) + st.image(st.session_state['latestImages'][8]) + historyGallery = st.empty() + + # check if output_images length is the same as seeds length + with gallery_tab: + st.markdown(createHTMLGallery(output_images,seeds), unsafe_allow_html=True) + + + st.session_state['historyTab'] = [history_tab,col1,col2,col3,PlaceHolder,col1_cont,col2_cont,col3_cont] + except (StopException, KeyError): + print(f"Received Streamlit StopException") + + # this will render all the images at the end of the generation but its better if its moved to a second tab inside col2 and shown as a gallery. + # use the current col2 first tab to show the preview_img and update it as its generated. + #preview_image.image(output_images) + +#on import run init +def createHTMLGallery(images,info): + html3 = """ + ' + return html3 \ No newline at end of file diff --git a/scripts/txt2vid.py b/scripts/txt2vid.py new file mode 100644 index 0000000..ba37cf2 --- /dev/null +++ b/scripts/txt2vid.py @@ -0,0 +1,678 @@ +from webui_streamlit import st +from sd_utils import * + +from streamlit import StopException + +import os +from PIL import Image +import torch +import numpy as np +import time +import torch +from torch import autocast +from io import BytesIO +# we use python-slugify to make the filenames safe for windows and linux, its better than doing it manually +# install it with 'pip install python-slugify' +from slugify import slugify +from streamlit.runtime.in_memory_file_manager import in_memory_file_manager +from streamlit.elements import image as STImage + +try: + # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. + from transformers import logging + + logging.set_verbosity_error() +except: + pass + +class plugin_info(): + plugname = "txt2img" + description = "Text to Image" + isTab = True + displayPriority = 1 + + +if os.path.exists(os.path.join(defaults.general.GFPGAN_dir, "experiments", "pretrained_models", "GFPGANv1.3.pth")): + GFPGAN_available = True +else: + GFPGAN_available = False + +if os.path.exists(os.path.join(defaults.general.RealESRGAN_dir, "experiments","pretrained_models", f"{defaults.general.RealESRGAN_model}.pth")): + RealESRGAN_available = True +else: + RealESRGAN_available = False + +# +# ----------------------------------------------------------------------------- + +@torch.no_grad() +def diffuse( + pipe, + cond_embeddings, # text conditioning, should be (1, 77, 768) + cond_latents, # image conditioning, should be (1, 4, 64, 64) + num_inference_steps, + cfg_scale, + eta, + ): + + torch_device = cond_latents.get_device() + + # classifier guidance: add the unconditional embedding + max_length = cond_embeddings.shape[1] # 77 + uncond_input = pipe.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt") + uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(torch_device))[0] + text_embeddings = torch.cat([uncond_embeddings, cond_embeddings]) + + # if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas + if isinstance(pipe.scheduler, LMSDiscreteScheduler): + cond_latents = cond_latents * pipe.scheduler.sigmas[0] + + # init the scheduler + accepts_offset = "offset" in set(inspect.signature(pipe.scheduler.set_timesteps).parameters.keys()) + extra_set_kwargs = {} + if accepts_offset: + extra_set_kwargs["offset"] = 1 + + pipe.scheduler.set_timesteps(num_inference_steps + st.session_state.sampling_steps, **extra_set_kwargs) + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + accepts_eta = "eta" in set(inspect.signature(pipe.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + + step_counter = 0 + inference_counter = 0 + current_chunk_speed = 0 + previous_chunk_speed = 0 + + # diffuse! + for i, t in enumerate(pipe.scheduler.timesteps): + start = timeit.default_timer() + + #status_text.text(f"Running step: {step_counter}{total_number_steps} {percent} | {duration:.2f}{speed}") + + # expand the latents for classifier free guidance + latent_model_input = torch.cat([cond_latents] * 2) + if isinstance(pipe.scheduler, LMSDiscreteScheduler): + sigma = pipe.scheduler.sigmas[i] + latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5) + + # predict the noise residual + noise_pred = pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] + + # cfg + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + cfg_scale * (noise_pred_text - noise_pred_uncond) + + # compute the previous noisy sample x_t -> x_t-1 + if isinstance(pipe.scheduler, LMSDiscreteScheduler): + cond_latents = pipe.scheduler.step(noise_pred, i, cond_latents, **extra_step_kwargs)["prev_sample"] + else: + cond_latents = pipe.scheduler.step(noise_pred, t, cond_latents, **extra_step_kwargs)["prev_sample"] + + #print (st.session_state["update_preview_frequency"]) + #update the preview image if it is enabled and the frequency matches the step_counter + if defaults.general.update_preview: + step_counter += 1 + + if st.session_state.dynamic_preview_frequency: + current_chunk_speed, previous_chunk_speed, defaults.general.update_preview_frequency = optimize_update_preview_frequency( + current_chunk_speed, previous_chunk_speed, defaults.general.update_preview_frequency) + + if defaults.general.update_preview_frequency == step_counter or step_counter == st.session_state.sampling_steps: + #scale and decode the image latents with vae + cond_latents_2 = 1 / 0.18215 * cond_latents + image_2 = pipe.vae.decode(cond_latents_2) + + # generate output numpy image as uint8 + image_2 = (image_2 / 2 + 0.5).clamp(0, 1) + image_2 = image_2.cpu().permute(0, 2, 3, 1).numpy() + image_2 = (image_2[0] * 255).astype(np.uint8) + + st.session_state["preview_image"].image(image_2) + + step_counter = 0 + + duration = timeit.default_timer() - start + + current_chunk_speed = duration + + if duration >= 1: + speed = "s/it" + else: + speed = "it/s" + duration = 1 / duration + + if i > st.session_state.sampling_steps: + inference_counter += 1 + inference_percent = int(100 * float(inference_counter if inference_counter < num_inference_steps else num_inference_steps)/float(num_inference_steps)) + inference_progress = f"{inference_counter if inference_counter < num_inference_steps else num_inference_steps}/{num_inference_steps} {inference_percent}% " + else: + inference_progress = "" + + percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps)) + frames_percent = int(100 * float(st.session_state.current_frame if st.session_state.current_frame < st.session_state.max_frames else st.session_state.max_frames)/float(st.session_state.max_frames)) + + st.session_state["progress_bar_text"].text( + f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps} " + f"{percent if percent < 100 else 100}% {inference_progress}{duration:.2f}{speed} | " + f"Frame: {st.session_state.current_frame if st.session_state.current_frame < st.session_state.max_frames else st.session_state.max_frames}/{st.session_state.max_frames} " + f"{frames_percent if frames_percent < 100 else 100}% {st.session_state.frame_duration:.2f}{st.session_state.frame_speed}" + ) + st.session_state["progress_bar"].progress(percent if percent < 100 else 100) + + # scale and decode the image latents with vae + cond_latents = 1 / 0.18215 * cond_latents + image = pipe.vae.decode(cond_latents) + + # generate output numpy image as uint8 + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).numpy() + image = (image[0] * 255).astype(np.uint8) + + return image + +# +def txt2vid( + # -------------------------------------- + # args you probably want to change + prompts = ["blueberry spaghetti", "strawberry spaghetti"], # prompt to dream about + gpu:int = defaults.general.gpu, # id of the gpu to run on + #name:str = 'test', # name of this project, for the output directory + #rootdir:str = defaults.general.outdir, + num_steps:int = 200, # number of steps between each pair of sampled points + max_frames:int = 10000, # number of frames to write and then exit the script + num_inference_steps:int = 50, # more (e.g. 100, 200 etc) can create slightly better images + cfg_scale:float = 5.0, # can depend on the prompt. usually somewhere between 3-10 is good + do_loop = False, + use_lerp_for_text = False, + seeds = None, + quality:int = 100, # for jpeg compression of the output images + eta:float = 0.0, + width:int = 256, + height:int = 256, + weights_path = "CompVis/stable-diffusion-v1-4", + scheduler="klms", # choices: default, ddim, klms + disable_tqdm = False, + #----------------------------------------------- + beta_start = 0.0001, + beta_end = 0.00012, + beta_schedule = "scaled_linear" + ): + """ + prompt = ["blueberry spaghetti", "strawberry spaghetti"], # prompt to dream about + gpu:int = defaults.general.gpu, # id of the gpu to run on + #name:str = 'test', # name of this project, for the output directory + #rootdir:str = defaults.general.outdir, + num_steps:int = 200, # number of steps between each pair of sampled points + max_frames:int = 10000, # number of frames to write and then exit the script + num_inference_steps:int = 50, # more (e.g. 100, 200 etc) can create slightly better images + cfg_scale:float = 5.0, # can depend on the prompt. usually somewhere between 3-10 is good + do_loop = False, + use_lerp_for_text = False, + seed = None, + quality:int = 100, # for jpeg compression of the output images + eta:float = 0.0, + width:int = 256, + height:int = 256, + weights_path = "CompVis/stable-diffusion-v1-4", + scheduler="klms", # choices: default, ddim, klms + disable_tqdm = False, + beta_start = 0.0001, + beta_end = 0.00012, + beta_schedule = "scaled_linear" + """ + mem_mon = MemUsageMonitor('MemMon') + mem_mon.start() + + + seeds = seed_to_int(seeds) + + # We add an extra frame because most + # of the time the first frame is just the noise. + max_frames +=1 + + assert torch.cuda.is_available() + assert height % 8 == 0 and width % 8 == 0 + torch.manual_seed(seeds) + torch_device = f"cuda:{gpu}" + + # init the output dir + sanitized_prompt = slugify(prompts) + + full_path = os.path.join(os.getcwd(), defaults.general.outdir, "txt2vid-samples", "samples", sanitized_prompt) + + if len(full_path) > 220: + sanitized_prompt = sanitized_prompt[:220-len(full_path)] + full_path = os.path.join(os.getcwd(), defaults.general.outdir, "txt2vid-samples", "samples", sanitized_prompt) + + os.makedirs(full_path, exist_ok=True) + + # Write prompt info to file in output dir so we can keep track of what we did + if st.session_state.write_info_files: + with open(os.path.join(full_path , f'{slugify(str(seeds))}_config.json' if len(prompts) > 1 else "prompts_config.json"), "w") as outfile: + outfile.write(json.dumps( + dict( + prompts = prompts, + gpu = gpu, + num_steps = num_steps, + max_frames = max_frames, + num_inference_steps = num_inference_steps, + cfg_scale = cfg_scale, + do_loop = do_loop, + use_lerp_for_text = use_lerp_for_text, + seeds = seeds, + quality = quality, + eta = eta, + width = width, + height = height, + weights_path = weights_path, + scheduler=scheduler, + disable_tqdm = disable_tqdm, + beta_start = beta_start, + beta_end = beta_end, + beta_schedule = beta_schedule + ), + indent=2, + sort_keys=False, + )) + + #print(scheduler) + default_scheduler = PNDMScheduler( + beta_start=beta_start, beta_end=beta_end, beta_schedule=beta_schedule + ) + # ------------------------------------------------------------------------------ + #Schedulers + ddim_scheduler = DDIMScheduler( + beta_start=beta_start, + beta_end=beta_end, + beta_schedule=beta_schedule, + clip_sample=False, + set_alpha_to_one=False, + ) + + klms_scheduler = LMSDiscreteScheduler( + beta_start=beta_start, beta_end=beta_end, beta_schedule=beta_schedule + ) + + SCHEDULERS = dict(default=default_scheduler, ddim=ddim_scheduler, klms=klms_scheduler) + + # ------------------------------------------------------------------------------ + + #if weights_path == "Stable Diffusion v1.4": + #weights_path = "CompVis/stable-diffusion-v1-4" + #else: + #weights_path = os.path.join("./models", "custom", f"{weights_path}.ckpt") + + try: + if "model" in st.session_state: + del st.session_state["model"] + except: + pass + + #print (st.session_state["weights_path"] != weights_path) + + try: + if not st.session_state["pipe"] or st.session_state["weights_path"] != weights_path: + if st.session_state["weights_path"] != weights_path: + del st.session_state["weights_path"] + + st.session_state["weights_path"] = weights_path + st.session_state["pipe"] = StableDiffusionPipeline.from_pretrained( + weights_path, + use_local_file=True, + use_auth_token=True, + #torch_dtype=torch.float16 if not defaults.general.no_half else None, + revision="fp16" if not defaults.general.no_half else None + ) + + st.session_state["pipe"].unet.to(torch_device) + st.session_state["pipe"].vae.to(torch_device) + st.session_state["pipe"].text_encoder.to(torch_device) + print("Tx2Vid Model Loaded") + else: + print("Tx2Vid Model already Loaded") + + except: + #del st.session_state["weights_path"] + #del st.session_state["pipe"] + + st.session_state["weights_path"] = weights_path + st.session_state["pipe"] = StableDiffusionPipeline.from_pretrained( + weights_path, + use_local_file=True, + use_auth_token=True, + #torch_dtype=torch.float16 if not defaults.general.no_half else None, + revision="fp16" if not defaults.general.no_half else None + ) + + st.session_state["pipe"].unet.to(torch_device) + st.session_state["pipe"].vae.to(torch_device) + st.session_state["pipe"].text_encoder.to(torch_device) + print("Tx2Vid Model Loaded") + + st.session_state["pipe"].scheduler = SCHEDULERS[scheduler] + + # get the conditional text embeddings based on the prompt + text_input = st.session_state["pipe"].tokenizer(prompts, padding="max_length", max_length=st.session_state["pipe"].tokenizer.model_max_length, truncation=True, return_tensors="pt") + cond_embeddings = st.session_state["pipe"].text_encoder(text_input.input_ids.to(torch_device))[0] # shape [1, 77, 768] + + # sample a source + init1 = torch.randn((1, st.session_state["pipe"].unet.in_channels, height // 8, width // 8), device=torch_device) + + if do_loop: + prompts = [prompts, prompts] + seeds = [seeds, seeds] + #first_seed, *seeds = seeds + #prompts.append(prompts) + #seeds.append(first_seed) + + + # iterate the loop + frames = [] + frame_index = 0 + + st.session_state["frame_total_duration"] = 0 + st.session_state["frame_total_speed"] = 0 + + try: + while frame_index < max_frames: + st.session_state["frame_duration"] = 0 + st.session_state["frame_speed"] = 0 + st.session_state["current_frame"] = frame_index + + # sample the destination + init2 = torch.randn((1, st.session_state["pipe"].unet.in_channels, height // 8, width // 8), device=torch_device) + + for i, t in enumerate(np.linspace(0, 1, num_steps)): + start = timeit.default_timer() + print(f"COUNT: {frame_index+1}/{num_steps}") + + #if use_lerp_for_text: + #init = torch.lerp(init1, init2, float(t)) + #else: + #init = slerp(gpu, float(t), init1, init2) + + init = slerp(gpu, float(t), init1, init2) + + with autocast("cuda"): + image = diffuse(st.session_state["pipe"], cond_embeddings, init, num_inference_steps, cfg_scale, eta) + + im = Image.fromarray(image) + outpath = os.path.join(full_path, 'frame%06d.png' % frame_index) + im.save(outpath, quality=quality) + + # send the image to the UI to update it + #st.session_state["preview_image"].image(im) + + #append the frames to the frames list so we can use them later. + frames.append(np.asarray(im)) + + #increase frame_index counter. + frame_index += 1 + + st.session_state["current_frame"] = frame_index + + duration = timeit.default_timer() - start + + if duration >= 1: + speed = "s/it" + else: + speed = "it/s" + duration = 1 / duration + + st.session_state["frame_duration"] = duration + st.session_state["frame_speed"] = speed + + init1 = init2 + + except StopException: + pass + + + if st.session_state['save_video']: + # write video to memory + #output = io.BytesIO() + #writer = imageio.get_writer(os.path.join(os.getcwd(), defaults.general.outdir, "txt2vid-samples"), im, extension=".mp4", fps=30) + try: + video_path = os.path.join(os.getcwd(), defaults.general.outdir, "txt2vid-samples","temp.mp4") + writer = imageio.get_writer(video_path, fps=24) + for frame in frames: + writer.append_data(frame) + writer.close() + except: + print("Can't save video, skipping.") + + # show video preview on the UI + st.session_state["preview_video"].video(open(video_path, 'rb').read()) + + mem_max_used, mem_total = mem_mon.read_and_stop() + time_diff = time.time()- start + + info = f""" + {prompts} + Sampling Steps: {num_steps}, Sampler: {scheduler}, CFG scale: {cfg_scale}, Seed: {seeds}, Max Frames: {max_frames}""".strip() + stats = f''' + Took { round(time_diff, 2) }s total ({ round(time_diff/(max_frames),2) }s per image) + Peak memory usage: { -(mem_max_used // -1_048_576) } MiB / { -(mem_total // -1_048_576) } MiB / { round(mem_max_used/mem_total*100, 3) }%''' + + return im, seeds, info, stats + +# +def layout(): + with st.form("txt2vid-inputs"): + st.session_state["generation_mode"] = "txt2vid" + + input_col1, generate_col1 = st.columns([10,1]) + with input_col1: + #prompt = st.text_area("Input Text","") + prompt = st.text_input("Input Text","", placeholder="A corgi wearing a top hat as an oil painting.") + + # Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way. + generate_col1.write("") + generate_col1.write("") + generate_button = generate_col1.form_submit_button("Generate") + + # creating the page layout using columns + col1, col2, col3 = st.columns([1,2,1], gap="large") + + with col1: + width = st.slider("Width:", min_value=64, max_value=2048, value=defaults.txt2vid.width, step=64) + height = st.slider("Height:", min_value=64, max_value=2048, value=defaults.txt2vid.height, step=64) + cfg_scale = st.slider("CFG (Classifier Free Guidance Scale):", min_value=1.0, max_value=30.0, value=defaults.txt2vid.cfg_scale, step=0.5, help="How strongly the image should follow the prompt.") + seed = st.text_input("Seed:", value=defaults.txt2vid.seed, help=" The seed to use, if left blank a random seed will be generated.") + #batch_count = st.slider("Batch count.", min_value=1, max_value=100, value=defaults.txt2vid.batch_count, step=1, help="How many iterations or batches of images to generate in total.") + #batch_size = st.slider("Batch size", min_value=1, max_value=250, value=defaults.txt2vid.batch_size, step=1, + #help="How many images are at once in a batch.\ + #It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish generation as more images are generated at once.\ + #Default: 1") + + st.session_state["max_frames"] = int(st.text_input("Max Frames:", value=defaults.txt2vid.max_frames, help="Specify the max number of frames you want to generate.")) + + with st.expander("Preview Settings"): + st.session_state["update_preview"] = st.checkbox("Update Image Preview", value=defaults.txt2vid.update_preview, + help="If enabled the image preview will be updated during the generation instead of at the end. \ + You can use the Update Preview \Frequency option bellow to customize how frequent it's updated. \ + By default this is enabled and the frequency is set to 1 step.") + + st.session_state["update_preview_frequency"] = st.text_input("Update Image Preview Frequency", value=defaults.txt2vid.update_preview_frequency, + help="Frequency in steps at which the the preview image is updated. By default the frequency \ + is set to 1 step.") + with col2: + preview_tab, gallery_tab = st.tabs(["Preview", "Gallery"]) + + with preview_tab: + #st.write("Image") + #Image for testing + #image = Image.open(requests.get("https://icon-library.com/images/image-placeholder-icon/image-placeholder-icon-13.jpg", stream=True).raw).convert('RGB') + #new_image = image.resize((175, 240)) + #preview_image = st.image(image) + + # create an empty container for the image, progress bar, etc so we can update it later and use session_state to hold them globally. + st.session_state["preview_image"] = st.empty() + + st.session_state["loading"] = st.empty() + + st.session_state["progress_bar_text"] = st.empty() + st.session_state["progress_bar"] = st.empty() + + #generate_video = st.empty() + st.session_state["preview_video"] = st.empty() + + message = st.empty() + + with gallery_tab: + st.write('Here should be the image gallery, if I could make a grid in streamlit.') + + with col3: + # If we have custom models available on the "models/custom" + #folder then we show a menu to select which model we want to use, otherwise we use the main model for SD + #if CustomModel_available: + custom_model = st.selectbox("Custom Model:", defaults.txt2vid.custom_models_list, + index=defaults.txt2vid.custom_models_list.index(defaults.txt2vid.default_model), + help="Select the model you want to use. This option is only available if you have custom models \ + on your 'models/custom' folder. The model name that will be shown here is the same as the name\ + the file for the model has on said folder, it is recommended to give the .ckpt file a name that \ + will make it easier for you to distinguish it from other models. Default: Stable Diffusion v1.4") + + #st.session_state["weights_path"] = custom_model + #else: + #custom_model = "CompVis/stable-diffusion-v1-4" + #st.session_state["weights_path"] = f"CompVis/{slugify(custom_model.lower())}" + + st.session_state.sampling_steps = st.slider("Sampling Steps", value=defaults.txt2vid.sampling_steps, min_value=10, step=10, max_value=500, + help="Number of steps between each pair of sampled points") + st.session_state.num_inference_steps = st.slider("Inference Steps:", value=defaults.txt2vid.num_inference_steps, min_value=10,step=10, max_value=500, + help="Higher values (e.g. 100, 200 etc) can create better images.") + + #sampler_name_list = ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"] + #sampler_name = st.selectbox("Sampling method", sampler_name_list, + #index=sampler_name_list.index(defaults.txt2vid.default_sampler), help="Sampling method to use. Default: k_euler") + scheduler_name_list = ["klms", "ddim"] + scheduler_name = st.selectbox("Scheduler:", scheduler_name_list, + index=scheduler_name_list.index(defaults.txt2vid.scheduler_name), help="Scheduler to use. Default: klms") + + beta_scheduler_type_list = ["scaled_linear", "linear"] + beta_scheduler_type = st.selectbox("Beta Schedule Type:", beta_scheduler_type_list, + index=beta_scheduler_type_list.index(defaults.txt2vid.beta_scheduler_type), help="Schedule Type to use. Default: linear") + + + #basic_tab, advanced_tab = st.tabs(["Basic", "Advanced"]) + + #with basic_tab: + #summit_on_enter = st.radio("Submit on enter?", ("Yes", "No"), horizontal=True, + #help="Press the Enter key to summit, when 'No' is selected you can use the Enter key to write multiple lines.") + + with st.expander("Advanced"): + st.session_state["separate_prompts"] = st.checkbox("Create Prompt Matrix.", value=defaults.txt2vid.separate_prompts, + help="Separate multiple prompts using the `|` character, and get all combinations of them.") + st.session_state["normalize_prompt_weights"] = st.checkbox("Normalize Prompt Weights.", + value=defaults.txt2vid.normalize_prompt_weights, help="Ensure the sum of all weights add up to 1.0") + st.session_state["save_individual_images"] = st.checkbox("Save individual images.", + value=defaults.txt2vid.save_individual_images, help="Save each image generated before any filter or enhancement is applied.") + st.session_state["save_video"] = st.checkbox("Save video",value=defaults.txt2vid.save_video, help="Save a video with all the images generated as frames at the end of the generation.") + st.session_state["group_by_prompt"] = st.checkbox("Group results by prompt", value=defaults.txt2vid.group_by_prompt, + help="Saves all the images with the same prompt into the same folder. When using a prompt matrix each prompt combination will have its own folder.") + st.session_state["write_info_files"] = st.checkbox("Write Info file", value=defaults.txt2vid.write_info_files, + help="Save a file next to the image with informartion about the generation.") + st.session_state["dynamic_preview_frequency"] = st.checkbox("Dynamic Preview Frequency", value=defaults.txt2vid.dynamic_preview_frequency, + help="This option tries to find the best value at which we can update \ + the preview image during generation while minimizing the impact it has in performance. Default: True") + st.session_state["do_loop"] = st.checkbox("Do Loop", value=defaults.txt2vid.do_loop, + help="Do loop") + st.session_state["save_as_jpg"] = st.checkbox("Save samples as jpg", value=defaults.txt2vid.save_as_jpg, help="Saves the images as jpg instead of png.") + + if GFPGAN_available: + st.session_state["use_GFPGAN"] = st.checkbox("Use GFPGAN", value=defaults.txt2vid.use_GFPGAN, help="Uses the GFPGAN model to improve faces after the generation. This greatly improve the quality and consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.") + else: + st.session_state["use_GFPGAN"] = False + + if RealESRGAN_available: + st.session_state["use_RealESRGAN"] = st.checkbox("Use RealESRGAN", value=defaults.txt2vid.use_RealESRGAN, + help="Uses the RealESRGAN model to upscale the images after the generation. This greatly improve the quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.") + st.session_state["RealESRGAN_model"] = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0) + else: + st.session_state["use_RealESRGAN"] = False + st.session_state["RealESRGAN_model"] = "RealESRGAN_x4plus" + + st.session_state["variant_amount"] = st.slider("Variant Amount:", value=defaults.txt2vid.variant_amount, min_value=0.0, max_value=1.0, step=0.01) + st.session_state["variant_seed"] = st.text_input("Variant Seed:", value=defaults.txt2vid.seed, help="The seed to use when generating a variant, if left blank a random seed will be generated.") + st.session_state["beta_start"] = st.slider("Beta Start:", value=defaults.txt2vid.beta_start, min_value=0.0001, max_value=0.03, step=0.0001, format="%.4f") + st.session_state["beta_end"] = st.slider("Beta End:", value=defaults.txt2vid.beta_end, min_value=0.0001, max_value=0.03, step=0.0001, format="%.4f") + + if generate_button: + #print("Loading models") + # load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry. + #load_models(False, False, False, RealESRGAN_model, CustomModel_available=CustomModel_available, custom_model=custom_model) + + # run video generation + image, seed, info, stats = txt2vid(prompts=prompt, gpu=defaults.general.gpu, + num_steps=st.session_state.sampling_steps, max_frames=int(st.session_state.max_frames), + num_inference_steps=st.session_state.num_inference_steps, + cfg_scale=cfg_scale,do_loop=st.session_state["do_loop"], + seeds=seed, quality=100, eta=0.0, width=width, + height=height, weights_path=custom_model, scheduler=scheduler_name, + disable_tqdm=False, beta_start=st.session_state["beta_start"], beta_end=st.session_state["beta_end"], + beta_schedule=beta_scheduler_type) + + #message.success('Done!', icon="✅") + message.success('Render Complete: ' + info + '; Stats: ' + stats, icon="✅") + + #except (StopException, KeyError): + #print(f"Received Streamlit StopException") + + # this will render all the images at the end of the generation but its better if its moved to a second tab inside col2 and shown as a gallery. + # use the current col2 first tab to show the preview_img and update it as its generated. + #preview_image.image(output_images) + + +#on import run init +def createHTMLGallery(images,info): + html3 = """ + ' + return html3 \ No newline at end of file diff --git a/scripts/webui_streamlit.py b/scripts/webui_streamlit.py index 6d19d21..c5439d1 100644 --- a/scripts/webui_streamlit.py +++ b/scripts/webui_streamlit.py @@ -1,64 +1,14 @@ -from pprint import pprint -import warnings - -import piexif -import piexif.helper -import json - import streamlit as st -from streamlit import StopException, StreamlitAPIException + +import warnings +import os +import k_diffusion as K + +from sd_utils import * #streamlit components section from st_on_hover_tabs import on_hover_tabs -import base64, cv2 -import argparse, os, sys, glob, re, random, datetime, timeit -from PIL import Image, ImageFont, ImageDraw, ImageFilter, ImageOps -from PIL.PngImagePlugin import PngInfo -import requests -from scipy import integrate -import pandas as pd -import torch -from torchdiffeq import odeint -from tqdm.auto import trange, tqdm -import k_diffusion as K -import math -import mimetypes -import numpy as np -import pynvml -import threading, asyncio -import time, inspect -import torch -from torch import autocast -from torchvision import transforms -import torch.nn as nn -import yaml -from typing import List, Union, Optional -from pathlib import Path -#from tqdm import tqdm -from tqdm.auto import tqdm -from contextlib import contextmanager, nullcontext -from einops import rearrange, repeat -from itertools import islice -from omegaconf import OmegaConf -from io import BytesIO, StringIO -from ldm.models.diffusion.ddim import DDIMSampler -from ldm.models.diffusion.plms import PLMSSampler -from ldm.util import instantiate_from_config -from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, \ - extract_into_tensor -from retry import retry - -# these are for testing txt2vid, should be removed and we should use things from our own code. -from diffusers import StableDiffusionPipeline -from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler - -#will be used for saving and reading a video made by the txt2vid function -import imageio, io - -# we use python-slugify to make the filenames safe for windows and linux, its better than doing it manually -# install it with 'pip install python-slugify' -from slugify import slugify try: # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. @@ -71,2031 +21,18 @@ except: # remove some annoying deprecation warnings that show every now and then. warnings.filterwarnings("ignore", category=DeprecationWarning) -defaults = OmegaConf.load("configs/webui/webui_streamlit.yaml") -if (os.path.exists("configs/webui/userconfig_streamlit.yaml")): - user_defaults = OmegaConf.load("configs/webui/userconfig_streamlit.yaml"); - defaults = OmegaConf.merge(defaults, user_defaults) - -# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI -mimetypes.init() -mimetypes.add_type('application/javascript', '.js') - -# some of those options should not be changed at all because they would break the model, so I removed them from options. -opt_C = 4 -opt_f = 8 - -# should and will be moved to a settings menu in the UI at some point -grid_format = [s.lower() for s in defaults.general.grid_format.split(':')] -grid_lossless = False -grid_quality = 100 -if grid_format[0] == 'png': - grid_ext = 'png' - grid_format = 'png' -elif grid_format[0] in ['jpg', 'jpeg']: - grid_quality = int(grid_format[1]) if len(grid_format) > 1 else 100 - grid_ext = 'jpg' - grid_format = 'jpeg' -elif grid_format[0] == 'webp': - grid_quality = int(grid_format[1]) if len(grid_format) > 1 else 100 - grid_ext = 'webp' - grid_format = 'webp' - if grid_quality < 0: # e.g. webp:-100 for lossless mode - grid_lossless = True - grid_quality = abs(grid_quality) - -# should and will be moved to a settings menu in the UI at some point -save_format = [s.lower() for s in defaults.general.save_format.split(':')] -save_lossless = False -save_quality = 100 -if save_format[0] == 'png': - save_ext = 'png' - save_format = 'png' -elif save_format[0] in ['jpg', 'jpeg']: - save_quality = int(save_format[1]) if len(save_format) > 1 else 100 - save_ext = 'jpg' - save_format = 'jpeg' -elif save_format[0] == 'webp': - save_quality = int(save_format[1]) if len(save_format) > 1 else 100 - save_ext = 'webp' - save_format = 'webp' - if save_quality < 0: # e.g. webp:-100 for lossless mode - save_lossless = True - save_quality = abs(save_quality) - # this should force GFPGAN and RealESRGAN onto the selected gpu as well os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"] = str(defaults.general.gpu) -@retry(tries=5) -def load_models(continue_prev_run = False, use_GFPGAN=False, use_RealESRGAN=False, RealESRGAN_model="RealESRGAN_x4plus", - CustomModel_available=False, custom_model="Stable Diffusion v1.4"): - """Load the different models. We also reuse the models that are already in memory to speed things up instead of loading them again. """ - - print ("Loading models.") - - st.session_state["progress_bar_text"].text("Loading models...") - - # Generate random run ID - # Used to link runs linked w/ continue_prev_run which is not yet implemented - # Use URL and filesystem safe version just in case. - st.session_state["run_id"] = base64.urlsafe_b64encode( - os.urandom(6) - ).decode("ascii") - - # check what models we want to use and if the they are already loaded. - - if use_GFPGAN: - if "GFPGAN" in st.session_state: - print("GFPGAN already loaded") - else: - # Load GFPGAN - if os.path.exists(defaults.general.GFPGAN_dir): - try: - st.session_state["GFPGAN"] = load_GFPGAN() - print("Loaded GFPGAN") - except Exception: - import traceback - print("Error loading GFPGAN:", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) - else: - if "GFPGAN" in st.session_state: - del st.session_state["GFPGAN"] - - if use_RealESRGAN: - if "RealESRGAN" in st.session_state and st.session_state["RealESRGAN"].model.name == RealESRGAN_model: - print("RealESRGAN already loaded") - else: - #Load RealESRGAN - try: - # We first remove the variable in case it has something there, - # some errors can load the model incorrectly and leave things in memory. - del st.session_state["RealESRGAN"] - except KeyError: - pass - - if os.path.exists(defaults.general.RealESRGAN_dir): - # st.session_state is used for keeping the models in memory across multiple pages or runs. - st.session_state["RealESRGAN"] = load_RealESRGAN(RealESRGAN_model) - print("Loaded RealESRGAN with model "+ st.session_state["RealESRGAN"].model.name) - - else: - if "RealESRGAN" in st.session_state: - del st.session_state["RealESRGAN"] - - - - if "model" in st.session_state: - if "model" in st.session_state and st.session_state["custom_model"] == custom_model: - print("Model already loaded") - else: - try: - del st.session_state["model"] - except KeyError: - pass - - config = OmegaConf.load(defaults.general.default_model_config) - - if custom_model == defaults.general.default_model: - model = load_model_from_config(config, defaults.general.default_model_path) - else: - model = load_model_from_config(config, os.path.join("models","custom", f"{custom_model}.ckpt")) - - st.session_state["custom_model"] = custom_model - st.session_state["device"] = torch.device(f"cuda:{defaults.general.gpu}") if torch.cuda.is_available() else torch.device("cpu") - st.session_state["model"] = (model if defaults.general.no_half else model.half()).to(st.session_state["device"] ) - else: - config = OmegaConf.load(defaults.general.default_model_config) - - if custom_model == defaults.general.default_model: - model = load_model_from_config(config, defaults.general.default_model_path) - else: - model = load_model_from_config(config, os.path.join("models","custom", f"{custom_model}.ckpt")) - - st.session_state["custom_model"] = custom_model - st.session_state["device"] = torch.device(f"cuda:{defaults.general.gpu}") if torch.cuda.is_available() else torch.device("cpu") - st.session_state["model"] = (model if defaults.general.no_half else model.half()).to(st.session_state["device"] ) - - print("Model loaded.") - - -def load_model_from_config(config, ckpt, verbose=False): - - print(f"Loading model from {ckpt}") - - pl_sd = torch.load(ckpt, map_location="cpu") - if "global_step" in pl_sd: - print(f"Global Step: {pl_sd['global_step']}") - sd = pl_sd["state_dict"] - model = instantiate_from_config(config.model) - m, u = model.load_state_dict(sd, strict=False) - if len(m) > 0 and verbose: - print("missing keys:") - print(m) - if len(u) > 0 and verbose: - print("unexpected keys:") - print(u) - - model.cuda() - model.eval() - return model - -def load_sd_from_config(ckpt, verbose=False): - print(f"Loading model from {ckpt}") - pl_sd = torch.load(ckpt, map_location="cpu") - if "global_step" in pl_sd: - print(f"Global Step: {pl_sd['global_step']}") - sd = pl_sd["state_dict"] - return sd -# -@retry(tries=5) -def generation_callback(img, i=0): - - try: - if i == 0: - if img['i']: i = img['i'] - except TypeError: - pass - - - if i % int(defaults.general.update_preview_frequency) == 0 and defaults.general.update_preview: - #print (img) - #print (type(img)) - # The following lines will convert the tensor we got on img to an actual image we can render on the UI. - # It can probably be done in a better way for someone who knows what they're doing. I don't. - #print (img,isinstance(img, torch.Tensor)) - if isinstance(img, torch.Tensor): - x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(img) - else: - # When using the k Diffusion samplers they return a dict instead of a tensor that look like this: - # {'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised} - x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(img["denoised"]) - - x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) - - pil_image = transforms.ToPILImage()(x_samples_ddim.squeeze_(0)) - - # update image on the UI so we can see the progress - st.session_state["preview_image"].image(pil_image) - - # Show a progress bar so we can keep track of the progress even when the image progress is not been shown, - # Dont worry, it doesnt affect the performance. - if st.session_state["generation_mode"] == "txt2img": - percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps)) - st.session_state["progress_bar_text"].text( - f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps} {percent if percent < 100 else 100}%") - else: - if st.session_state["generation_mode"] == "img2img": - round_sampling_steps = round(st.session_state.sampling_steps * st.session_state["denoising_strength"]) - percent = int(100 * float(i+1 if i+1 < round_sampling_steps else round_sampling_steps)/float(round_sampling_steps)) - st.session_state["progress_bar_text"].text( - f"""Running step: {i+1 if i+1 < round_sampling_steps else round_sampling_steps}/{round_sampling_steps} {percent if percent < 100 else 100}%""") - else: - if st.session_state["generation_mode"] == "txt2vid": - percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps)) - st.session_state["progress_bar_text"].text( - f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps}" - f"{percent if percent < 100 else 100}%") - - st.session_state["progress_bar"].progress(percent if percent < 100 else 100) - - - -class MemUsageMonitor(threading.Thread): - stop_flag = False - max_usage = 0 - total = -1 - - def __init__(self, name): - threading.Thread.__init__(self) - self.name = name - - def run(self): - try: - pynvml.nvmlInit() - except: - print(f"[{self.name}] Unable to initialize NVIDIA management. No memory stats. \n") - return - print(f"[{self.name}] Recording max memory usage...\n") - handle = pynvml.nvmlDeviceGetHandleByIndex(defaults.general.gpu) - self.total = pynvml.nvmlDeviceGetMemoryInfo(handle).total - while not self.stop_flag: - m = pynvml.nvmlDeviceGetMemoryInfo(handle) - self.max_usage = max(self.max_usage, m.used) - # print(self.max_usage) - time.sleep(0.1) - print(f"[{self.name}] Stopped recording.\n") - pynvml.nvmlShutdown() - - def read(self): - return self.max_usage, self.total - - def stop(self): - self.stop_flag = True - - def read_and_stop(self): - self.stop_flag = True - return self.max_usage, self.total - -class CFGMaskedDenoiser(nn.Module): - def __init__(self, model): - super().__init__() - self.inner_model = model - - def forward(self, x, sigma, uncond, cond, cond_scale, mask, x0, xi): - x_in = x - x_in = torch.cat([x_in] * 2) - sigma_in = torch.cat([sigma] * 2) - cond_in = torch.cat([uncond, cond]) - uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) - denoised = uncond + (cond - uncond) * cond_scale - - if mask is not None: - assert x0 is not None - img_orig = x0 - mask_inv = 1. - mask - denoised = (img_orig * mask_inv) + (mask * denoised) - - return denoised - -class CFGDenoiser(nn.Module): - def __init__(self, model): - super().__init__() - self.inner_model = model - - def forward(self, x, sigma, uncond, cond, cond_scale): - x_in = torch.cat([x] * 2) - sigma_in = torch.cat([sigma] * 2) - cond_in = torch.cat([uncond, cond]) - uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) - return uncond + (cond - uncond) * cond_scale -def append_zero(x): - return torch.cat([x, x.new_zeros([1])]) -def append_dims(x, target_dims): - """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" - dims_to_append = target_dims - x.ndim - if dims_to_append < 0: - raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') - return x[(...,) + (None,) * dims_to_append] -def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'): - """Constructs the noise schedule of Karras et al. (2022).""" - ramp = torch.linspace(0, 1, n) - min_inv_rho = sigma_min ** (1 / rho) - max_inv_rho = sigma_max ** (1 / rho) - sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho - return append_zero(sigmas).to(device) - - -def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'): - """Constructs an exponential noise schedule.""" - sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp() - return append_zero(sigmas) - - -def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'): - """Constructs a continuous VP noise schedule.""" - t = torch.linspace(1, eps_s, n, device=device) - sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1) - return append_zero(sigmas) - - -def to_d(x, sigma, denoised): - """Converts a denoiser output to a Karras ODE derivative.""" - return (x - denoised) / append_dims(sigma, x.ndim) -def linear_multistep_coeff(order, t, i, j): - if order - 1 > i: - raise ValueError(f'Order {order} too high for step {i}') - def fn(tau): - prod = 1. - for k in range(order): - if j == k: - continue - prod *= (tau - t[i - k]) / (t[i - j] - t[i - k]) - return prod - return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0] - -class KDiffusionSampler: - def __init__(self, m, sampler): - self.model = m - self.model_wrap = K.external.CompVisDenoiser(m) - self.schedule = sampler - def get_sampler_name(self): - return self.schedule - def sample(self, S, conditioning, batch_size, shape, verbose, unconditional_guidance_scale, unconditional_conditioning, eta, x_T, img_callback=None, log_every_t=None): - sigmas = self.model_wrap.get_sigmas(S) - x = x_T * sigmas[0] - model_wrap_cfg = CFGDenoiser(self.model_wrap) - samples_ddim = None - samples_ddim = K.sampling.__dict__[f'sample_{self.schedule}'](model_wrap_cfg, x, sigmas, - extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, - 'cond_scale': unconditional_guidance_scale}, disable=False, callback=generation_callback) - # - return samples_ddim, None - - -@torch.no_grad() -def log_likelihood(model, x, sigma_min, sigma_max, extra_args=None, atol=1e-4, rtol=1e-4): - extra_args = {} if extra_args is None else extra_args - s_in = x.new_ones([x.shape[0]]) - v = torch.randint_like(x, 2) * 2 - 1 - fevals = 0 - def ode_fn(sigma, x): - nonlocal fevals - with torch.enable_grad(): - x = x[0].detach().requires_grad_() - denoised = model(x, sigma * s_in, **extra_args) - d = to_d(x, sigma, denoised) - fevals += 1 - grad = torch.autograd.grad((d * v).sum(), x)[0] - d_ll = (v * grad).flatten(1).sum(1) - return d.detach(), d_ll - x_min = x, x.new_zeros([x.shape[0]]) - t = x.new_tensor([sigma_min, sigma_max]) - sol = odeint(ode_fn, x_min, t, atol=atol, rtol=rtol, method='dopri5') - latent, delta_ll = sol[0][-1], sol[1][-1] - ll_prior = torch.distributions.Normal(0, sigma_max).log_prob(latent).flatten(1).sum(1) - return ll_prior + delta_ll, {'fevals': fevals} - - -def create_random_tensors(shape, seeds): - xs = [] - for seed in seeds: - torch.manual_seed(seed) - - # randn results depend on device; gpu and cpu get different results for same seed; - # the way I see it, it's better to do this on CPU, so that everyone gets same result; - # but the original script had it like this so i do not dare change it for now because - # it will break everyone's seeds. - xs.append(torch.randn(shape, device=defaults.general.gpu)) - x = torch.stack(xs) - return x - -def torch_gc(): - torch.cuda.empty_cache() - torch.cuda.ipc_collect() - -def load_GFPGAN(): - model_name = 'GFPGANv1.3' - model_path = os.path.join(defaults.general.GFPGAN_dir, 'experiments/pretrained_models', model_name + '.pth') - if not os.path.isfile(model_path): - raise Exception("GFPGAN model not found at path "+model_path) - - sys.path.append(os.path.abspath(defaults.general.GFPGAN_dir)) - from gfpgan import GFPGANer - - if defaults.general.gfpgan_cpu or defaults.general.extra_models_cpu: - instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cpu')) - elif defaults.general.extra_models_gpu: - instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device(f'cuda:{defaults.general.gfpgan_gpu}')) - else: - instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device(f'cuda:{defaults.general.gpu}')) - return instance - -def load_RealESRGAN(model_name: str): - from basicsr.archs.rrdbnet_arch import RRDBNet - RealESRGAN_models = { - 'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4), - 'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) - } - - model_path = os.path.join(defaults.general.RealESRGAN_dir, 'experiments/pretrained_models', model_name + '.pth') - if not os.path.exists(os.path.join(defaults.general.RealESRGAN_dir, "experiments","pretrained_models", f"{model_name}.pth")): - raise Exception(model_name+".pth not found at path "+model_path) - - sys.path.append(os.path.abspath(defaults.general.RealESRGAN_dir)) - from realesrgan import RealESRGANer - - if defaults.general.esrgan_cpu or defaults.general.extra_models_cpu: - instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=False) # cpu does not support half - instance.device = torch.device('cpu') - instance.model.to('cpu') - elif defaults.general.extra_models_gpu: - instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=not defaults.general.no_half, device=torch.device(f'cuda:{defaults.general.esrgan_gpu}')) - else: - instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=not defaults.general.no_half, device=torch.device(f'cuda:{defaults.general.gpu}')) - instance.model.name = model_name - - return instance - -prompt_parser = re.compile(""" - (?P # capture group for 'prompt' - [^:]+ # match one or more non ':' characters - ) # end 'prompt' - (?: # non-capture group - :+ # match one or more ':' characters - (?P # capture group for 'weight' - -?\\d+(?:\\.\\d+)? # match positive or negative decimal number - )? # end weight capture group, make optional - \\s* # strip spaces after weight - | # OR - $ # else, if no ':' then match end of line - ) # end non-capture group -""", re.VERBOSE) - -# grabs all text up to the first occurrence of ':' as sub-prompt -# takes the value following ':' as weight -# if ':' has no value defined, defaults to 1.0 -# repeats until no text remaining -def split_weighted_subprompts(input_string, normalize=True): - parsed_prompts = [(match.group("prompt"), float(match.group("weight") or 1)) for match in re.finditer(prompt_parser, input_string)] - if not normalize: - return parsed_prompts - # this probably still doesn't handle negative weights very well - weight_sum = sum(map(lambda x: x[1], parsed_prompts)) - return [(x[0], x[1] / weight_sum) for x in parsed_prompts] - -def slerp(device, t, v0:torch.Tensor, v1:torch.Tensor, DOT_THRESHOLD=0.9995): - v0 = v0.detach().cpu().numpy() - v1 = v1.detach().cpu().numpy() - - dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) - if np.abs(dot) > DOT_THRESHOLD: - v2 = (1 - t) * v0 + t * v1 - else: - theta_0 = np.arccos(dot) - sin_theta_0 = np.sin(theta_0) - theta_t = theta_0 * t - sin_theta_t = np.sin(theta_t) - s0 = np.sin(theta_0 - theta_t) / sin_theta_0 - s1 = sin_theta_t / sin_theta_0 - v2 = s0 * v0 + s1 * v1 - - v2 = torch.from_numpy(v2).to(device) - - return v2 - - -def optimize_update_preview_frequency(current_chunk_speed, previous_chunk_speed, update_preview_frequency): - """Find the optimal update_preview_frequency value maximizing - performance while minimizing the time between updates.""" - if current_chunk_speed >= previous_chunk_speed: - #print(f"{current_chunk_speed} >= {previous_chunk_speed}") - update_preview_frequency +=1 - previous_chunk_speed = current_chunk_speed - else: - #print(f"{current_chunk_speed} <= {previous_chunk_speed}") - update_preview_frequency -=1 - previous_chunk_speed = current_chunk_speed - - return current_chunk_speed, previous_chunk_speed, update_preview_frequency - -# ----------------------------------------------------------------------------- - -@torch.no_grad() -def diffuse( - pipe, - cond_embeddings, # text conditioning, should be (1, 77, 768) - cond_latents, # image conditioning, should be (1, 4, 64, 64) - num_inference_steps, - cfg_scale, - eta, - ): - - torch_device = cond_latents.get_device() - - # classifier guidance: add the unconditional embedding - max_length = cond_embeddings.shape[1] # 77 - uncond_input = pipe.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt") - uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(torch_device))[0] - text_embeddings = torch.cat([uncond_embeddings, cond_embeddings]) - - # if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas - if isinstance(pipe.scheduler, LMSDiscreteScheduler): - cond_latents = cond_latents * pipe.scheduler.sigmas[0] - - # init the scheduler - accepts_offset = "offset" in set(inspect.signature(pipe.scheduler.set_timesteps).parameters.keys()) - extra_set_kwargs = {} - if accepts_offset: - extra_set_kwargs["offset"] = 1 - - pipe.scheduler.set_timesteps(num_inference_steps + st.session_state.sampling_steps, **extra_set_kwargs) - # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature - # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. - # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 - # and should be between [0, 1] - accepts_eta = "eta" in set(inspect.signature(pipe.scheduler.step).parameters.keys()) - extra_step_kwargs = {} - if accepts_eta: - extra_step_kwargs["eta"] = eta - - - step_counter = 0 - inference_counter = 0 - current_chunk_speed = 0 - previous_chunk_speed = 0 - - # diffuse! - for i, t in enumerate(pipe.scheduler.timesteps): - start = timeit.default_timer() - - #status_text.text(f"Running step: {step_counter}{total_number_steps} {percent} | {duration:.2f}{speed}") - - # expand the latents for classifier free guidance - latent_model_input = torch.cat([cond_latents] * 2) - if isinstance(pipe.scheduler, LMSDiscreteScheduler): - sigma = pipe.scheduler.sigmas[i] - latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5) - - # predict the noise residual - noise_pred = pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] - - # cfg - noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) - noise_pred = noise_pred_uncond + cfg_scale * (noise_pred_text - noise_pred_uncond) - - # compute the previous noisy sample x_t -> x_t-1 - if isinstance(pipe.scheduler, LMSDiscreteScheduler): - cond_latents = pipe.scheduler.step(noise_pred, i, cond_latents, **extra_step_kwargs)["prev_sample"] - else: - cond_latents = pipe.scheduler.step(noise_pred, t, cond_latents, **extra_step_kwargs)["prev_sample"] - - #print (st.session_state["update_preview_frequency"]) - #update the preview image if it is enabled and the frequency matches the step_counter - if defaults.general.update_preview: - step_counter += 1 - - if st.session_state.dynamic_preview_frequency: - current_chunk_speed, previous_chunk_speed, defaults.general.update_preview_frequency = optimize_update_preview_frequency( - current_chunk_speed, previous_chunk_speed, defaults.general.update_preview_frequency) - - if defaults.general.update_preview_frequency == step_counter or step_counter == st.session_state.sampling_steps: - #scale and decode the image latents with vae - cond_latents_2 = 1 / 0.18215 * cond_latents - image_2 = pipe.vae.decode(cond_latents_2) - - # generate output numpy image as uint8 - image_2 = (image_2 / 2 + 0.5).clamp(0, 1) - image_2 = image_2.cpu().permute(0, 2, 3, 1).numpy() - image_2 = (image_2[0] * 255).astype(np.uint8) - - st.session_state["preview_image"].image(image_2) - - step_counter = 0 - - duration = timeit.default_timer() - start - - current_chunk_speed = duration - - if duration >= 1: - speed = "s/it" - else: - speed = "it/s" - duration = 1 / duration - - if i > st.session_state.sampling_steps: - inference_counter += 1 - inference_percent = int(100 * float(inference_counter if inference_counter < num_inference_steps else num_inference_steps)/float(num_inference_steps)) - inference_progress = f"{inference_counter if inference_counter < num_inference_steps else num_inference_steps}/{num_inference_steps} {inference_percent}% " - else: - inference_progress = "" - - percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps)) - frames_percent = int(100 * float(st.session_state.current_frame if st.session_state.current_frame < st.session_state.max_frames else st.session_state.max_frames)/float(st.session_state.max_frames)) - - st.session_state["progress_bar_text"].text( - f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps} " - f"{percent if percent < 100 else 100}% {inference_progress}{duration:.2f}{speed} | " - f"Frame: {st.session_state.current_frame if st.session_state.current_frame < st.session_state.max_frames else st.session_state.max_frames}/{st.session_state.max_frames} " - f"{frames_percent if frames_percent < 100 else 100}% {st.session_state.frame_duration:.2f}{st.session_state.frame_speed}" - ) - st.session_state["progress_bar"].progress(percent if percent < 100 else 100) - - # scale and decode the image latents with vae - cond_latents = 1 / 0.18215 * cond_latents - image = pipe.vae.decode(cond_latents) - - # generate output numpy image as uint8 - image = (image / 2 + 0.5).clamp(0, 1) - image = image.cpu().permute(0, 2, 3, 1).numpy() - image = (image[0] * 255).astype(np.uint8) - - return image - - -def ModelLoader(models,load=False,unload=False,imgproc_realesrgan_model_name='RealESRGAN_x4plus'): - #get global variables - global_vars = globals() - #check if m is in globals - if unload: - for m in models: - if m in global_vars: - #if it is, delete it - del global_vars[m] - if defaults.general.optimized: - if m == 'model': - del global_vars[m+'FS'] - del global_vars[m+'CS'] - if m =='model': - m='Stable Diffusion' - print('Unloaded ' + m) - if load: - for m in models: - if m not in global_vars or m in global_vars and type(global_vars[m]) == bool: - #if it isn't, load it - if m == 'GFPGAN': - global_vars[m] = load_GFPGAN() - elif m == 'model': - sdLoader = load_sd_from_config() - global_vars[m] = sdLoader[0] - if defaults.general.optimized: - global_vars[m+'CS'] = sdLoader[1] - global_vars[m+'FS'] = sdLoader[2] - elif m == 'RealESRGAN': - global_vars[m] = load_RealESRGAN(imgproc_realesrgan_model_name) - elif m == 'LDSR': - global_vars[m] = load_LDSR() - if m =='model': - m='Stable Diffusion' - print('Loaded ' + m) - torch_gc() - - - -def get_font(fontsize): - fonts = ["arial.ttf", "DejaVuSans.ttf"] - for font_name in fonts: - try: - return ImageFont.truetype(font_name, fontsize) - except OSError: - pass - - # ImageFont.load_default() is practically unusable as it only supports - # latin1, so raise an exception instead if no usable font was found - raise Exception(f"No usable font found (tried {', '.join(fonts)})") - -def load_embeddings(fp): - if fp is not None and hasattr(st.session_state["model"], "embedding_manager"): - st.session_state["model"].embedding_manager.load(fp['name']) - -def image_grid(imgs, batch_size, force_n_rows=None, captions=None): - #print (len(imgs)) - if force_n_rows is not None: - rows = force_n_rows - elif defaults.general.n_rows > 0: - rows = defaults.general.n_rows - elif defaults.general.n_rows == 0: - rows = batch_size - else: - rows = math.sqrt(len(imgs)) - rows = round(rows) - - cols = math.ceil(len(imgs) / rows) - - w, h = imgs[0].size - grid = Image.new('RGB', size=(cols * w, rows * h), color='black') - - fnt = get_font(30) - - for i, img in enumerate(imgs): - grid.paste(img, box=(i % cols * w, i // cols * h)) - if captions and i= 2**32: - n = n >> 32 - return n - -def check_prompt_length(prompt, comments): - """this function tests if prompt is too long, and if so, adds a message to comments""" - - tokenizer = (st.session_state["model"] if not defaults.general.optimized else modelCS).cond_stage_model.tokenizer - max_length = (st.session_state["model"] if not defaults.general.optimized else modelCS).cond_stage_model.max_length - - info = (st.session_state["model"] if not defaults.general.optimized else modelCS).cond_stage_model.tokenizer([prompt], truncation=True, max_length=max_length, - return_overflowing_tokens=True, padding="max_length", return_tensors="pt") - ovf = info['overflowing_tokens'][0] - overflowing_count = ovf.shape[0] - if overflowing_count == 0: - return - - vocab = {v: k for k, v in tokenizer.get_vocab().items()} - overflowing_words = [vocab.get(int(x), "") for x in ovf] - overflowing_text = tokenizer.convert_tokens_to_string(''.join(overflowing_words)) - - comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") - -def save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, - normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, - save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images): - - filename_i = os.path.join(sample_path_i, filename) - - if defaults.general.save_metadata or write_info_files: - # toggles differ for txt2img vs. img2img: - offset = 0 if init_img is None else 2 - toggles = [] - if prompt_matrix: - toggles.append(0) - if normalize_prompt_weights: - toggles.append(1) - if init_img is not None: - if uses_loopback: - toggles.append(2) - if uses_random_seed_loopback: - toggles.append(3) - if save_individual_images: - toggles.append(2 + offset) - if save_grid: - toggles.append(3 + offset) - if sort_samples: - toggles.append(4 + offset) - if write_info_files: - toggles.append(5 + offset) - if use_GFPGAN: - toggles.append(6 + offset) - metadata = \ - dict( - target="txt2img" if init_img is None else "img2img", - prompt=prompts[i], ddim_steps=steps, toggles=toggles, sampler_name=sampler_name, - ddim_eta=ddim_eta, n_iter=n_iter, batch_size=batch_size, cfg_scale=cfg_scale, - seed=seeds[i], width=width, height=height, normalize_prompt_weights=normalize_prompt_weights) - # Not yet any use for these, but they bloat up the files: - # info_dict["init_img"] = init_img - # info_dict["init_mask"] = init_mask - if init_img is not None: - metadata["denoising_strength"] = str(denoising_strength) - metadata["resize_mode"] = resize_mode - - if write_info_files: - with open(f"{filename_i}.yaml", "w", encoding="utf8") as f: - yaml.dump(metadata, f, allow_unicode=True, width=10000) - - if defaults.general.save_metadata: - # metadata = { - # "SD:prompt": prompts[i], - # "SD:seed": str(seeds[i]), - # "SD:width": str(width), - # "SD:height": str(height), - # "SD:steps": str(steps), - # "SD:cfg_scale": str(cfg_scale), - # "SD:normalize_prompt_weights": str(normalize_prompt_weights), - # } - metadata = {"SD:" + k:v for (k,v) in metadata.items()} - - if save_ext == "png": - mdata = PngInfo() - for key in metadata: - mdata.add_text(key, str(metadata[key])) - image.save(f"{filename_i}.png", pnginfo=mdata) - else: - if jpg_sample: - image.save(f"{filename_i}.jpg", quality=save_quality, - optimize=True) - elif save_ext == "webp": - image.save(f"{filename_i}.{save_ext}", f"webp", quality=save_quality, - lossless=save_lossless) - else: - # not sure what file format this is - image.save(f"{filename_i}.{save_ext}", f"{save_ext}") - try: - exif_dict = piexif.load(f"{filename_i}.{save_ext}") - except: - exif_dict = { "Exif": dict() } - exif_dict["Exif"][piexif.ExifIFD.UserComment] = piexif.helper.UserComment.dump( - json.dumps(metadata), encoding="unicode") - piexif.insert(piexif.dump(exif_dict), f"{filename_i}.{save_ext}") - - # render the image on the frontend - st.session_state["preview_image"].image(image) - -def get_next_sequence_number(path, prefix=''): - """ - Determines and returns the next sequence number to use when saving an - image in the specified directory. - - If a prefix is given, only consider files whose names start with that - prefix, and strip the prefix from filenames before extracting their - sequence number. - - The sequence starts at 0. - """ - result = -1 - for p in Path(path).iterdir(): - if p.name.endswith(('.png', '.jpg')) and p.name.startswith(prefix): - tmp = p.name[len(prefix):] - try: - result = max(int(tmp.split('-')[0]), result) - except ValueError: - pass - return result + 1 - - -def oxlamon_matrix(prompt, seed, n_iter, batch_size): - pattern = re.compile(r'(,\s){2,}') - - class PromptItem: - def __init__(self, text, parts, item): - self.text = text - self.parts = parts - if item: - self.parts.append( item ) - - def clean(txt): - return re.sub(pattern, ', ', txt) - - def getrowcount( txt ): - for data in re.finditer( ".*?\\((.*?)\\).*", txt ): - if data: - return len(data.group(1).split("|")) - break - return None - - def repliter( txt ): - for data in re.finditer( ".*?\\((.*?)\\).*", txt ): - if data: - r = data.span(1) - for item in data.group(1).split("|"): - yield (clean(txt[:r[0]-1] + item.strip() + txt[r[1]+1:]), item.strip()) - break - - def iterlist( items ): - outitems = [] - for item in items: - for newitem, newpart in repliter(item.text): - outitems.append( PromptItem(newitem, item.parts.copy(), newpart) ) - - return outitems - - def getmatrix( prompt ): - dataitems = [ PromptItem( prompt[1:].strip(), [], None ) ] - while True: - newdataitems = iterlist( dataitems ) - if len( newdataitems ) == 0: - return dataitems - dataitems = newdataitems - - def classToArrays( items, seed, n_iter ): - texts = [] - parts = [] - seeds = [] - - for item in items: - itemseed = seed - for i in range(n_iter): - texts.append( item.text ) - parts.append( f"Seed: {itemseed}\n" + "\n".join(item.parts) ) - seeds.append( itemseed ) - itemseed += 1 - - return seeds, texts, parts - - all_seeds, all_prompts, prompt_matrix_parts = classToArrays(getmatrix( prompt ), seed, n_iter) - n_iter = math.ceil(len(all_prompts) / batch_size) - - needrows = getrowcount(prompt) - if needrows: - xrows = math.sqrt(len(all_prompts)) - xrows = round(xrows) - # if columns is to much - cols = math.ceil(len(all_prompts) / xrows) - if cols > needrows*4: - needrows *= 2 - - return all_seeds, n_iter, prompt_matrix_parts, all_prompts, needrows - - -import find_noise_for_image -import matched_noise - - -def process_images( - outpath, func_init, func_sample, prompt, seed, sampler_name, save_grid, batch_size, - n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, use_RealESRGAN, realesrgan_model_name, - fp=None, ddim_eta=0.0, normalize_prompt_weights=True, init_img=None, init_mask=None, - mask_blur_strength=3, mask_restore=False, denoising_strength=0.75, noise_mode=0, find_noise_steps=1, resize_mode=None, uses_loopback=False, - uses_random_seed_loopback=False, sort_samples=True, write_info_files=True, jpg_sample=False, - variant_amount=0.0, variant_seed=None, save_individual_images: bool = True): - """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" - assert prompt is not None - torch_gc() - # start time after garbage collection (or before?) - start_time = time.time() - - # We will use this date here later for the folder name, need to start_time if not need - run_start_dt = datetime.datetime.now() - - mem_mon = MemUsageMonitor('MemMon') - mem_mon.start() - - if hasattr(st.session_state["model"], "embedding_manager"): - load_embeddings(fp) - - os.makedirs(outpath, exist_ok=True) - - sample_path = os.path.join(outpath, "samples") - os.makedirs(sample_path, exist_ok=True) - - if not ("|" in prompt) and prompt.startswith("@"): - prompt = prompt[1:] - - comments = [] - - prompt_matrix_parts = [] - simple_templating = False - add_original_image = not (use_RealESRGAN or use_GFPGAN) - - if prompt_matrix: - if prompt.startswith("@"): - simple_templating = True - add_original_image = not (use_RealESRGAN or use_GFPGAN) - all_seeds, n_iter, prompt_matrix_parts, all_prompts, frows = oxlamon_matrix(prompt, seed, n_iter, batch_size) - else: - all_prompts = [] - prompt_matrix_parts = prompt.split("|") - combination_count = 2 ** (len(prompt_matrix_parts) - 1) - for combination_num in range(combination_count): - current = prompt_matrix_parts[0] - - for n, text in enumerate(prompt_matrix_parts[1:]): - if combination_num & (2 ** n) > 0: - current += ("" if text.strip().startswith(",") else ", ") + text - - all_prompts.append(current) - - n_iter = math.ceil(len(all_prompts) / batch_size) - all_seeds = len(all_prompts) * [seed] - - print(f"Prompt matrix will create {len(all_prompts)} images using a total of {n_iter} batches.") - else: - - if not defaults.general.no_verify_input: - try: - check_prompt_length(prompt, comments) - except: - import traceback - print("Error verifying input:", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) - - all_prompts = batch_size * n_iter * [prompt] - all_seeds = [seed + x for x in range(len(all_prompts))] - - precision_scope = autocast if defaults.general.precision == "autocast" else nullcontext - output_images = [] - grid_captions = [] - stats = [] - with torch.no_grad(), precision_scope("cuda"), (st.session_state["model"].ema_scope() if not defaults.general.optimized else nullcontext()): - init_data = func_init() - tic = time.time() - - - # if variant_amount > 0.0 create noise from base seed - base_x = None - if variant_amount > 0.0: - target_seed_randomizer = seed_to_int('') # random seed - torch.manual_seed(seed) # this has to be the single starting seed (not per-iteration) - base_x = create_random_tensors([opt_C, height // opt_f, width // opt_f], seeds=[seed]) - # we don't want all_seeds to be sequential from starting seed with variants, - # since that makes the same variants each time, - # so we add target_seed_randomizer as a random offset - for si in range(len(all_seeds)): - all_seeds[si] += target_seed_randomizer - - for n in range(n_iter): - print(f"Iteration: {n+1}/{n_iter}") - prompts = all_prompts[n * batch_size:(n + 1) * batch_size] - captions = prompt_matrix_parts[n * batch_size:(n + 1) * batch_size] - seeds = all_seeds[n * batch_size:(n + 1) * batch_size] - - print(prompt) - - if defaults.general.optimized: - modelCS.to(defaults.general.gpu) - - uc = (st.session_state["model"] if not defaults.general.optimized else modelCS).get_learned_conditioning(len(prompts) * [""]) - - if isinstance(prompts, tuple): - prompts = list(prompts) - - # split the prompt if it has : for weighting - # TODO for speed it might help to have this occur when all_prompts filled?? - weighted_subprompts = split_weighted_subprompts(prompts[0], normalize_prompt_weights) - - # sub-prompt weighting used if more than 1 - if len(weighted_subprompts) > 1: - c = torch.zeros_like(uc) # i dont know if this is correct.. but it works - for i in range(0, len(weighted_subprompts)): - # note if alpha negative, it functions same as torch.sub - c = torch.add(c, (st.session_state["model"] if not defaults.general.optimized else modelCS).get_learned_conditioning(weighted_subprompts[i][0]), alpha=weighted_subprompts[i][1]) - else: # just behave like usual - c = (st.session_state["model"] if not defaults.general.optimized else modelCS).get_learned_conditioning(prompts) - - - shape = [opt_C, height // opt_f, width // opt_f] - - if defaults.general.optimized: - mem = torch.cuda.memory_allocated()/1e6 - modelCS.to("cpu") - while(torch.cuda.memory_allocated()/1e6 >= mem): - time.sleep(1) - - if noise_mode == 1 or noise_mode == 3: - # TODO params for find_noise_to_image - x = torch.cat(batch_size * [find_noise_for_image.find_noise_for_image( - st.session_state["model"], st.session_state["device"], - init_img.convert('RGB'), '', find_noise_steps, 0.0, normalize=True, - generation_callback=generation_callback, - )], dim=0) - else: - # we manually generate all input noises because each one should have a specific seed - x = create_random_tensors(shape, seeds=seeds) - - if variant_amount > 0.0: # we are making variants - # using variant_seed as sneaky toggle, - # when not None or '' use the variant_seed - # otherwise use seeds - if variant_seed != None and variant_seed != '': - specified_variant_seed = seed_to_int(variant_seed) - torch.manual_seed(specified_variant_seed) - seeds = [specified_variant_seed] - # finally, slerp base_x noise to target_x noise for creating a variant - x = slerp(defaults.general.gpu, max(0.0, min(1.0, variant_amount)), base_x, x) - - samples_ddim = func_sample(init_data=init_data, x=x, conditioning=c, unconditional_conditioning=uc, sampler_name=sampler_name) - - if defaults.general.optimized: - modelFS.to(defaults.general.gpu) - - x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(samples_ddim) - x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) - - for i, x_sample in enumerate(x_samples_ddim): - sanitized_prompt = slugify(prompts[i]) - - if sort_samples: - full_path = os.path.join(os.getcwd(), sample_path, sanitized_prompt) - - - sanitized_prompt = sanitized_prompt[:220-len(full_path)] - sample_path_i = os.path.join(sample_path, sanitized_prompt) - - #print(f"output folder length: {len(os.path.join(os.getcwd(), sample_path_i))}") - #print(os.path.join(os.getcwd(), sample_path_i)) - - os.makedirs(sample_path_i, exist_ok=True) - base_count = get_next_sequence_number(sample_path_i) - filename = f"{base_count:05}-{steps}_{sampler_name}_{seeds[i]}" - else: - full_path = os.path.join(os.getcwd(), sample_path) - sample_path_i = sample_path - base_count = get_next_sequence_number(sample_path_i) - filename = f"{base_count:05}-{steps}_{sampler_name}_{seeds[i]}_{sanitized_prompt}"[:220-len(full_path)] #same as before - - x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') - x_sample = x_sample.astype(np.uint8) - image = Image.fromarray(x_sample) - original_sample = x_sample - original_filename = filename - - if use_GFPGAN and st.session_state["GFPGAN"] is not None and not use_RealESRGAN: - #skip_save = True # #287 >_> - torch_gc() - cropped_faces, restored_faces, restored_img = st.session_state["GFPGAN"].enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True) - gfpgan_sample = restored_img[:,:,::-1] - gfpgan_image = Image.fromarray(gfpgan_sample) - gfpgan_filename = original_filename + '-gfpgan' - - save_sample(gfpgan_image, sample_path_i, gfpgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, - normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, - uses_random_seed_loopback, save_grid, sort_samples, sampler_name, ddim_eta, - n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images=False) - - output_images.append(gfpgan_image) #287 - if simple_templating: - grid_captions.append( captions[i] + "\ngfpgan" ) - - if use_RealESRGAN and st.session_state["RealESRGAN"] is not None and not use_GFPGAN: - #skip_save = True # #287 >_> - torch_gc() - - if st.session_state["RealESRGAN"].model.name != realesrgan_model_name: - #try_loading_RealESRGAN(realesrgan_model_name) - load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name) - - output, img_mode = st.session_state["RealESRGAN"].enhance(x_sample[:,:,::-1]) - esrgan_filename = original_filename + '-esrgan4x' - esrgan_sample = output[:,:,::-1] - esrgan_image = Image.fromarray(esrgan_sample) - - #save_sample(image, sample_path_i, original_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, - #normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, - #save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode) - - save_sample(esrgan_image, sample_path_i, esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, - normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, - save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images=False) - - output_images.append(esrgan_image) #287 - if simple_templating: - grid_captions.append( captions[i] + "\nesrgan" ) - - if use_RealESRGAN and st.session_state["RealESRGAN"] is not None and use_GFPGAN and st.session_state["GFPGAN"] is not None: - #skip_save = True # #287 >_> - torch_gc() - cropped_faces, restored_faces, restored_img = st.session_state["GFPGAN"].enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True) - gfpgan_sample = restored_img[:,:,::-1] - - if st.session_state["RealESRGAN"].model.name != realesrgan_model_name: - #try_loading_RealESRGAN(realesrgan_model_name) - load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name) - - output, img_mode = st.session_state["RealESRGAN"].enhance(gfpgan_sample[:,:,::-1]) - gfpgan_esrgan_filename = original_filename + '-gfpgan-esrgan4x' - gfpgan_esrgan_sample = output[:,:,::-1] - gfpgan_esrgan_image = Image.fromarray(gfpgan_esrgan_sample) - - save_sample(gfpgan_esrgan_image, sample_path_i, gfpgan_esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, - normalize_prompt_weights, False, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, - save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images=False) - - output_images.append(gfpgan_esrgan_image) #287 - - if simple_templating: - grid_captions.append( captions[i] + "\ngfpgan_esrgan" ) - - if mask_restore and init_mask: - #init_mask = init_mask if keep_mask else ImageOps.invert(init_mask) - init_mask = init_mask.filter(ImageFilter.GaussianBlur(mask_blur_strength)) - init_mask = init_mask.convert('L') - init_img = init_img.convert('RGB') - image = image.convert('RGB') - - if use_RealESRGAN and st.session_state["RealESRGAN"] is not None: - if st.session_state["RealESRGAN"].model.name != realesrgan_model_name: - #try_loading_RealESRGAN(realesrgan_model_name) - load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name) - - output, img_mode = st.session_state["RealESRGAN"].enhance(np.array(init_img, dtype=np.uint8)) - init_img = Image.fromarray(output) - init_img = init_img.convert('RGB') - - output, img_mode = st.session_state["RealESRGAN"].enhance(np.array(init_mask, dtype=np.uint8)) - init_mask = Image.fromarray(output) - init_mask = init_mask.convert('L') - - image = Image.composite(init_img, image, init_mask) - - if save_individual_images: - save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, - normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, - save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images) - - if not use_GFPGAN or not use_RealESRGAN: - output_images.append(image) - - #if add_original_image or not simple_templating: - #output_images.append(image) - #if simple_templating: - #grid_captions.append( captions[i] ) - - if defaults.general.optimized: - mem = torch.cuda.memory_allocated()/1e6 - modelFS.to("cpu") - while(torch.cuda.memory_allocated()/1e6 >= mem): - time.sleep(1) - - if prompt_matrix or save_grid: - if prompt_matrix: - if simple_templating: - grid = image_grid(output_images, n_iter, force_n_rows=frows, captions=grid_captions) - else: - grid = image_grid(output_images, n_iter, force_n_rows=1 << ((len(prompt_matrix_parts)-1)//2)) - try: - grid = draw_prompt_matrix(grid, width, height, prompt_matrix_parts) - except: - import traceback - print("Error creating prompt_matrix text:", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) - else: - grid = image_grid(output_images, batch_size) - - if grid and (batch_size > 1 or n_iter > 1): - output_images.insert(0, grid) - - grid_count = get_next_sequence_number(outpath, 'grid-') - grid_file = f"grid-{grid_count:05}-{seed}_{slugify(prompts[i].replace(' ', '_')[:220-len(full_path)])}.{grid_ext}" - grid.save(os.path.join(outpath, grid_file), grid_format, quality=grid_quality, lossless=grid_lossless, optimize=True) - - toc = time.time() - - mem_max_used, mem_total = mem_mon.read_and_stop() - time_diff = time.time()-start_time - - info = f""" - {prompt} - Steps: {steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', Denoising strength: '+str(denoising_strength) if init_img is not None else ''}{', GFPGAN' if use_GFPGAN and st.session_state["GFPGAN"] is not None else ''}{', '+realesrgan_model_name if use_RealESRGAN and st.session_state["RealESRGAN"] is not None else ''}{', Prompt Matrix Mode.' if prompt_matrix else ''}""".strip() - stats = f''' - Took { round(time_diff, 2) }s total ({ round(time_diff/(len(all_prompts)),2) }s per image) - Peak memory usage: { -(mem_max_used // -1_048_576) } MiB / { -(mem_total // -1_048_576) } MiB / { round(mem_max_used/mem_total*100, 3) }%''' - - for comment in comments: - info += "\n\n" + comment - - #mem_mon.stop() - #del mem_mon - torch_gc() - - return output_images, seed, info, stats - - -def resize_image(resize_mode, im, width, height): - LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) - if resize_mode == 0: - res = im.resize((width, height), resample=LANCZOS) - elif resize_mode == 1: - ratio = width / height - src_ratio = im.width / im.height - - src_w = width if ratio > src_ratio else im.width * height // im.height - src_h = height if ratio <= src_ratio else im.height * width // im.width - - resized = im.resize((src_w, src_h), resample=LANCZOS) - res = Image.new("RGBA", (width, height)) - res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) - else: - ratio = width / height - src_ratio = im.width / im.height - - src_w = width if ratio < src_ratio else im.width * height // im.height - src_h = height if ratio >= src_ratio else im.height * width // im.width - - resized = im.resize((src_w, src_h), resample=LANCZOS) - res = Image.new("RGBA", (width, height)) - res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) - - if ratio < src_ratio: - fill_height = height // 2 - src_h // 2 - res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0)) - res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h)) - elif ratio > src_ratio: - fill_width = width // 2 - src_w // 2 - res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) - res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0)) - - return res - -import skimage - -def img2img(prompt: str = '', init_info: any = None, init_info_mask: any = None, mask_mode: int = 0, mask_blur_strength: int = 3, - mask_restore: bool = False, ddim_steps: int = 50, sampler_name: str = 'DDIM', - n_iter: int = 1, cfg_scale: float = 7.5, denoising_strength: float = 0.8, - seed: int = -1, noise_mode: int = 0, find_noise_steps: str = "", height: int = 512, width: int = 512, resize_mode: int = 0, fp = None, - variant_amount: float = None, variant_seed: int = None, ddim_eta:float = 0.0, - write_info_files:bool = True, RealESRGAN_model: str = "RealESRGAN_x4plus_anime_6B", - separate_prompts:bool = False, normalize_prompt_weights:bool = True, - save_individual_images: bool = True, save_grid: bool = True, group_by_prompt: bool = True, - save_as_jpg: bool = True, use_GFPGAN: bool = True, use_RealESRGAN: bool = True, loopback: bool = False, - random_seed_loopback: bool = False - ): - - outpath = defaults.general.outdir_img2img or defaults.general.outdir or "outputs/img2img-samples" - err = False - #loopback = False - #skip_save = False - seed = seed_to_int(seed) - - batch_size = 1 - - #prompt_matrix = 0 - #normalize_prompt_weights = 1 in toggles - #loopback = 2 in toggles - #random_seed_loopback = 3 in toggles - #skip_save = 4 not in toggles - #save_grid = 5 in toggles - #sort_samples = 6 in toggles - #write_info_files = 7 in toggles - #write_sample_info_to_log_file = 8 in toggles - #jpg_sample = 9 in toggles - #use_GFPGAN = 10 in toggles - #use_RealESRGAN = 11 in toggles - - if sampler_name == 'PLMS': - sampler = PLMSSampler(st.session_state["model"]) - elif sampler_name == 'DDIM': - sampler = DDIMSampler(st.session_state["model"]) - elif sampler_name == 'k_dpm_2_a': - sampler = KDiffusionSampler(st.session_state["model"],'dpm_2_ancestral') - elif sampler_name == 'k_dpm_2': - sampler = KDiffusionSampler(st.session_state["model"],'dpm_2') - elif sampler_name == 'k_euler_a': - sampler = KDiffusionSampler(st.session_state["model"],'euler_ancestral') - elif sampler_name == 'k_euler': - sampler = KDiffusionSampler(st.session_state["model"],'euler') - elif sampler_name == 'k_heun': - sampler = KDiffusionSampler(st.session_state["model"],'heun') - elif sampler_name == 'k_lms': - sampler = KDiffusionSampler(st.session_state["model"],'lms') - else: - raise Exception("Unknown sampler: " + sampler_name) - - def process_init_mask(init_mask: Image): - if init_mask.mode == "RGBA": - init_mask = init_mask.convert('RGBA') - background = Image.new('RGBA', init_mask.size, (0, 0, 0)) - init_mask = Image.alpha_composite(background, init_mask) - init_mask = init_mask.convert('RGB') - return init_mask - - init_img = init_info - init_mask = None - if mask_mode == 0: - if init_info_mask: - init_mask = process_init_mask(init_info_mask) - elif mask_mode == 1: - if init_info_mask: - init_mask = process_init_mask(init_info_mask) - init_mask = ImageOps.invert(init_mask) - elif mask_mode == 2: - init_img_transparency = init_img.split()[-1].convert('L')#.point(lambda x: 255 if x > 0 else 0, mode='1') - init_mask = init_img_transparency - init_mask = init_mask.convert("RGB") - init_mask = resize_image(resize_mode, init_mask, width, height) - init_mask = init_mask.convert("RGB") - - assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' - t_enc = int(denoising_strength * ddim_steps) - - if init_mask is not None and (noise_mode == 2 or noise_mode == 3) and init_img is not None: - noise_q = 0.99 - color_variation = 0.0 - mask_blend_factor = 1.0 - - np_init = (np.asarray(init_img.convert("RGB"))/255.0).astype(np.float64) # annoyingly complex mask fixing - np_mask_rgb = 1. - (np.asarray(ImageOps.invert(init_mask).convert("RGB"))/255.0).astype(np.float64) - np_mask_rgb -= np.min(np_mask_rgb) - np_mask_rgb /= np.max(np_mask_rgb) - np_mask_rgb = 1. - np_mask_rgb - np_mask_rgb_hardened = 1. - (np_mask_rgb < 0.99).astype(np.float64) - blurred = skimage.filters.gaussian(np_mask_rgb_hardened[:], sigma=16., channel_axis=2, truncate=32.) - blurred2 = skimage.filters.gaussian(np_mask_rgb_hardened[:], sigma=16., channel_axis=2, truncate=32.) - #np_mask_rgb_dilated = np_mask_rgb + blurred # fixup mask todo: derive magic constants - #np_mask_rgb = np_mask_rgb + blurred - np_mask_rgb_dilated = np.clip((np_mask_rgb + blurred2) * 0.7071, 0., 1.) - np_mask_rgb = np.clip((np_mask_rgb + blurred) * 0.7071, 0., 1.) - - noise_rgb = matched_noise.get_matched_noise(np_init, np_mask_rgb, noise_q, color_variation) - blend_mask_rgb = np.clip(np_mask_rgb_dilated,0.,1.) ** (mask_blend_factor) - noised = noise_rgb[:] - blend_mask_rgb **= (2.) - noised = np_init[:] * (1. - blend_mask_rgb) + noised * blend_mask_rgb - - np_mask_grey = np.sum(np_mask_rgb, axis=2)/3. - ref_mask = np_mask_grey < 1e-3 - - all_mask = np.ones((height, width), dtype=bool) - noised[all_mask,:] = skimage.exposure.match_histograms(noised[all_mask,:]**1., noised[ref_mask,:], channel_axis=1) - - init_img = Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB") - st.session_state["editor_image"].image(init_img) # debug - - def init(): - image = init_img.convert('RGB') - image = np.array(image).astype(np.float32) / 255.0 - image = image[None].transpose(0, 3, 1, 2) - image = torch.from_numpy(image) - - mask_channel = None - if init_mask: - alpha = resize_image(resize_mode, init_mask, width // 8, height // 8) - mask_channel = alpha.split()[-1] - - mask = None - if mask_channel is not None: - mask = np.array(mask_channel).astype(np.float32) / 255.0 - mask = (1 - mask) - mask = np.tile(mask, (4, 1, 1)) - mask = mask[None].transpose(0, 1, 2, 3) - mask = torch.from_numpy(mask).to(st.session_state["device"]) - - if defaults.general.optimized: - modelFS.to(st.session_state["device"] ) - - init_image = 2. * image - 1. - init_image = init_image.to(st.session_state["device"]) - init_latent = (st.session_state["model"] if not defaults.general.optimized else modelFS).get_first_stage_encoding((st.session_state["model"] if not defaults.general.optimized else modelFS).encode_first_stage(init_image)) # move to latent space - - if defaults.general.optimized: - mem = torch.cuda.memory_allocated()/1e6 - modelFS.to("cpu") - while(torch.cuda.memory_allocated()/1e6 >= mem): - time.sleep(1) - - return init_latent, mask, - - def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name): - t_enc_steps = t_enc - obliterate = False - if ddim_steps == t_enc_steps: - t_enc_steps = t_enc_steps - 1 - obliterate = True - - if sampler_name != 'DDIM': - x0, z_mask = init_data - - sigmas = sampler.model_wrap.get_sigmas(ddim_steps) - noise = x * sigmas[ddim_steps - t_enc_steps - 1] - - xi = x0 + noise - - # Obliterate masked image - if z_mask is not None and obliterate: - random = torch.randn(z_mask.shape, device=xi.device) - xi = (z_mask * noise) + ((1-z_mask) * xi) - - sigma_sched = sigmas[ddim_steps - t_enc_steps - 1:] - model_wrap_cfg = CFGMaskedDenoiser(sampler.model_wrap) - samples_ddim = K.sampling.__dict__[f'sample_{sampler.get_sampler_name()}'](model_wrap_cfg, xi, sigma_sched, - extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, - 'cond_scale': cfg_scale, 'mask': z_mask, 'x0': x0, 'xi': xi}, disable=False, - callback=generation_callback) - else: - - x0, z_mask = init_data - - sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=0.0, verbose=False) - z_enc = sampler.stochastic_encode(x0, torch.tensor([t_enc_steps]*batch_size).to(st.session_state["device"] )) - - # Obliterate masked image - if z_mask is not None and obliterate: - random = torch.randn(z_mask.shape, device=z_enc.device) - z_enc = (z_mask * random) + ((1-z_mask) * z_enc) - - # decode it - samples_ddim = sampler.decode(z_enc, conditioning, t_enc_steps, - unconditional_guidance_scale=cfg_scale, - unconditional_conditioning=unconditional_conditioning, - z_mask=z_mask, x0=x0) - return samples_ddim - - - - if loopback: - output_images, info = None, None - history = [] - initial_seed = None - - do_color_correction = False - try: - from skimage import exposure - do_color_correction = True - except: - print("Install scikit-image to perform color correction on loopback") - - for i in range(n_iter): - if do_color_correction and i == 0: - correction_target = cv2.cvtColor(np.asarray(init_img.copy()), cv2.COLOR_RGB2LAB) - - output_images, seed, info, stats = process_images( - outpath=outpath, - func_init=init, - func_sample=sample, - prompt=prompt, - seed=seed, - sampler_name=sampler_name, - save_grid=save_grid, - batch_size=1, - n_iter=1, - steps=ddim_steps, - cfg_scale=cfg_scale, - width=width, - height=height, - prompt_matrix=separate_prompts, - use_GFPGAN=use_GFPGAN, - use_RealESRGAN=use_RealESRGAN, # Forcefully disable upscaling when using loopback - realesrgan_model_name=RealESRGAN_model, - fp=fp, - normalize_prompt_weights=normalize_prompt_weights, - save_individual_images=save_individual_images, - init_img=init_img, - init_mask=init_mask, - mask_blur_strength=mask_blur_strength, - mask_restore=mask_restore, - denoising_strength=denoising_strength, - noise_mode=noise_mode, - find_noise_steps=find_noise_steps, - resize_mode=resize_mode, - uses_loopback=loopback, - uses_random_seed_loopback=random_seed_loopback, - sort_samples=group_by_prompt, - write_info_files=write_info_files, - jpg_sample=save_as_jpg - ) - - if initial_seed is None: - initial_seed = seed - - init_img = output_images[0] - - if do_color_correction and correction_target is not None: - init_img = Image.fromarray(cv2.cvtColor(exposure.match_histograms( - cv2.cvtColor( - np.asarray(init_img), - cv2.COLOR_RGB2LAB - ), - correction_target, - channel_axis=2 - ), cv2.COLOR_LAB2RGB).astype("uint8")) - - if not random_seed_loopback: - seed = seed + 1 - else: - seed = seed_to_int(None) - - denoising_strength = max(denoising_strength * 0.95, 0.1) - history.append(init_img) - - output_images = history - seed = initial_seed - - else: - output_images, seed, info, stats = process_images( - outpath=outpath, - func_init=init, - func_sample=sample, - prompt=prompt, - seed=seed, - sampler_name=sampler_name, - save_grid=save_grid, - batch_size=batch_size, - n_iter=n_iter, - steps=ddim_steps, - cfg_scale=cfg_scale, - width=width, - height=height, - prompt_matrix=separate_prompts, - use_GFPGAN=use_GFPGAN, - use_RealESRGAN=use_RealESRGAN, - realesrgan_model_name=RealESRGAN_model, - fp=fp, - normalize_prompt_weights=normalize_prompt_weights, - save_individual_images=save_individual_images, - init_img=init_img, - init_mask=init_mask, - mask_blur_strength=mask_blur_strength, - denoising_strength=denoising_strength, - noise_mode=noise_mode, - find_noise_steps=find_noise_steps, - mask_restore=mask_restore, - resize_mode=resize_mode, - uses_loopback=loopback, - sort_samples=group_by_prompt, - write_info_files=write_info_files, - jpg_sample=save_as_jpg - ) - - del sampler - - return output_images, seed, info, stats - -@retry((RuntimeError, KeyError) , tries=3) -def txt2img(prompt: str, ddim_steps: int, sampler_name: str, realesrgan_model_name: str, - n_iter: int, batch_size: int, cfg_scale: float, seed: Union[int, str, None], - height: int, width: int, separate_prompts:bool = False, normalize_prompt_weights:bool = True, - save_individual_images: bool = True, save_grid: bool = True, group_by_prompt: bool = True, - save_as_jpg: bool = True, use_GFPGAN: bool = True, use_RealESRGAN: bool = True, - RealESRGAN_model: str = "RealESRGAN_x4plus_anime_6B", fp = None, variant_amount: float = None, - variant_seed: int = None, ddim_eta:float = 0.0, write_info_files:bool = True): - - outpath = defaults.general.outdir_txt2img or defaults.general.outdir or "outputs/txt2img-samples" - - err = False - seed = seed_to_int(seed) - - #prompt_matrix = 0 in toggles - #normalize_prompt_weights = 1 in toggles - #skip_save = 2 not in toggles - #save_grid = 3 not in toggles - #sort_samples = 4 in toggles - #write_info_files = 5 in toggles - #jpg_sample = 6 in toggles - #use_GFPGAN = 7 in toggles - #use_RealESRGAN = 8 in toggles - - if sampler_name == 'PLMS': - sampler = PLMSSampler(st.session_state["model"]) - elif sampler_name == 'DDIM': - sampler = DDIMSampler(st.session_state["model"]) - elif sampler_name == 'k_dpm_2_a': - sampler = KDiffusionSampler(st.session_state["model"],'dpm_2_ancestral') - elif sampler_name == 'k_dpm_2': - sampler = KDiffusionSampler(st.session_state["model"],'dpm_2') - elif sampler_name == 'k_euler_a': - sampler = KDiffusionSampler(st.session_state["model"],'euler_ancestral') - elif sampler_name == 'k_euler': - sampler = KDiffusionSampler(st.session_state["model"],'euler') - elif sampler_name == 'k_heun': - sampler = KDiffusionSampler(st.session_state["model"],'heun') - elif sampler_name == 'k_lms': - sampler = KDiffusionSampler(st.session_state["model"],'lms') - else: - raise Exception("Unknown sampler: " + sampler_name) - - def init(): - pass - - def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name): - samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=cfg_scale, - unconditional_conditioning=unconditional_conditioning, eta=ddim_eta, x_T=x, img_callback=generation_callback, - log_every_t=int(defaults.general.update_preview_frequency)) - - return samples_ddim - - #try: - output_images, seed, info, stats = process_images( - outpath=outpath, - func_init=init, - func_sample=sample, - prompt=prompt, - seed=seed, - sampler_name=sampler_name, - save_grid=save_grid, - batch_size=batch_size, - n_iter=n_iter, - steps=ddim_steps, - cfg_scale=cfg_scale, - width=width, - height=height, - prompt_matrix=separate_prompts, - use_GFPGAN=use_GFPGAN, - use_RealESRGAN=use_RealESRGAN, - realesrgan_model_name=realesrgan_model_name, - fp=fp, - ddim_eta=ddim_eta, - normalize_prompt_weights=normalize_prompt_weights, - save_individual_images=save_individual_images, - sort_samples=group_by_prompt, - write_info_files=write_info_files, - jpg_sample=save_as_jpg, - variant_amount=variant_amount, - variant_seed=variant_seed, - ) - - del sampler - - return output_images, seed, info, stats - - #except RuntimeError as e: - #err = e - #err_msg = f'CRASHED:


Please wait while the program restarts.' - #stats = err_msg - #return [], seed, 'err', stats - - -# -def txt2vid( - # -------------------------------------- - # args you probably want to change - prompts = ["blueberry spaghetti", "strawberry spaghetti"], # prompt to dream about - gpu:int = defaults.general.gpu, # id of the gpu to run on - #name:str = 'test', # name of this project, for the output directory - #rootdir:str = defaults.general.outdir, - num_steps:int = 200, # number of steps between each pair of sampled points - max_frames:int = 10000, # number of frames to write and then exit the script - num_inference_steps:int = 50, # more (e.g. 100, 200 etc) can create slightly better images - cfg_scale:float = 5.0, # can depend on the prompt. usually somewhere between 3-10 is good - do_loop = False, - use_lerp_for_text = False, - seeds = None, - quality:int = 100, # for jpeg compression of the output images - eta:float = 0.0, - width:int = 256, - height:int = 256, - weights_path = "CompVis/stable-diffusion-v1-4", - scheduler="klms", # choices: default, ddim, klms - disable_tqdm = False, - #----------------------------------------------- - beta_start = 0.0001, - beta_end = 0.00012, - beta_schedule = "scaled_linear" - ): - """ - prompt = ["blueberry spaghetti", "strawberry spaghetti"], # prompt to dream about - gpu:int = defaults.general.gpu, # id of the gpu to run on - #name:str = 'test', # name of this project, for the output directory - #rootdir:str = defaults.general.outdir, - num_steps:int = 200, # number of steps between each pair of sampled points - max_frames:int = 10000, # number of frames to write and then exit the script - num_inference_steps:int = 50, # more (e.g. 100, 200 etc) can create slightly better images - cfg_scale:float = 5.0, # can depend on the prompt. usually somewhere between 3-10 is good - do_loop = False, - use_lerp_for_text = False, - seed = None, - quality:int = 100, # for jpeg compression of the output images - eta:float = 0.0, - width:int = 256, - height:int = 256, - weights_path = "CompVis/stable-diffusion-v1-4", - scheduler="klms", # choices: default, ddim, klms - disable_tqdm = False, - beta_start = 0.0001, - beta_end = 0.00012, - beta_schedule = "scaled_linear" - """ - mem_mon = MemUsageMonitor('MemMon') - mem_mon.start() - - - seeds = seed_to_int(seeds) - - # We add an extra frame because most - # of the time the first frame is just the noise. - max_frames +=1 - - assert torch.cuda.is_available() - assert height % 8 == 0 and width % 8 == 0 - torch.manual_seed(seeds) - torch_device = f"cuda:{gpu}" - - # init the output dir - sanitized_prompt = slugify(prompts) - - full_path = os.path.join(os.getcwd(), defaults.general.outdir, "txt2vid-samples", "samples", sanitized_prompt) - - if len(full_path) > 220: - sanitized_prompt = sanitized_prompt[:220-len(full_path)] - full_path = os.path.join(os.getcwd(), defaults.general.outdir, "txt2vid-samples", "samples", sanitized_prompt) - - os.makedirs(full_path, exist_ok=True) - - # Write prompt info to file in output dir so we can keep track of what we did - if st.session_state.write_info_files: - with open(os.path.join(full_path , f'{slugify(str(seeds))}_config.json' if len(prompts) > 1 else "prompts_config.json"), "w") as outfile: - outfile.write(json.dumps( - dict( - prompts = prompts, - gpu = gpu, - num_steps = num_steps, - max_frames = max_frames, - num_inference_steps = num_inference_steps, - cfg_scale = cfg_scale, - do_loop = do_loop, - use_lerp_for_text = use_lerp_for_text, - seeds = seeds, - quality = quality, - eta = eta, - width = width, - height = height, - weights_path = weights_path, - scheduler=scheduler, - disable_tqdm = disable_tqdm, - beta_start = beta_start, - beta_end = beta_end, - beta_schedule = beta_schedule - ), - indent=2, - sort_keys=False, - )) - - #print(scheduler) - default_scheduler = PNDMScheduler( - beta_start=beta_start, beta_end=beta_end, beta_schedule=beta_schedule - ) - # ------------------------------------------------------------------------------ - #Schedulers - ddim_scheduler = DDIMScheduler( - beta_start=beta_start, - beta_end=beta_end, - beta_schedule=beta_schedule, - clip_sample=False, - set_alpha_to_one=False, - ) - - klms_scheduler = LMSDiscreteScheduler( - beta_start=beta_start, beta_end=beta_end, beta_schedule=beta_schedule - ) - - SCHEDULERS = dict(default=default_scheduler, ddim=ddim_scheduler, klms=klms_scheduler) - - # ------------------------------------------------------------------------------ - - #if weights_path == "Stable Diffusion v1.4": - #weights_path = "CompVis/stable-diffusion-v1-4" - #else: - #weights_path = os.path.join("./models", "custom", f"{weights_path}.ckpt") - - try: - if "model" in st.session_state: - del st.session_state["model"] - except: - pass - - #print (st.session_state["weights_path"] != weights_path) - - try: - if not st.session_state["pipe"] or st.session_state["weights_path"] != weights_path: - if st.session_state["weights_path"] != weights_path: - del st.session_state["weights_path"] - - st.session_state["weights_path"] = weights_path - st.session_state["pipe"] = StableDiffusionPipeline.from_pretrained( - weights_path, - use_local_file=True, - use_auth_token=True, - #torch_dtype=torch.float16 if not defaults.general.no_half else None, - revision="fp16" if not defaults.general.no_half else None - ) - - st.session_state["pipe"].unet.to(torch_device) - st.session_state["pipe"].vae.to(torch_device) - st.session_state["pipe"].text_encoder.to(torch_device) - print("Tx2Vid Model Loaded") - else: - print("Tx2Vid Model already Loaded") - - except: - #del st.session_state["weights_path"] - #del st.session_state["pipe"] - - st.session_state["weights_path"] = weights_path - st.session_state["pipe"] = StableDiffusionPipeline.from_pretrained( - weights_path, - use_local_file=True, - use_auth_token=True, - #torch_dtype=torch.float16 if not defaults.general.no_half else None, - revision="fp16" if not defaults.general.no_half else None - ) - - st.session_state["pipe"].unet.to(torch_device) - st.session_state["pipe"].vae.to(torch_device) - st.session_state["pipe"].text_encoder.to(torch_device) - print("Tx2Vid Model Loaded") - - st.session_state["pipe"].scheduler = SCHEDULERS[scheduler] - - # get the conditional text embeddings based on the prompt - text_input = st.session_state["pipe"].tokenizer(prompts, padding="max_length", max_length=st.session_state["pipe"].tokenizer.model_max_length, truncation=True, return_tensors="pt") - cond_embeddings = st.session_state["pipe"].text_encoder(text_input.input_ids.to(torch_device))[0] # shape [1, 77, 768] - - # sample a source - init1 = torch.randn((1, st.session_state["pipe"].unet.in_channels, height // 8, width // 8), device=torch_device) - - if do_loop: - prompts = [prompts, prompts] - seeds = [seeds, seeds] - #first_seed, *seeds = seeds - #prompts.append(prompts) - #seeds.append(first_seed) - - - # iterate the loop - frames = [] - frame_index = 0 - - st.session_state["frame_total_duration"] = 0 - st.session_state["frame_total_speed"] = 0 - - try: - while frame_index < max_frames: - st.session_state["frame_duration"] = 0 - st.session_state["frame_speed"] = 0 - st.session_state["current_frame"] = frame_index - - # sample the destination - init2 = torch.randn((1, st.session_state["pipe"].unet.in_channels, height // 8, width // 8), device=torch_device) - - for i, t in enumerate(np.linspace(0, 1, num_steps)): - start = timeit.default_timer() - print(f"COUNT: {frame_index+1}/{num_steps}") - - #if use_lerp_for_text: - #init = torch.lerp(init1, init2, float(t)) - #else: - #init = slerp(gpu, float(t), init1, init2) - - init = slerp(gpu, float(t), init1, init2) - - with autocast("cuda"): - image = diffuse(st.session_state["pipe"], cond_embeddings, init, num_inference_steps, cfg_scale, eta) - - im = Image.fromarray(image) - outpath = os.path.join(full_path, 'frame%06d.png' % frame_index) - im.save(outpath, quality=quality) - - # send the image to the UI to update it - #st.session_state["preview_image"].image(im) - - #append the frames to the frames list so we can use them later. - frames.append(np.asarray(im)) - - #increase frame_index counter. - frame_index += 1 - - st.session_state["current_frame"] = frame_index - - duration = timeit.default_timer() - start - - if duration >= 1: - speed = "s/it" - else: - speed = "it/s" - duration = 1 / duration - - st.session_state["frame_duration"] = duration - st.session_state["frame_speed"] = speed - - init1 = init2 - - except StopException: - pass - - - if st.session_state['save_video']: - # write video to memory - #output = io.BytesIO() - #writer = imageio.get_writer(os.path.join(os.getcwd(), defaults.general.outdir, "txt2vid-samples"), im, extension=".mp4", fps=30) - try: - video_path = os.path.join(os.getcwd(), defaults.general.outdir, "txt2vid-samples","temp.mp4") - writer = imageio.get_writer(video_path, fps=24) - for frame in frames: - writer.append_data(frame) - writer.close() - except: - print("Can't save video, skipping.") - - # show video preview on the UI - st.session_state["preview_video"].video(open(video_path, 'rb').read()) - - mem_max_used, mem_total = mem_mon.read_and_stop() - time_diff = time.time()- start - - info = f""" - {prompts} - Sampling Steps: {num_steps}, Sampler: {scheduler}, CFG scale: {cfg_scale}, Seed: {seeds}, Max Frames: {max_frames}""".strip() - stats = f''' - Took { round(time_diff, 2) }s total ({ round(time_diff/(max_frames),2) }s per image) - Peak memory usage: { -(mem_max_used // -1_048_576) } MiB / { -(mem_total // -1_048_576) } MiB / { round(mem_max_used/mem_total*100, 3) }%''' - - return im, seeds, info, stats - - # functions to load css locally OR remotely starts here. Options exist for future flexibility. Called as st.markdown with unsafe_allow_html as css injection # TODO, maybe look into async loading the file especially for remote fetching def local_css(file_name): - with open(file_name) as f: - st.markdown(f'', unsafe_allow_html=True) + with open(file_name) as f: + st.markdown(f'', unsafe_allow_html=True) def remote_css(url): - st.markdown(f'', unsafe_allow_html=True) + st.markdown(f'', unsafe_allow_html=True) def load_css(isLocal, nameOrURL): if(isLocal): @@ -2103,10 +40,8 @@ def load_css(isLocal, nameOrURL): else: remote_css(nameOrURL) - -# main functions to define streamlit layout here def layout(): - + """Layout functions to define all the streamlit layout here.""" st.set_page_config(page_title="Stable Diffusion Playground", layout="wide") with st.empty(): @@ -2115,31 +50,31 @@ def layout(): # check if the models exist on their respective folders if os.path.exists(os.path.join(defaults.general.GFPGAN_dir, "experiments", "pretrained_models", "GFPGANv1.3.pth")): - GFPGAN_available = True + st.session_state["GFPGAN_available"] = True else: - GFPGAN_available = False + st.session_state["GFPGAN_available"] = False if os.path.exists(os.path.join(defaults.general.RealESRGAN_dir, "experiments","pretrained_models", f"{defaults.general.RealESRGAN_model}.pth")): - RealESRGAN_available = True + st.session_state["RealESRGAN_available"] = True else: - RealESRGAN_available = False + st.session_state["RealESRGAN_available"] = False # Allow for custom models to be used instead of the default one, # an example would be Waifu-Diffusion or any other fine tune of stable diffusion - custom_models:sorted = [] + st.session_state["custom_models"]:sorted = [] for root, dirs, files in os.walk(os.path.join("models", "custom")): for file in files: if os.path.splitext(file)[1] == '.ckpt': - fullpath = os.path.join(root, file) + #fullpath = os.path.join(root, file) #print(fullpath) - custom_models.append(os.path.splitext(file)[0]) + st.session_state["custom_models"].append(os.path.splitext(file)[0]) #print (os.path.splitext(file)[0]) - if len(custom_models) > 0: - CustomModel_available = True - custom_models.append("Stable Diffusion v1.4") + if len(st.session_state["custom_models"]) > 0: + st.session_state["CustomModel_available"] = True + st.session_state["custom_models"].append("Stable Diffusion v1.4") else: - CustomModel_available = False + st.session_state["CustomModel_available"] = False with st.sidebar: # The global settings section will be moved to the Settings page. @@ -2154,591 +89,25 @@ def layout(): tabs = on_hover_tabs(tabName=['Stable Diffusion', "Textual Inversion","Model Manager","Settings"], iconName=['dashboard','model_training' ,'cloud_download', 'settings'], default_choice=0) - if tabs =='Stable Diffusion': txt2img_tab, img2img_tab, txt2vid_tab, postprocessing_tab = st.tabs(["Text-to-Image Unified", "Image-to-Image Unified", - "Text-to-Video","Post-Processing"]) - with txt2img_tab: - with st.form("txt2img-inputs"): - st.session_state["generation_mode"] = "txt2img" - - input_col1, generate_col1 = st.columns([10,1]) - - with input_col1: - #prompt = st.text_area("Input Text","") - prompt = st.text_input("Input Text","", placeholder="A corgi wearing a top hat as an oil painting.") - - # Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way. - generate_col1.write("") - generate_col1.write("") - generate_button = generate_col1.form_submit_button("Generate") - - # creating the page layout using columns - col1, col2, col3 = st.columns([1,2,1], gap="large") - - with col1: - width = st.slider("Width:", min_value=64, max_value=1024, value=defaults.txt2img.width, step=64) - height = st.slider("Height:", min_value=64, max_value=1024, value=defaults.txt2img.height, step=64) - cfg_scale = st.slider("CFG (Classifier Free Guidance Scale):", min_value=1.0, max_value=30.0, value=defaults.txt2img.cfg_scale, step=0.5, help="How strongly the image should follow the prompt.") - seed = st.text_input("Seed:", value=defaults.txt2img.seed, help=" The seed to use, if left blank a random seed will be generated.") - batch_count = st.slider("Batch count.", min_value=1, max_value=100, value=defaults.txt2img.batch_count, step=1, help="How many iterations or batches of images to generate in total.") - #batch_size = st.slider("Batch size", min_value=1, max_value=250, value=defaults.txt2img.batch_size, step=1, - #help="How many images are at once in a batch.\ - #It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish generation as more images are generated at once.\ - #Default: 1") - - with st.expander("Preview Settings"): - st.session_state["update_preview"] = st.checkbox("Update Image Preview", value=defaults.txt2img.update_preview, - help="If enabled the image preview will be updated during the generation instead of at the end. \ - You can use the Update Preview \Frequency option bellow to customize how frequent it's updated. \ - By default this is enabled and the frequency is set to 1 step.") - - st.session_state["update_preview_frequency"] = st.text_input("Update Image Preview Frequency", value=defaults.txt2img.update_preview_frequency, - help="Frequency in steps at which the the preview image is updated. By default the frequency \ - is set to 1 step.") - - with col2: - preview_tab, gallery_tab = st.tabs(["Preview", "Gallery"]) - - with preview_tab: - #st.write("Image") - #Image for testing - #image = Image.open(requests.get("https://icon-library.com/images/image-placeholder-icon/image-placeholder-icon-13.jpg", stream=True).raw).convert('RGB') - #new_image = image.resize((175, 240)) - #preview_image = st.image(image) - - # create an empty container for the image, progress bar, etc so we can update it later and use session_state to hold them globally. - st.session_state["preview_image"] = st.empty() - st.session_state["preview_video"] = st.empty() - - st.session_state["loading"] = st.empty() - - st.session_state["progress_bar_text"] = st.empty() - st.session_state["progress_bar"] = st.empty() - - message = st.empty() - - with gallery_tab: - st.write('Here should be the image gallery, if I could make a grid in streamlit.') - - with col3: - # If we have custom models available on the "models/custom" - #folder then we show a menu to select which model we want to use, otherwise we use the main model for SD - if CustomModel_available: - custom_model = st.selectbox("Custom Model:", custom_models, - index=custom_models.index(defaults.general.default_model), - help="Select the model you want to use. This option is only available if you have custom models \ - on your 'models/custom' folder. The model name that will be shown here is the same as the name\ - the file for the model has on said folder, it is recommended to give the .ckpt file a name that \ - will make it easier for you to distinguish it from other models. Default: Stable Diffusion v1.4") - else: - custom_model = "Stable Diffusion v1.4" - - st.session_state.sampling_steps = st.slider("Sampling Steps", value=defaults.txt2img.sampling_steps, min_value=1, max_value=250) - - sampler_name_list = ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"] - sampler_name = st.selectbox("Sampling method", sampler_name_list, - index=sampler_name_list.index(defaults.txt2img.default_sampler), help="Sampling method to use. Default: k_euler") - - - - #basic_tab, advanced_tab = st.tabs(["Basic", "Advanced"]) - - #with basic_tab: - #summit_on_enter = st.radio("Submit on enter?", ("Yes", "No"), horizontal=True, - #help="Press the Enter key to summit, when 'No' is selected you can use the Enter key to write multiple lines.") - - with st.expander("Advanced"): - separate_prompts = st.checkbox("Create Prompt Matrix.", value=False, - help="Separate multiple prompts using the `|` character, and get all combinations of them.") - normalize_prompt_weights = st.checkbox("Normalize Prompt Weights.", - value=defaults.txt2img.normalize_prompt_weights, help="Ensure the sum of all weights add up to 1.0") - save_individual_images = st.checkbox("Save individual images.", value=defaults.txt2img.save_individual_images, - help="Save each image generated before any filter or enhancement is applied.") - save_grid = st.checkbox("Save grid",value=defaults.txt2img.save_grid, help="Save a grid with all the images generated into a single image.") - group_by_prompt = st.checkbox("Group results by prompt", value=defaults.txt2img.group_by_prompt, - help="Saves all the images with the same prompt into the same folder. \ - When using a prompt matrix each prompt combination will have its own folder.") - write_info_files = st.checkbox("Write Info file", value=defaults.txt2img.write_info_files, - help="Save a file next to the image with informartion about the generation.") - save_as_jpg = st.checkbox("Save samples as jpg", value=defaults.txt2img.save_as_jpg, help="Saves the images as jpg instead of png.") - - if GFPGAN_available: - use_GFPGAN = st.checkbox("Use GFPGAN", value=defaults.txt2img.use_GFPGAN, - help="Uses the GFPGAN model to improve faces after the generation. This greatly improve the quality and \ - consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.") - else: - use_GFPGAN = False - - if RealESRGAN_available: - use_RealESRGAN = st.checkbox("Use RealESRGAN", value=defaults.txt2img.use_RealESRGAN, - help="Uses the RealESRGAN model to upscale the images after the generation. This greatly improve the \ - quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.") - RealESRGAN_model = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0) - else: - use_RealESRGAN = False - RealESRGAN_model = "RealESRGAN_x4plus" - - variant_amount = st.slider("Variant Amount:", value=defaults.txt2img.variant_amount, min_value=0.0, max_value=1.0, step=0.01) - variant_seed = st.text_input("Variant Seed:", value=defaults.txt2img.seed, - help="The seed to use when generating a variant, if left blank a random seed will be generated.") - - - if generate_button: - #print("Loading models") - # load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry. - load_models(False, use_GFPGAN, use_RealESRGAN, RealESRGAN_model, CustomModel_available, custom_model) - - try: - output_images, seed, info, stats = txt2img(prompt, st.session_state.sampling_steps, sampler_name, RealESRGAN_model, batch_count, 1, - cfg_scale, seed, height, width, separate_prompts, normalize_prompt_weights, save_individual_images, - save_grid, group_by_prompt, save_as_jpg, use_GFPGAN, use_RealESRGAN, RealESRGAN_model, fp=defaults.general.fp, - variant_amount=variant_amount, variant_seed=variant_seed, write_info_files=write_info_files) - - message.success('Render Complete: ' + info + '; Stats: ' + stats, icon="✅") - - except KeyError: - output_images, seed, info, stats = txt2img(prompt, st.session_state.sampling_steps, sampler_name, RealESRGAN_model, batch_count, 1, - cfg_scale, seed, height, width, separate_prompts, normalize_prompt_weights, save_individual_images, - save_grid, group_by_prompt, save_as_jpg, use_GFPGAN, use_RealESRGAN, RealESRGAN_model, fp=defaults.general.fp, - variant_amount=variant_amount, variant_seed=variant_seed, write_info_files=write_info_files) - - message.success('Render Complete: ' + info + '; Stats: ' + stats, icon="✅") - - except (StopException): - print(f"Received Streamlit StopException") - - # this will render all the images at the end of the generation but its better if its moved to a second tab inside col2 and shown as a gallery. - # use the current col2 first tab to show the preview_img and update it as its generated. - #preview_image.image(output_images) - - with img2img_tab: - with st.form("img2img-inputs"): - st.session_state["generation_mode"] = "img2img" - - img2img_input_col, img2img_generate_col = st.columns([10,1]) - with img2img_input_col: - #prompt = st.text_area("Input Text","") - prompt = st.text_input("Input Text","", placeholder="A corgi wearing a top hat as an oil painting.") - - # Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way. - img2img_generate_col.write("") - img2img_generate_col.write("") - generate_button = img2img_generate_col.form_submit_button("Generate") - - - # creating the page layout using columns - col1_img2img_layout, col2_img2img_layout, col3_img2img_layout = st.columns([1,2,2], gap="small") - - with col1_img2img_layout: - # If we have custom models available on the "models/custom" - #folder then we show a menu to select which model we want to use, otherwise we use the main model for SD - if CustomModel_available: - custom_model = st.selectbox("Custom Model:", custom_models, - index=custom_models.index(defaults.general.default_model), - help="Select the model you want to use. This option is only available if you have custom models \ - on your 'models/custom' folder. The model name that will be shown here is the same as the name\ - the file for the model has on said folder, it is recommended to give the .ckpt file a name that \ - will make it easier for you to distinguish it from other models. Default: Stable Diffusion v1.4") - else: - custom_model = "Stable Diffusion v1.4" - - st.session_state["sampling_steps"] = st.slider("Sampling Steps", value=defaults.img2img.sampling_steps, min_value=1, max_value=500) - st.session_state["sampler_name"] = st.selectbox("Sampling method", - ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"], - index=sampler_name_list.index(defaults.img2img.sampler_name), - help="Sampling method to use.") - - mask_mode_list = ["Mask", "Inverted mask", "Image alpha"] - mask_mode = st.selectbox("Mask Mode", mask_mode_list, - help="Select how you want your image to be masked.\"Mask\" modifies the image where the mask is white.\n\ - \"Inverted mask\" modifies the image where the mask is black. \"Image alpha\" modifies the image where the image is transparent." - ) - mask_mode = mask_mode_list.index(mask_mode) - - width = st.slider("Width:", min_value=64, max_value=1024, value=defaults.img2img.width, step=64) - height = st.slider("Height:", min_value=64, max_value=1024, value=defaults.img2img.height, step=64) - seed = st.text_input("Seed:", value=defaults.img2img.seed, help=" The seed to use, if left blank a random seed will be generated.") - noise_mode_list = ["Seed", "Find Noise", "Matched Noise", "Find+Matched Noise"] - noise_mode = st.selectbox( - "Noise Mode", noise_mode_list, - help="" - ) - noise_mode = noise_mode_list.index(noise_mode) - find_noise_steps = st.slider("Find Noise Steps", value=100, min_value=1, max_value=500) - batch_count = st.slider("Batch count.", min_value=1, max_value=100, value=defaults.img2img.batch_count, step=1, - help="How many iterations or batches of images to generate in total.") - - # - with st.expander("Advanced"): - separate_prompts = st.checkbox("Create Prompt Matrix.", value=defaults.img2img.separate_prompts, - help="Separate multiple prompts using the `|` character, and get all combinations of them.") - normalize_prompt_weights = st.checkbox("Normalize Prompt Weights.", value=defaults.img2img.normalize_prompt_weights, - help="Ensure the sum of all weights add up to 1.0") - loopback = st.checkbox("Loopback.", value=defaults.img2img.loopback, help="Use images from previous batch when creating next batch.") - random_seed_loopback = st.checkbox("Random loopback seed.", value=defaults.img2img.random_seed_loopback, help="Random loopback seed") - save_individual_images = st.checkbox("Save individual images.", value=defaults.img2img.save_individual_images, - help="Save each image generated before any filter or enhancement is applied.") - save_grid = st.checkbox("Save grid",value=defaults.img2img.save_grid, help="Save a grid with all the images generated into a single image.") - group_by_prompt = st.checkbox("Group results by prompt", value=defaults.img2img.group_by_prompt, - help="Saves all the images with the same prompt into the same folder. \ - When using a prompt matrix each prompt combination will have its own folder.") - write_info_files = st.checkbox("Write Info file", value=defaults.img2img.write_info_files, - help="Save a file next to the image with informartion about the generation.") - save_as_jpg = st.checkbox("Save samples as jpg", value=defaults.img2img.save_as_jpg, help="Saves the images as jpg instead of png.") - - if GFPGAN_available: - use_GFPGAN = st.checkbox("Use GFPGAN", value=defaults.img2img.use_GFPGAN, help="Uses the GFPGAN model to improve faces after the generation.\ - This greatly improve the quality and consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.") - else: - use_GFPGAN = False - - if RealESRGAN_available: - use_RealESRGAN = st.checkbox("Use RealESRGAN", value=defaults.img2img.use_RealESRGAN, - help="Uses the RealESRGAN model to upscale the images after the generation.\ - This greatly improve the quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.") - RealESRGAN_model = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0) - else: - use_RealESRGAN = False - RealESRGAN_model = "RealESRGAN_x4plus" - - variant_amount = st.slider("Variant Amount:", value=defaults.img2img.variant_amount, min_value=0.0, max_value=1.0, step=0.01) - variant_seed = st.text_input("Variant Seed:", value=defaults.img2img.variant_seed, - help="The seed to use when generating a variant, if left blank a random seed will be generated.") - cfg_scale = st.slider("CFG (Classifier Free Guidance Scale):", min_value=1.0, max_value=30.0, value=defaults.img2img.cfg_scale, step=0.5, - help="How strongly the image should follow the prompt.") - batch_size = st.slider("Batch size", min_value=1, max_value=100, value=defaults.img2img.batch_size, step=1, - help="How many images are at once in a batch.\ - It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish \ - generation as more images are generated at once.\ - Default: 1") - - st.session_state["denoising_strength"] = st.slider("Denoising Strength:", value=defaults.img2img.denoising_strength, - min_value=0.01, max_value=1.0, step=0.01) - - with st.expander("Preview Settings"): - st.session_state["update_preview"] = st.checkbox("Update Image Preview", value=defaults.img2img.update_preview, - help="If enabled the image preview will be updated during the generation instead of at the end. \ - You can use the Update Preview \Frequency option bellow to customize how frequent it's updated. \ - By default this is enabled and the frequency is set to 1 step.") - - st.session_state["update_preview_frequency"] = st.text_input("Update Image Preview Frequency", value=defaults.img2img.update_preview_frequency, - help="Frequency in steps at which the the preview image is updated. By default the frequency \ - is set to 1 step.") - - with col2_img2img_layout: - editor_tab = st.tabs(["Editor"]) - - editor_image = st.empty() - st.session_state["editor_image"] = editor_image - - refresh_button = st.form_submit_button("Refresh") - - masked_image_holder = st.empty() - image_holder = st.empty() - - uploaded_images = st.file_uploader( - "Upload Image", accept_multiple_files=False, type=["png", "jpg", "jpeg"], - help="Upload an image which will be used for the image to image generation.", - ) - if uploaded_images: - image = Image.open(uploaded_images).convert('RGBA') - new_img = image.resize((width, height)) - image_holder.image(new_img) - - mask_holder = st.empty() - - uploaded_masks = st.file_uploader( - "Upload Mask", accept_multiple_files=False, type=["png", "jpg", "jpeg"], - help="Upload an mask image which will be used for masking the image to image generation.", - ) - if uploaded_masks: - mask = Image.open(uploaded_masks) - if mask.mode == "RGBA": - mask = mask.convert('RGBA') - background = Image.new('RGBA', mask.size, (0, 0, 0)) - mask = Image.alpha_composite(background, mask) - mask = mask.resize((width, height)) - mask_holder.image(mask) - - if uploaded_images and uploaded_masks: - if mask_mode != 2: - final_img = new_img.copy() - alpha_layer = mask.convert('L') - strength = st.session_state["denoising_strength"] - if mask_mode == 0: - alpha_layer = ImageOps.invert(alpha_layer) - alpha_layer = alpha_layer.point(lambda a: a * strength) - alpha_layer = ImageOps.invert(alpha_layer) - elif mask_mode == 1: - alpha_layer = alpha_layer.point(lambda a: a * strength) - alpha_layer = ImageOps.invert(alpha_layer) - - final_img.putalpha(alpha_layer) - - with masked_image_holder.container(): - st.text("Masked Image Preview") - st.image(final_img) - - - with col3_img2img_layout: - result_tab = st.tabs(["Result"]) - - # create an empty container for the image, progress bar, etc so we can update it later and use session_state to hold them globally. - preview_image = st.empty() - st.session_state["preview_image"] = preview_image - - #st.session_state["loading"] = st.empty() - - st.session_state["progress_bar_text"] = st.empty() - st.session_state["progress_bar"] = st.empty() - - - message = st.empty() - - #if uploaded_images: - #image = Image.open(uploaded_images).convert('RGB') - ##img_array = np.array(image) # if you want to pass it to OpenCV - #new_img = image.resize((width, height)) - #st.image(new_img, use_column_width=True) - - - if generate_button: - #print("Loading models") - # load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry. - load_models(False, use_GFPGAN, use_RealESRGAN, RealESRGAN_model, CustomModel_available, custom_model) - if uploaded_images: - image = Image.open(uploaded_images).convert('RGBA') - new_img = image.resize((width, height)) - #img_array = np.array(image) # if you want to pass it to OpenCV - new_mask = None - if uploaded_masks: - mask = Image.open(uploaded_masks).convert('RGBA') - new_mask = mask.resize((width, height)) - - try: - output_images, seed, info, stats = img2img(prompt=prompt, init_info=new_img, init_info_mask=new_mask, mask_mode=mask_mode, ddim_steps=st.session_state["sampling_steps"], - sampler_name=st.session_state["sampler_name"], n_iter=batch_count, - cfg_scale=cfg_scale, denoising_strength=st.session_state["denoising_strength"], variant_seed=variant_seed, - seed=seed, noise_mode=noise_mode, find_noise_steps=find_noise_steps, width=width, height=height, fp=defaults.general.fp, variant_amount=variant_amount, - ddim_eta=0.0, write_info_files=write_info_files, RealESRGAN_model=RealESRGAN_model, - separate_prompts=separate_prompts, normalize_prompt_weights=normalize_prompt_weights, - save_individual_images=save_individual_images, save_grid=save_grid, - group_by_prompt=group_by_prompt, save_as_jpg=save_as_jpg, use_GFPGAN=use_GFPGAN, - use_RealESRGAN=use_RealESRGAN if not loopback else False, loopback=loopback - ) + "Text-to-Video","Post-Processing"]) + with txt2img_tab: + from txt2img import layout + layout() + + with img2img_tab: + from img2img import layout + layout() - #show a message when the generation is complete. - message.success('Render Complete: ' + info + '; Stats: ' + stats, icon="✅") - - except (StopException, KeyError): - print(f"Received Streamlit StopException") - - # this will render all the images at the end of the generation but its better if its moved to a second tab inside col2 and shown as a gallery. - # use the current col2 first tab to show the preview_img and update it as its generated. - #preview_image.image(output_images, width=750) - with txt2vid_tab: - with st.form("txt2vid-inputs"): - st.session_state["generation_mode"] = "txt2vid" - - input_col1, generate_col1 = st.columns([10,1]) - with input_col1: - #prompt = st.text_area("Input Text","") - prompt = st.text_input("Input Text","", placeholder="A corgi wearing a top hat as an oil painting.") - - # Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way. - generate_col1.write("") - generate_col1.write("") - generate_button = generate_col1.form_submit_button("Generate") - - # creating the page layout using columns - col1, col2, col3 = st.columns([1,2,1], gap="large") - - with col1: - width = st.slider("Width:", min_value=64, max_value=2048, value=defaults.txt2vid.width, step=64) - height = st.slider("Height:", min_value=64, max_value=2048, value=defaults.txt2vid.height, step=64) - cfg_scale = st.slider("CFG (Classifier Free Guidance Scale):", min_value=1.0, max_value=30.0, value=defaults.txt2vid.cfg_scale, step=0.5, help="How strongly the image should follow the prompt.") - seed = st.text_input("Seed:", value=defaults.txt2vid.seed, help=" The seed to use, if left blank a random seed will be generated.") - batch_count = st.slider("Batch count.", min_value=1, max_value=100, value=defaults.txt2vid.batch_count, step=1, help="How many iterations or batches of images to generate in total.") - #batch_size = st.slider("Batch size", min_value=1, max_value=250, value=defaults.txt2vid.batch_size, step=1, - #help="How many images are at once in a batch.\ - #It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish generation as more images are generated at once.\ - #Default: 1") - - st.session_state["max_frames"] = int(st.text_input("Max Frames:", value=defaults.txt2vid.max_frames, help="Specify the max number of frames you want to generate.")) - - with st.expander("Preview Settings"): - st.session_state["update_preview"] = st.checkbox("Update Image Preview", value=defaults.txt2vid.update_preview, - help="If enabled the image preview will be updated during the generation instead of at the end. \ - You can use the Update Preview \Frequency option bellow to customize how frequent it's updated. \ - By default this is enabled and the frequency is set to 1 step.") - - st.session_state["update_preview_frequency"] = st.text_input("Update Image Preview Frequency", value=defaults.txt2vid.update_preview_frequency, - help="Frequency in steps at which the the preview image is updated. By default the frequency \ - is set to 1 step.") - with col2: - preview_tab, gallery_tab = st.tabs(["Preview", "Gallery"]) - - with preview_tab: - #st.write("Image") - #Image for testing - #image = Image.open(requests.get("https://icon-library.com/images/image-placeholder-icon/image-placeholder-icon-13.jpg", stream=True).raw).convert('RGB') - #new_image = image.resize((175, 240)) - #preview_image = st.image(image) - - # create an empty container for the image, progress bar, etc so we can update it later and use session_state to hold them globally. - st.session_state["preview_image"] = st.empty() - - st.session_state["loading"] = st.empty() - - st.session_state["progress_bar_text"] = st.empty() - st.session_state["progress_bar"] = st.empty() - - generate_video = st.empty() - st.session_state["preview_video"] = st.empty() - - message = st.empty() - - with gallery_tab: - st.write('Here should be the image gallery, if I could make a grid in streamlit.') - - with col3: - # If we have custom models available on the "models/custom" - #folder then we show a menu to select which model we want to use, otherwise we use the main model for SD - #if CustomModel_available: - custom_model = st.selectbox("Custom Model:", defaults.txt2vid.custom_models_list, - index=defaults.txt2vid.custom_models_list.index(defaults.txt2vid.default_model), - help="Select the model you want to use. This option is only available if you have custom models \ - on your 'models/custom' folder. The model name that will be shown here is the same as the name\ - the file for the model has on said folder, it is recommended to give the .ckpt file a name that \ - will make it easier for you to distinguish it from other models. Default: Stable Diffusion v1.4") - - #st.session_state["weights_path"] = custom_model - #else: - #custom_model = "CompVis/stable-diffusion-v1-4" - #st.session_state["weights_path"] = f"CompVis/{slugify(custom_model.lower())}" - - st.session_state.sampling_steps = st.slider("Sampling Steps", value=defaults.txt2vid.sampling_steps, min_value=10, step=10, max_value=500, - help="Number of steps between each pair of sampled points") - st.session_state.num_inference_steps = st.slider("Inference Steps:", value=defaults.txt2vid.num_inference_steps, min_value=10,step=10, max_value=500, - help="Higher values (e.g. 100, 200 etc) can create better images.") - - #sampler_name_list = ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"] - #sampler_name = st.selectbox("Sampling method", sampler_name_list, - #index=sampler_name_list.index(defaults.txt2vid.default_sampler), help="Sampling method to use. Default: k_euler") - scheduler_name_list = ["klms", "ddim"] - scheduler_name = st.selectbox("Scheduler:", scheduler_name_list, - index=scheduler_name_list.index(defaults.txt2vid.scheduler_name), help="Scheduler to use. Default: klms") - - beta_scheduler_type_list = ["scaled_linear", "linear"] - beta_scheduler_type = st.selectbox("Beta Schedule Type:", beta_scheduler_type_list, - index=beta_scheduler_type_list.index(defaults.txt2vid.beta_scheduler_type), help="Schedule Type to use. Default: linear") + from txt2vid import layout + layout() - #basic_tab, advanced_tab = st.tabs(["Basic", "Advanced"]) - - #with basic_tab: - #summit_on_enter = st.radio("Submit on enter?", ("Yes", "No"), horizontal=True, - #help="Press the Enter key to summit, when 'No' is selected you can use the Enter key to write multiple lines.") - - with st.expander("Advanced"): - st.session_state["separate_prompts"] = st.checkbox("Create Prompt Matrix.", value=defaults.txt2vid.separate_prompts, - help="Separate multiple prompts using the `|` character, and get all combinations of them.") - st.session_state["normalize_prompt_weights"] = st.checkbox("Normalize Prompt Weights.", - value=defaults.txt2vid.normalize_prompt_weights, help="Ensure the sum of all weights add up to 1.0") - st.session_state["save_individual_images"] = st.checkbox("Save individual images.", - value=defaults.txt2vid.save_individual_images, help="Save each image generated before any filter or enhancement is applied.") - st.session_state["save_video"] = st.checkbox("Save video",value=defaults.txt2vid.save_video, help="Save a video with all the images generated as frames at the end of the generation.") - st.session_state["group_by_prompt"] = st.checkbox("Group results by prompt", value=defaults.txt2vid.group_by_prompt, - help="Saves all the images with the same prompt into the same folder. When using a prompt matrix each prompt combination will have its own folder.") - st.session_state["write_info_files"] = st.checkbox("Write Info file", value=defaults.txt2vid.write_info_files, - help="Save a file next to the image with informartion about the generation.") - st.session_state["dynamic_preview_frequency"] = st.checkbox("Dynamic Preview Frequency", value=defaults.txt2vid.dynamic_preview_frequency, - help="This option tries to find the best value at which we can update \ - the preview image during generation while minimizing the impact it has in performance. Default: True") - st.session_state["do_loop"] = st.checkbox("Do Loop", value=defaults.txt2vid.do_loop, - help="Do loop") - st.session_state["save_as_jpg"] = st.checkbox("Save samples as jpg", value=defaults.txt2vid.save_as_jpg, help="Saves the images as jpg instead of png.") - - if GFPGAN_available: - st.session_state["use_GFPGAN"] = st.checkbox("Use GFPGAN", value=defaults.txt2vid.use_GFPGAN, help="Uses the GFPGAN model to improve faces after the generation. This greatly improve the quality and consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.") - else: - st.session_state["use_GFPGAN"] = False - - if RealESRGAN_available: - st.session_state["use_RealESRGAN"] = st.checkbox("Use RealESRGAN", value=defaults.txt2vid.use_RealESRGAN, - help="Uses the RealESRGAN model to upscale the images after the generation. This greatly improve the quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.") - st.session_state["RealESRGAN_model"] = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0) - else: - st.session_state["use_RealESRGAN"] = False - st.session_state["RealESRGAN_model"] = "RealESRGAN_x4plus" - - st.session_state["variant_amount"] = st.slider("Variant Amount:", value=defaults.txt2vid.variant_amount, min_value=0.0, max_value=1.0, step=0.01) - st.session_state["variant_seed"] = st.text_input("Variant Seed:", value=defaults.txt2vid.seed, help="The seed to use when generating a variant, if left blank a random seed will be generated.") - st.session_state["beta_start"] = st.slider("Beta Start:", value=defaults.txt2vid.beta_start, min_value=0.0001, max_value=0.03, step=0.0001, format="%.4f") - st.session_state["beta_end"] = st.slider("Beta End:", value=defaults.txt2vid.beta_end, min_value=0.0001, max_value=0.03, step=0.0001, format="%.4f") - - if generate_button: - #print("Loading models") - # load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry. - #load_models(False, False, False, RealESRGAN_model, CustomModel_available=CustomModel_available, custom_model=custom_model) - - # run video generation - image, seed, info, stats = txt2vid(prompts=prompt, gpu=defaults.general.gpu, - num_steps=st.session_state.sampling_steps, max_frames=int(st.session_state.max_frames), - num_inference_steps=st.session_state.num_inference_steps, - cfg_scale=cfg_scale,do_loop=st.session_state["do_loop"], - seeds=seed, quality=100, eta=0.0, width=width, - height=height, weights_path=custom_model, scheduler=scheduler_name, - disable_tqdm=False, beta_start=st.session_state["beta_start"], beta_end=st.session_state["beta_end"], - beta_schedule=beta_scheduler_type) - - #message.success('Done!', icon="✅") - message.success('Render Complete: ' + info + '; Stats: ' + stats, icon="✅") - - #except (StopException, KeyError): - #print(f"Received Streamlit StopException") - - # this will render all the images at the end of the generation but its better if its moved to a second tab inside col2 and shown as a gallery. - # use the current col2 first tab to show the preview_img and update it as its generated. - #preview_image.image(output_images) - # elif tabs == 'Model Manager': - #search = st.text_input(label="Search", placeholder="Type the name of the model you want to search for.", help="") - - csvString = f""" - ,Stable Diffusion v1.4 , ./models/ldm/stable-diffusion-v1 , https://www.googleapis.com/storage/v1/b/aai-blog-files/o/sd-v1-4.ckpt?alt=media - ,GFPGAN v1.3 , ./src/gfpgan/experiments/pretrained_models , https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth - ,RealESRGAN_x4plus , ./src/realesrgan/experiments/pretrained_models , https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth - ,RealESRGAN_x4plus_anime_6B , ./src/realesrgan/experiments/pretrained_models , https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth - ,Waifu Diffusion v1.2 , ./models/custom , http://wd.links.sd:8880/wd-v1-2-full-ema.ckpt - ,TrinArt Stable Diffusion v2 , ./models/custom , https://huggingface.co/naclbit/trinart_stable_diffusion_v2/resolve/main/trinart2_step115000.ckpt - """ - colms = st.columns((1, 3, 5, 5)) - columns = ["№",'Model Name','Save Location','Download Link'] - - # Convert String into StringIO - csvStringIO = StringIO(csvString) - df = pd.read_csv(csvStringIO, sep=",", header=None, names=columns) - - for col, field_name in zip(colms, columns): - # table header - col.write(field_name) - - for x, model_name in enumerate(df["Model Name"]): - col1, col2, col3, col4 = st.columns((1, 3, 4, 6)) - col1.write(x) # index - col2.write(df['Model Name'][x]) - col3.write(df['Save Location'][x]) - col4.write(df['Download Link'][x]) - - - elif tabs == 'Settings': - import Settings - - st.write("Settings") - + from ModelManager import layout + if __name__ == '__main__': - layout() + layout() \ No newline at end of file diff --git a/scripts/webui_streamlit_old.py b/scripts/webui_streamlit_old.py new file mode 100644 index 0000000..372427f --- /dev/null +++ b/scripts/webui_streamlit_old.py @@ -0,0 +1,2738 @@ +import warnings + +import piexif +import piexif.helper +import json + +import streamlit as st +from streamlit import StopException + +#streamlit components section +from st_on_hover_tabs import on_hover_tabs + +import base64, cv2 +import os, sys, re, random, datetime, timeit +from PIL import Image, ImageFont, ImageDraw, ImageFilter, ImageOps +from PIL.PngImagePlugin import PngInfo +from scipy import integrate +import pandas as pd +import torch +from torchdiffeq import odeint +import k_diffusion as K +import math +import mimetypes +import numpy as np +import pynvml +import threading +import time, inspect +import torch +from torch import autocast +from torchvision import transforms +import torch.nn as nn +import yaml +from typing import Union +from pathlib import Path +#from tqdm import tqdm +from contextlib import nullcontext +from einops import rearrange +from omegaconf import OmegaConf +from io import StringIO +from ldm.models.diffusion.ddim import DDIMSampler +from ldm.models.diffusion.plms import PLMSSampler +from ldm.util import instantiate_from_config + +from retry import retry + +# these are for testing txt2vid, should be removed and we should use things from our own code. +from diffusers import StableDiffusionPipeline +from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler + +#will be used for saving and reading a video made by the txt2vid function +import imageio, io + +# we use python-slugify to make the filenames safe for windows and linux, its better than doing it manually +# install it with 'pip install python-slugify' +from slugify import slugify + +try: + # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. + from transformers import logging + + logging.set_verbosity_error() +except: + pass + +# remove some annoying deprecation warnings that show every now and then. +warnings.filterwarnings("ignore", category=DeprecationWarning) + +defaults = OmegaConf.load("configs/webui/webui_streamlit.yaml") +if (os.path.exists("configs/webui/userconfig_streamlit.yaml")): + user_defaults = OmegaConf.load("configs/webui/userconfig_streamlit.yaml"); + defaults = OmegaConf.merge(defaults, user_defaults) + +# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI +mimetypes.init() +mimetypes.add_type('application/javascript', '.js') + +# some of those options should not be changed at all because they would break the model, so I removed them from options. +opt_C = 4 +opt_f = 8 + +# should and will be moved to a settings menu in the UI at some point +grid_format = [s.lower() for s in defaults.general.grid_format.split(':')] +grid_lossless = False +grid_quality = 100 +if grid_format[0] == 'png': + grid_ext = 'png' + grid_format = 'png' +elif grid_format[0] in ['jpg', 'jpeg']: + grid_quality = int(grid_format[1]) if len(grid_format) > 1 else 100 + grid_ext = 'jpg' + grid_format = 'jpeg' +elif grid_format[0] == 'webp': + grid_quality = int(grid_format[1]) if len(grid_format) > 1 else 100 + grid_ext = 'webp' + grid_format = 'webp' + if grid_quality < 0: # e.g. webp:-100 for lossless mode + grid_lossless = True + grid_quality = abs(grid_quality) + +# should and will be moved to a settings menu in the UI at some point +save_format = [s.lower() for s in defaults.general.save_format.split(':')] +save_lossless = False +save_quality = 100 +if save_format[0] == 'png': + save_ext = 'png' + save_format = 'png' +elif save_format[0] in ['jpg', 'jpeg']: + save_quality = int(save_format[1]) if len(save_format) > 1 else 100 + save_ext = 'jpg' + save_format = 'jpeg' +elif save_format[0] == 'webp': + save_quality = int(save_format[1]) if len(save_format) > 1 else 100 + save_ext = 'webp' + save_format = 'webp' + if save_quality < 0: # e.g. webp:-100 for lossless mode + save_lossless = True + save_quality = abs(save_quality) + +# this should force GFPGAN and RealESRGAN onto the selected gpu as well +os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152 +os.environ["CUDA_VISIBLE_DEVICES"] = str(defaults.general.gpu) + +@retry(tries=5) +def load_models(continue_prev_run = False, use_GFPGAN=False, use_RealESRGAN=False, RealESRGAN_model="RealESRGAN_x4plus", + CustomModel_available=False, custom_model="Stable Diffusion v1.4"): + """Load the different models. We also reuse the models that are already in memory to speed things up instead of loading them again. """ + + print ("Loading models.") + + st.session_state["progress_bar_text"].text("Loading models...") + + # Generate random run ID + # Used to link runs linked w/ continue_prev_run which is not yet implemented + # Use URL and filesystem safe version just in case. + st.session_state["run_id"] = base64.urlsafe_b64encode( + os.urandom(6) + ).decode("ascii") + + # check what models we want to use and if the they are already loaded. + + if use_GFPGAN: + if "GFPGAN" in st.session_state: + print("GFPGAN already loaded") + else: + # Load GFPGAN + if os.path.exists(defaults.general.GFPGAN_dir): + try: + st.session_state["GFPGAN"] = load_GFPGAN() + print("Loaded GFPGAN") + except Exception: + import traceback + print("Error loading GFPGAN:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + else: + if "GFPGAN" in st.session_state: + del st.session_state["GFPGAN"] + + if use_RealESRGAN: + if "RealESRGAN" in st.session_state and st.session_state["RealESRGAN"].model.name == RealESRGAN_model: + print("RealESRGAN already loaded") + else: + #Load RealESRGAN + try: + # We first remove the variable in case it has something there, + # some errors can load the model incorrectly and leave things in memory. + del st.session_state["RealESRGAN"] + except KeyError: + pass + + if os.path.exists(defaults.general.RealESRGAN_dir): + # st.session_state is used for keeping the models in memory across multiple pages or runs. + st.session_state["RealESRGAN"] = load_RealESRGAN(RealESRGAN_model) + print("Loaded RealESRGAN with model "+ st.session_state["RealESRGAN"].model.name) + + else: + if "RealESRGAN" in st.session_state: + del st.session_state["RealESRGAN"] + + + + if "model" in st.session_state: + if "model" in st.session_state and st.session_state["custom_model"] == custom_model: + print("Model already loaded") + else: + try: + del st.session_state["model"] + except KeyError: + pass + + config = OmegaConf.load(defaults.general.default_model_config) + + if custom_model == defaults.general.default_model: + model = load_model_from_config(config, defaults.general.default_model_path) + else: + model = load_model_from_config(config, os.path.join("models","custom", f"{custom_model}.ckpt")) + + st.session_state["custom_model"] = custom_model + st.session_state["device"] = torch.device(f"cuda:{defaults.general.gpu}") if torch.cuda.is_available() else torch.device("cpu") + st.session_state["model"] = (model if defaults.general.no_half else model.half()).to(st.session_state["device"] ) + else: + config = OmegaConf.load(defaults.general.default_model_config) + + if custom_model == defaults.general.default_model: + model = load_model_from_config(config, defaults.general.default_model_path) + else: + model = load_model_from_config(config, os.path.join("models","custom", f"{custom_model}.ckpt")) + + st.session_state["custom_model"] = custom_model + st.session_state["device"] = torch.device(f"cuda:{defaults.general.gpu}") if torch.cuda.is_available() else torch.device("cpu") + st.session_state["model"] = (model if defaults.general.no_half else model.half()).to(st.session_state["device"] ) + + print("Model loaded.") + + +def load_model_from_config(config, ckpt, verbose=False): + + print(f"Loading model from {ckpt}") + + pl_sd = torch.load(ckpt, map_location="cpu") + if "global_step" in pl_sd: + print(f"Global Step: {pl_sd['global_step']}") + sd = pl_sd["state_dict"] + model = instantiate_from_config(config.model) + m, u = model.load_state_dict(sd, strict=False) + if len(m) > 0 and verbose: + print("missing keys:") + print(m) + if len(u) > 0 and verbose: + print("unexpected keys:") + print(u) + + model.cuda() + model.eval() + return model + +def load_sd_from_config(ckpt, verbose=False): + print(f"Loading model from {ckpt}") + pl_sd = torch.load(ckpt, map_location="cpu") + if "global_step" in pl_sd: + print(f"Global Step: {pl_sd['global_step']}") + sd = pl_sd["state_dict"] + return sd +# +@retry(tries=5) +def generation_callback(img, i=0): + + try: + if i == 0: + if img['i']: i = img['i'] + except TypeError: + pass + + + if i % int(defaults.general.update_preview_frequency) == 0 and defaults.general.update_preview: + #print (img) + #print (type(img)) + # The following lines will convert the tensor we got on img to an actual image we can render on the UI. + # It can probably be done in a better way for someone who knows what they're doing. I don't. + #print (img,isinstance(img, torch.Tensor)) + if isinstance(img, torch.Tensor): + x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(img) + else: + # When using the k Diffusion samplers they return a dict instead of a tensor that look like this: + # {'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised} + x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(img["denoised"]) + + x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) + + pil_image = transforms.ToPILImage()(x_samples_ddim.squeeze_(0)) + + # update image on the UI so we can see the progress + st.session_state["preview_image"].image(pil_image) + + # Show a progress bar so we can keep track of the progress even when the image progress is not been shown, + # Dont worry, it doesnt affect the performance. + if st.session_state["generation_mode"] == "txt2img": + percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps)) + st.session_state["progress_bar_text"].text( + f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps} {percent if percent < 100 else 100}%") + else: + if st.session_state["generation_mode"] == "img2img": + round_sampling_steps = round(st.session_state.sampling_steps * st.session_state["denoising_strength"]) + percent = int(100 * float(i+1 if i+1 < round_sampling_steps else round_sampling_steps)/float(round_sampling_steps)) + st.session_state["progress_bar_text"].text( + f"""Running step: {i+1 if i+1 < round_sampling_steps else round_sampling_steps}/{round_sampling_steps} {percent if percent < 100 else 100}%""") + else: + if st.session_state["generation_mode"] == "txt2vid": + percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps)) + st.session_state["progress_bar_text"].text( + f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps}" + f"{percent if percent < 100 else 100}%") + + st.session_state["progress_bar"].progress(percent if percent < 100 else 100) + + + +class MemUsageMonitor(threading.Thread): + stop_flag = False + max_usage = 0 + total = -1 + + def __init__(self, name): + threading.Thread.__init__(self) + self.name = name + + def run(self): + try: + pynvml.nvmlInit() + except: + print(f"[{self.name}] Unable to initialize NVIDIA management. No memory stats. \n") + return + print(f"[{self.name}] Recording max memory usage...\n") + handle = pynvml.nvmlDeviceGetHandleByIndex(defaults.general.gpu) + self.total = pynvml.nvmlDeviceGetMemoryInfo(handle).total + while not self.stop_flag: + m = pynvml.nvmlDeviceGetMemoryInfo(handle) + self.max_usage = max(self.max_usage, m.used) + # print(self.max_usage) + time.sleep(0.1) + print(f"[{self.name}] Stopped recording.\n") + pynvml.nvmlShutdown() + + def read(self): + return self.max_usage, self.total + + def stop(self): + self.stop_flag = True + + def read_and_stop(self): + self.stop_flag = True + return self.max_usage, self.total + +class CFGMaskedDenoiser(nn.Module): + def __init__(self, model): + super().__init__() + self.inner_model = model + + def forward(self, x, sigma, uncond, cond, cond_scale, mask, x0, xi): + x_in = x + x_in = torch.cat([x_in] * 2) + sigma_in = torch.cat([sigma] * 2) + cond_in = torch.cat([uncond, cond]) + uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) + denoised = uncond + (cond - uncond) * cond_scale + + if mask is not None: + assert x0 is not None + img_orig = x0 + mask_inv = 1. - mask + denoised = (img_orig * mask_inv) + (mask * denoised) + + return denoised + +class CFGDenoiser(nn.Module): + def __init__(self, model): + super().__init__() + self.inner_model = model + + def forward(self, x, sigma, uncond, cond, cond_scale): + x_in = torch.cat([x] * 2) + sigma_in = torch.cat([sigma] * 2) + cond_in = torch.cat([uncond, cond]) + uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) + return uncond + (cond - uncond) * cond_scale +def append_zero(x): + return torch.cat([x, x.new_zeros([1])]) +def append_dims(x, target_dims): + """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" + dims_to_append = target_dims - x.ndim + if dims_to_append < 0: + raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') + return x[(...,) + (None,) * dims_to_append] +def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'): + """Constructs the noise schedule of Karras et al. (2022).""" + ramp = torch.linspace(0, 1, n) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return append_zero(sigmas).to(device) + + +def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'): + """Constructs an exponential noise schedule.""" + sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp() + return append_zero(sigmas) + + +def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'): + """Constructs a continuous VP noise schedule.""" + t = torch.linspace(1, eps_s, n, device=device) + sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1) + return append_zero(sigmas) + + +def to_d(x, sigma, denoised): + """Converts a denoiser output to a Karras ODE derivative.""" + return (x - denoised) / append_dims(sigma, x.ndim) +def linear_multistep_coeff(order, t, i, j): + if order - 1 > i: + raise ValueError(f'Order {order} too high for step {i}') + def fn(tau): + prod = 1. + for k in range(order): + if j == k: + continue + prod *= (tau - t[i - k]) / (t[i - j] - t[i - k]) + return prod + return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0] + +class KDiffusionSampler: + def __init__(self, m, sampler): + self.model = m + self.model_wrap = K.external.CompVisDenoiser(m) + self.schedule = sampler + def get_sampler_name(self): + return self.schedule + def sample(self, S, conditioning, batch_size, shape, verbose, unconditional_guidance_scale, unconditional_conditioning, eta, x_T, img_callback=None, log_every_t=None): + sigmas = self.model_wrap.get_sigmas(S) + x = x_T * sigmas[0] + model_wrap_cfg = CFGDenoiser(self.model_wrap) + samples_ddim = None + samples_ddim = K.sampling.__dict__[f'sample_{self.schedule}'](model_wrap_cfg, x, sigmas, + extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, + 'cond_scale': unconditional_guidance_scale}, disable=False, callback=generation_callback) + # + return samples_ddim, None + + +@torch.no_grad() +def log_likelihood(model, x, sigma_min, sigma_max, extra_args=None, atol=1e-4, rtol=1e-4): + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + v = torch.randint_like(x, 2) * 2 - 1 + fevals = 0 + def ode_fn(sigma, x): + nonlocal fevals + with torch.enable_grad(): + x = x[0].detach().requires_grad_() + denoised = model(x, sigma * s_in, **extra_args) + d = to_d(x, sigma, denoised) + fevals += 1 + grad = torch.autograd.grad((d * v).sum(), x)[0] + d_ll = (v * grad).flatten(1).sum(1) + return d.detach(), d_ll + x_min = x, x.new_zeros([x.shape[0]]) + t = x.new_tensor([sigma_min, sigma_max]) + sol = odeint(ode_fn, x_min, t, atol=atol, rtol=rtol, method='dopri5') + latent, delta_ll = sol[0][-1], sol[1][-1] + ll_prior = torch.distributions.Normal(0, sigma_max).log_prob(latent).flatten(1).sum(1) + return ll_prior + delta_ll, {'fevals': fevals} + + +def create_random_tensors(shape, seeds): + xs = [] + for seed in seeds: + torch.manual_seed(seed) + + # randn results depend on device; gpu and cpu get different results for same seed; + # the way I see it, it's better to do this on CPU, so that everyone gets same result; + # but the original script had it like this so i do not dare change it for now because + # it will break everyone's seeds. + xs.append(torch.randn(shape, device=defaults.general.gpu)) + x = torch.stack(xs) + return x + +def torch_gc(): + torch.cuda.empty_cache() + torch.cuda.ipc_collect() + +def load_GFPGAN(): + model_name = 'GFPGANv1.3' + model_path = os.path.join(defaults.general.GFPGAN_dir, 'experiments/pretrained_models', model_name + '.pth') + if not os.path.isfile(model_path): + raise Exception("GFPGAN model not found at path "+model_path) + + sys.path.append(os.path.abspath(defaults.general.GFPGAN_dir)) + from gfpgan import GFPGANer + + if defaults.general.gfpgan_cpu or defaults.general.extra_models_cpu: + instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cpu')) + elif defaults.general.extra_models_gpu: + instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device(f'cuda:{defaults.general.gfpgan_gpu}')) + else: + instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device(f'cuda:{defaults.general.gpu}')) + return instance + +def load_RealESRGAN(model_name: str): + from basicsr.archs.rrdbnet_arch import RRDBNet + RealESRGAN_models = { + 'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4), + 'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) + } + + model_path = os.path.join(defaults.general.RealESRGAN_dir, 'experiments/pretrained_models', model_name + '.pth') + if not os.path.exists(os.path.join(defaults.general.RealESRGAN_dir, "experiments","pretrained_models", f"{model_name}.pth")): + raise Exception(model_name+".pth not found at path "+model_path) + + sys.path.append(os.path.abspath(defaults.general.RealESRGAN_dir)) + from realesrgan import RealESRGANer + + if defaults.general.esrgan_cpu or defaults.general.extra_models_cpu: + instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=False) # cpu does not support half + instance.device = torch.device('cpu') + instance.model.to('cpu') + elif defaults.general.extra_models_gpu: + instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=not defaults.general.no_half, device=torch.device(f'cuda:{defaults.general.esrgan_gpu}')) + else: + instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=not defaults.general.no_half, device=torch.device(f'cuda:{defaults.general.gpu}')) + instance.model.name = model_name + + return instance + +prompt_parser = re.compile(""" + (?P # capture group for 'prompt' + [^:]+ # match one or more non ':' characters + ) # end 'prompt' + (?: # non-capture group + :+ # match one or more ':' characters + (?P # capture group for 'weight' + -?\\d+(?:\\.\\d+)? # match positive or negative decimal number + )? # end weight capture group, make optional + \\s* # strip spaces after weight + | # OR + $ # else, if no ':' then match end of line + ) # end non-capture group +""", re.VERBOSE) + +# grabs all text up to the first occurrence of ':' as sub-prompt +# takes the value following ':' as weight +# if ':' has no value defined, defaults to 1.0 +# repeats until no text remaining +def split_weighted_subprompts(input_string, normalize=True): + parsed_prompts = [(match.group("prompt"), float(match.group("weight") or 1)) for match in re.finditer(prompt_parser, input_string)] + if not normalize: + return parsed_prompts + # this probably still doesn't handle negative weights very well + weight_sum = sum(map(lambda x: x[1], parsed_prompts)) + return [(x[0], x[1] / weight_sum) for x in parsed_prompts] + +def slerp(device, t, v0:torch.Tensor, v1:torch.Tensor, DOT_THRESHOLD=0.9995): + v0 = v0.detach().cpu().numpy() + v1 = v1.detach().cpu().numpy() + + dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) + if np.abs(dot) > DOT_THRESHOLD: + v2 = (1 - t) * v0 + t * v1 + else: + theta_0 = np.arccos(dot) + sin_theta_0 = np.sin(theta_0) + theta_t = theta_0 * t + sin_theta_t = np.sin(theta_t) + s0 = np.sin(theta_0 - theta_t) / sin_theta_0 + s1 = sin_theta_t / sin_theta_0 + v2 = s0 * v0 + s1 * v1 + + v2 = torch.from_numpy(v2).to(device) + + return v2 + + +def optimize_update_preview_frequency(current_chunk_speed, previous_chunk_speed, update_preview_frequency): + """Find the optimal update_preview_frequency value maximizing + performance while minimizing the time between updates.""" + if current_chunk_speed >= previous_chunk_speed: + #print(f"{current_chunk_speed} >= {previous_chunk_speed}") + update_preview_frequency +=1 + previous_chunk_speed = current_chunk_speed + else: + #print(f"{current_chunk_speed} <= {previous_chunk_speed}") + update_preview_frequency -=1 + previous_chunk_speed = current_chunk_speed + + return current_chunk_speed, previous_chunk_speed, update_preview_frequency + +# ----------------------------------------------------------------------------- + +@torch.no_grad() +def diffuse( + pipe, + cond_embeddings, # text conditioning, should be (1, 77, 768) + cond_latents, # image conditioning, should be (1, 4, 64, 64) + num_inference_steps, + cfg_scale, + eta, + ): + + torch_device = cond_latents.get_device() + + # classifier guidance: add the unconditional embedding + max_length = cond_embeddings.shape[1] # 77 + uncond_input = pipe.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt") + uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(torch_device))[0] + text_embeddings = torch.cat([uncond_embeddings, cond_embeddings]) + + # if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas + if isinstance(pipe.scheduler, LMSDiscreteScheduler): + cond_latents = cond_latents * pipe.scheduler.sigmas[0] + + # init the scheduler + accepts_offset = "offset" in set(inspect.signature(pipe.scheduler.set_timesteps).parameters.keys()) + extra_set_kwargs = {} + if accepts_offset: + extra_set_kwargs["offset"] = 1 + + pipe.scheduler.set_timesteps(num_inference_steps + st.session_state.sampling_steps, **extra_set_kwargs) + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + accepts_eta = "eta" in set(inspect.signature(pipe.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + + step_counter = 0 + inference_counter = 0 + current_chunk_speed = 0 + previous_chunk_speed = 0 + + # diffuse! + for i, t in enumerate(pipe.scheduler.timesteps): + start = timeit.default_timer() + + #status_text.text(f"Running step: {step_counter}{total_number_steps} {percent} | {duration:.2f}{speed}") + + # expand the latents for classifier free guidance + latent_model_input = torch.cat([cond_latents] * 2) + if isinstance(pipe.scheduler, LMSDiscreteScheduler): + sigma = pipe.scheduler.sigmas[i] + latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5) + + # predict the noise residual + noise_pred = pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] + + # cfg + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + cfg_scale * (noise_pred_text - noise_pred_uncond) + + # compute the previous noisy sample x_t -> x_t-1 + if isinstance(pipe.scheduler, LMSDiscreteScheduler): + cond_latents = pipe.scheduler.step(noise_pred, i, cond_latents, **extra_step_kwargs)["prev_sample"] + else: + cond_latents = pipe.scheduler.step(noise_pred, t, cond_latents, **extra_step_kwargs)["prev_sample"] + + #print (st.session_state["update_preview_frequency"]) + #update the preview image if it is enabled and the frequency matches the step_counter + if defaults.general.update_preview: + step_counter += 1 + + if st.session_state.dynamic_preview_frequency: + current_chunk_speed, previous_chunk_speed, defaults.general.update_preview_frequency = optimize_update_preview_frequency( + current_chunk_speed, previous_chunk_speed, defaults.general.update_preview_frequency) + + if defaults.general.update_preview_frequency == step_counter or step_counter == st.session_state.sampling_steps: + #scale and decode the image latents with vae + cond_latents_2 = 1 / 0.18215 * cond_latents + image_2 = pipe.vae.decode(cond_latents_2) + + # generate output numpy image as uint8 + image_2 = (image_2 / 2 + 0.5).clamp(0, 1) + image_2 = image_2.cpu().permute(0, 2, 3, 1).numpy() + image_2 = (image_2[0] * 255).astype(np.uint8) + + st.session_state["preview_image"].image(image_2) + + step_counter = 0 + + duration = timeit.default_timer() - start + + current_chunk_speed = duration + + if duration >= 1: + speed = "s/it" + else: + speed = "it/s" + duration = 1 / duration + + if i > st.session_state.sampling_steps: + inference_counter += 1 + inference_percent = int(100 * float(inference_counter if inference_counter < num_inference_steps else num_inference_steps)/float(num_inference_steps)) + inference_progress = f"{inference_counter if inference_counter < num_inference_steps else num_inference_steps}/{num_inference_steps} {inference_percent}% " + else: + inference_progress = "" + + percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps)) + frames_percent = int(100 * float(st.session_state.current_frame if st.session_state.current_frame < st.session_state.max_frames else st.session_state.max_frames)/float(st.session_state.max_frames)) + + st.session_state["progress_bar_text"].text( + f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps} " + f"{percent if percent < 100 else 100}% {inference_progress}{duration:.2f}{speed} | " + f"Frame: {st.session_state.current_frame if st.session_state.current_frame < st.session_state.max_frames else st.session_state.max_frames}/{st.session_state.max_frames} " + f"{frames_percent if frames_percent < 100 else 100}% {st.session_state.frame_duration:.2f}{st.session_state.frame_speed}" + ) + st.session_state["progress_bar"].progress(percent if percent < 100 else 100) + + # scale and decode the image latents with vae + cond_latents = 1 / 0.18215 * cond_latents + image = pipe.vae.decode(cond_latents) + + # generate output numpy image as uint8 + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).numpy() + image = (image[0] * 255).astype(np.uint8) + + return image + + +def ModelLoader(models,load=False,unload=False,imgproc_realesrgan_model_name='RealESRGAN_x4plus'): + #get global variables + global_vars = globals() + #check if m is in globals + if unload: + for m in models: + if m in global_vars: + #if it is, delete it + del global_vars[m] + if defaults.general.optimized: + if m == 'model': + del global_vars[m+'FS'] + del global_vars[m+'CS'] + if m =='model': + m='Stable Diffusion' + print('Unloaded ' + m) + if load: + for m in models: + if m not in global_vars or m in global_vars and type(global_vars[m]) == bool: + #if it isn't, load it + if m == 'GFPGAN': + global_vars[m] = load_GFPGAN() + elif m == 'model': + sdLoader = load_sd_from_config() + global_vars[m] = sdLoader[0] + if defaults.general.optimized: + global_vars[m+'CS'] = sdLoader[1] + global_vars[m+'FS'] = sdLoader[2] + elif m == 'RealESRGAN': + global_vars[m] = load_RealESRGAN(imgproc_realesrgan_model_name) + elif m == 'LDSR': + global_vars[m] = load_LDSR() + if m =='model': + m='Stable Diffusion' + print('Loaded ' + m) + torch_gc() + + + +def get_font(fontsize): + fonts = ["arial.ttf", "DejaVuSans.ttf"] + for font_name in fonts: + try: + return ImageFont.truetype(font_name, fontsize) + except OSError: + pass + + # ImageFont.load_default() is practically unusable as it only supports + # latin1, so raise an exception instead if no usable font was found + raise Exception(f"No usable font found (tried {', '.join(fonts)})") + +def load_embeddings(fp): + if fp is not None and hasattr(st.session_state["model"], "embedding_manager"): + st.session_state["model"].embedding_manager.load(fp['name']) + +def image_grid(imgs, batch_size, force_n_rows=None, captions=None): + #print (len(imgs)) + if force_n_rows is not None: + rows = force_n_rows + elif defaults.general.n_rows > 0: + rows = defaults.general.n_rows + elif defaults.general.n_rows == 0: + rows = batch_size + else: + rows = math.sqrt(len(imgs)) + rows = round(rows) + + cols = math.ceil(len(imgs) / rows) + + w, h = imgs[0].size + grid = Image.new('RGB', size=(cols * w, rows * h), color='black') + + fnt = get_font(30) + + for i, img in enumerate(imgs): + grid.paste(img, box=(i % cols * w, i // cols * h)) + if captions and i= 2**32: + n = n >> 32 + return n + +def check_prompt_length(prompt, comments): + """this function tests if prompt is too long, and if so, adds a message to comments""" + + tokenizer = (st.session_state["model"] if not defaults.general.optimized else modelCS).cond_stage_model.tokenizer + max_length = (st.session_state["model"] if not defaults.general.optimized else modelCS).cond_stage_model.max_length + + info = (st.session_state["model"] if not defaults.general.optimized else modelCS).cond_stage_model.tokenizer([prompt], truncation=True, max_length=max_length, + return_overflowing_tokens=True, padding="max_length", return_tensors="pt") + ovf = info['overflowing_tokens'][0] + overflowing_count = ovf.shape[0] + if overflowing_count == 0: + return + + vocab = {v: k for k, v in tokenizer.get_vocab().items()} + overflowing_words = [vocab.get(int(x), "") for x in ovf] + overflowing_text = tokenizer.convert_tokens_to_string(''.join(overflowing_words)) + + comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") + +def save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, + normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, + save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images): + + filename_i = os.path.join(sample_path_i, filename) + + if defaults.general.save_metadata or write_info_files: + # toggles differ for txt2img vs. img2img: + offset = 0 if init_img is None else 2 + toggles = [] + if prompt_matrix: + toggles.append(0) + if normalize_prompt_weights: + toggles.append(1) + if init_img is not None: + if uses_loopback: + toggles.append(2) + if uses_random_seed_loopback: + toggles.append(3) + if save_individual_images: + toggles.append(2 + offset) + if save_grid: + toggles.append(3 + offset) + if sort_samples: + toggles.append(4 + offset) + if write_info_files: + toggles.append(5 + offset) + if use_GFPGAN: + toggles.append(6 + offset) + metadata = \ + dict( + target="txt2img" if init_img is None else "img2img", + prompt=prompts[i], ddim_steps=steps, toggles=toggles, sampler_name=sampler_name, + ddim_eta=ddim_eta, n_iter=n_iter, batch_size=batch_size, cfg_scale=cfg_scale, + seed=seeds[i], width=width, height=height, normalize_prompt_weights=normalize_prompt_weights) + # Not yet any use for these, but they bloat up the files: + # info_dict["init_img"] = init_img + # info_dict["init_mask"] = init_mask + if init_img is not None: + metadata["denoising_strength"] = str(denoising_strength) + metadata["resize_mode"] = resize_mode + + if write_info_files: + with open(f"{filename_i}.yaml", "w", encoding="utf8") as f: + yaml.dump(metadata, f, allow_unicode=True, width=10000) + + if defaults.general.save_metadata: + # metadata = { + # "SD:prompt": prompts[i], + # "SD:seed": str(seeds[i]), + # "SD:width": str(width), + # "SD:height": str(height), + # "SD:steps": str(steps), + # "SD:cfg_scale": str(cfg_scale), + # "SD:normalize_prompt_weights": str(normalize_prompt_weights), + # } + metadata = {"SD:" + k:v for (k,v) in metadata.items()} + + if save_ext == "png": + mdata = PngInfo() + for key in metadata: + mdata.add_text(key, str(metadata[key])) + image.save(f"{filename_i}.png", pnginfo=mdata) + else: + if jpg_sample: + image.save(f"{filename_i}.jpg", quality=save_quality, + optimize=True) + elif save_ext == "webp": + image.save(f"{filename_i}.{save_ext}", f"webp", quality=save_quality, + lossless=save_lossless) + else: + # not sure what file format this is + image.save(f"{filename_i}.{save_ext}", f"{save_ext}") + try: + exif_dict = piexif.load(f"{filename_i}.{save_ext}") + except: + exif_dict = { "Exif": dict() } + exif_dict["Exif"][piexif.ExifIFD.UserComment] = piexif.helper.UserComment.dump( + json.dumps(metadata), encoding="unicode") + piexif.insert(piexif.dump(exif_dict), f"{filename_i}.{save_ext}") + + # render the image on the frontend + st.session_state["preview_image"].image(image) + +def get_next_sequence_number(path, prefix=''): + """ + Determines and returns the next sequence number to use when saving an + image in the specified directory. + + If a prefix is given, only consider files whose names start with that + prefix, and strip the prefix from filenames before extracting their + sequence number. + + The sequence starts at 0. + """ + result = -1 + for p in Path(path).iterdir(): + if p.name.endswith(('.png', '.jpg')) and p.name.startswith(prefix): + tmp = p.name[len(prefix):] + try: + result = max(int(tmp.split('-')[0]), result) + except ValueError: + pass + return result + 1 + + +def oxlamon_matrix(prompt, seed, n_iter, batch_size): + pattern = re.compile(r'(,\s){2,}') + + class PromptItem: + def __init__(self, text, parts, item): + self.text = text + self.parts = parts + if item: + self.parts.append( item ) + + def clean(txt): + return re.sub(pattern, ', ', txt) + + def getrowcount( txt ): + for data in re.finditer( ".*?\\((.*?)\\).*", txt ): + if data: + return len(data.group(1).split("|")) + break + return None + + def repliter( txt ): + for data in re.finditer( ".*?\\((.*?)\\).*", txt ): + if data: + r = data.span(1) + for item in data.group(1).split("|"): + yield (clean(txt[:r[0]-1] + item.strip() + txt[r[1]+1:]), item.strip()) + break + + def iterlist( items ): + outitems = [] + for item in items: + for newitem, newpart in repliter(item.text): + outitems.append( PromptItem(newitem, item.parts.copy(), newpart) ) + + return outitems + + def getmatrix( prompt ): + dataitems = [ PromptItem( prompt[1:].strip(), [], None ) ] + while True: + newdataitems = iterlist( dataitems ) + if len( newdataitems ) == 0: + return dataitems + dataitems = newdataitems + + def classToArrays( items, seed, n_iter ): + texts = [] + parts = [] + seeds = [] + + for item in items: + itemseed = seed + for i in range(n_iter): + texts.append( item.text ) + parts.append( f"Seed: {itemseed}\n" + "\n".join(item.parts) ) + seeds.append( itemseed ) + itemseed += 1 + + return seeds, texts, parts + + all_seeds, all_prompts, prompt_matrix_parts = classToArrays(getmatrix( prompt ), seed, n_iter) + n_iter = math.ceil(len(all_prompts) / batch_size) + + needrows = getrowcount(prompt) + if needrows: + xrows = math.sqrt(len(all_prompts)) + xrows = round(xrows) + # if columns is to much + cols = math.ceil(len(all_prompts) / xrows) + if cols > needrows*4: + needrows *= 2 + + return all_seeds, n_iter, prompt_matrix_parts, all_prompts, needrows + + +import find_noise_for_image +import matched_noise + + +def process_images( + outpath, func_init, func_sample, prompt, seed, sampler_name, save_grid, batch_size, + n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, use_RealESRGAN, realesrgan_model_name, + fp=None, ddim_eta=0.0, normalize_prompt_weights=True, init_img=None, init_mask=None, + mask_blur_strength=3, mask_restore=False, denoising_strength=0.75, noise_mode=0, find_noise_steps=1, resize_mode=None, uses_loopback=False, + uses_random_seed_loopback=False, sort_samples=True, write_info_files=True, jpg_sample=False, + variant_amount=0.0, variant_seed=None, save_individual_images: bool = True): + """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" + assert prompt is not None + torch_gc() + # start time after garbage collection (or before?) + start_time = time.time() + + # We will use this date here later for the folder name, need to start_time if not need + run_start_dt = datetime.datetime.now() + + mem_mon = MemUsageMonitor('MemMon') + mem_mon.start() + + if hasattr(st.session_state["model"], "embedding_manager"): + load_embeddings(fp) + + os.makedirs(outpath, exist_ok=True) + + sample_path = os.path.join(outpath, "samples") + os.makedirs(sample_path, exist_ok=True) + + if not ("|" in prompt) and prompt.startswith("@"): + prompt = prompt[1:] + + comments = [] + + prompt_matrix_parts = [] + simple_templating = False + add_original_image = not (use_RealESRGAN or use_GFPGAN) + + if prompt_matrix: + if prompt.startswith("@"): + simple_templating = True + add_original_image = not (use_RealESRGAN or use_GFPGAN) + all_seeds, n_iter, prompt_matrix_parts, all_prompts, frows = oxlamon_matrix(prompt, seed, n_iter, batch_size) + else: + all_prompts = [] + prompt_matrix_parts = prompt.split("|") + combination_count = 2 ** (len(prompt_matrix_parts) - 1) + for combination_num in range(combination_count): + current = prompt_matrix_parts[0] + + for n, text in enumerate(prompt_matrix_parts[1:]): + if combination_num & (2 ** n) > 0: + current += ("" if text.strip().startswith(",") else ", ") + text + + all_prompts.append(current) + + n_iter = math.ceil(len(all_prompts) / batch_size) + all_seeds = len(all_prompts) * [seed] + + print(f"Prompt matrix will create {len(all_prompts)} images using a total of {n_iter} batches.") + else: + + if not defaults.general.no_verify_input: + try: + check_prompt_length(prompt, comments) + except: + import traceback + print("Error verifying input:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + + all_prompts = batch_size * n_iter * [prompt] + all_seeds = [seed + x for x in range(len(all_prompts))] + + precision_scope = autocast if defaults.general.precision == "autocast" else nullcontext + output_images = [] + grid_captions = [] + stats = [] + with torch.no_grad(), precision_scope("cuda"), (st.session_state["model"].ema_scope() if not defaults.general.optimized else nullcontext()): + init_data = func_init() + tic = time.time() + + + # if variant_amount > 0.0 create noise from base seed + base_x = None + if variant_amount > 0.0: + target_seed_randomizer = seed_to_int('') # random seed + torch.manual_seed(seed) # this has to be the single starting seed (not per-iteration) + base_x = create_random_tensors([opt_C, height // opt_f, width // opt_f], seeds=[seed]) + # we don't want all_seeds to be sequential from starting seed with variants, + # since that makes the same variants each time, + # so we add target_seed_randomizer as a random offset + for si in range(len(all_seeds)): + all_seeds[si] += target_seed_randomizer + + for n in range(n_iter): + print(f"Iteration: {n+1}/{n_iter}") + prompts = all_prompts[n * batch_size:(n + 1) * batch_size] + captions = prompt_matrix_parts[n * batch_size:(n + 1) * batch_size] + seeds = all_seeds[n * batch_size:(n + 1) * batch_size] + + print(prompt) + + if defaults.general.optimized: + modelCS.to(defaults.general.gpu) + + uc = (st.session_state["model"] if not defaults.general.optimized else modelCS).get_learned_conditioning(len(prompts) * [""]) + + if isinstance(prompts, tuple): + prompts = list(prompts) + + # split the prompt if it has : for weighting + # TODO for speed it might help to have this occur when all_prompts filled?? + weighted_subprompts = split_weighted_subprompts(prompts[0], normalize_prompt_weights) + + # sub-prompt weighting used if more than 1 + if len(weighted_subprompts) > 1: + c = torch.zeros_like(uc) # i dont know if this is correct.. but it works + for i in range(0, len(weighted_subprompts)): + # note if alpha negative, it functions same as torch.sub + c = torch.add(c, (st.session_state["model"] if not defaults.general.optimized else modelCS).get_learned_conditioning(weighted_subprompts[i][0]), alpha=weighted_subprompts[i][1]) + else: # just behave like usual + c = (st.session_state["model"] if not defaults.general.optimized else modelCS).get_learned_conditioning(prompts) + + + shape = [opt_C, height // opt_f, width // opt_f] + + if defaults.general.optimized: + mem = torch.cuda.memory_allocated()/1e6 + modelCS.to("cpu") + while(torch.cuda.memory_allocated()/1e6 >= mem): + time.sleep(1) + + if noise_mode == 1 or noise_mode == 3: + # TODO params for find_noise_to_image + x = torch.cat(batch_size * [find_noise_for_image.find_noise_for_image( + st.session_state["model"], st.session_state["device"], + init_img.convert('RGB'), '', find_noise_steps, 0.0, normalize=True, + generation_callback=generation_callback, + )], dim=0) + else: + # we manually generate all input noises because each one should have a specific seed + x = create_random_tensors(shape, seeds=seeds) + + if variant_amount > 0.0: # we are making variants + # using variant_seed as sneaky toggle, + # when not None or '' use the variant_seed + # otherwise use seeds + if variant_seed != None and variant_seed != '': + specified_variant_seed = seed_to_int(variant_seed) + torch.manual_seed(specified_variant_seed) + seeds = [specified_variant_seed] + # finally, slerp base_x noise to target_x noise for creating a variant + x = slerp(defaults.general.gpu, max(0.0, min(1.0, variant_amount)), base_x, x) + + samples_ddim = func_sample(init_data=init_data, x=x, conditioning=c, unconditional_conditioning=uc, sampler_name=sampler_name) + + if defaults.general.optimized: + modelFS.to(defaults.general.gpu) + + x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(samples_ddim) + x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) + + for i, x_sample in enumerate(x_samples_ddim): + sanitized_prompt = slugify(prompts[i]) + + if sort_samples: + full_path = os.path.join(os.getcwd(), sample_path, sanitized_prompt) + + + sanitized_prompt = sanitized_prompt[:220-len(full_path)] + sample_path_i = os.path.join(sample_path, sanitized_prompt) + + #print(f"output folder length: {len(os.path.join(os.getcwd(), sample_path_i))}") + #print(os.path.join(os.getcwd(), sample_path_i)) + + os.makedirs(sample_path_i, exist_ok=True) + base_count = get_next_sequence_number(sample_path_i) + filename = f"{base_count:05}-{steps}_{sampler_name}_{seeds[i]}" + else: + full_path = os.path.join(os.getcwd(), sample_path) + sample_path_i = sample_path + base_count = get_next_sequence_number(sample_path_i) + filename = f"{base_count:05}-{steps}_{sampler_name}_{seeds[i]}_{sanitized_prompt}"[:220-len(full_path)] #same as before + + x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') + x_sample = x_sample.astype(np.uint8) + image = Image.fromarray(x_sample) + original_sample = x_sample + original_filename = filename + + if use_GFPGAN and st.session_state["GFPGAN"] is not None and not use_RealESRGAN: + #skip_save = True # #287 >_> + torch_gc() + cropped_faces, restored_faces, restored_img = st.session_state["GFPGAN"].enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True) + gfpgan_sample = restored_img[:,:,::-1] + gfpgan_image = Image.fromarray(gfpgan_sample) + gfpgan_filename = original_filename + '-gfpgan' + + save_sample(gfpgan_image, sample_path_i, gfpgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, + normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, + uses_random_seed_loopback, save_grid, sort_samples, sampler_name, ddim_eta, + n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images=False) + + output_images.append(gfpgan_image) #287 + if simple_templating: + grid_captions.append( captions[i] + "\ngfpgan" ) + + if use_RealESRGAN and st.session_state["RealESRGAN"] is not None and not use_GFPGAN: + #skip_save = True # #287 >_> + torch_gc() + + if st.session_state["RealESRGAN"].model.name != realesrgan_model_name: + #try_loading_RealESRGAN(realesrgan_model_name) + load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name) + + output, img_mode = st.session_state["RealESRGAN"].enhance(x_sample[:,:,::-1]) + esrgan_filename = original_filename + '-esrgan4x' + esrgan_sample = output[:,:,::-1] + esrgan_image = Image.fromarray(esrgan_sample) + + #save_sample(image, sample_path_i, original_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, + #normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, + #save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode) + + save_sample(esrgan_image, sample_path_i, esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, + normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, + save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images=False) + + output_images.append(esrgan_image) #287 + if simple_templating: + grid_captions.append( captions[i] + "\nesrgan" ) + + if use_RealESRGAN and st.session_state["RealESRGAN"] is not None and use_GFPGAN and st.session_state["GFPGAN"] is not None: + #skip_save = True # #287 >_> + torch_gc() + cropped_faces, restored_faces, restored_img = st.session_state["GFPGAN"].enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True) + gfpgan_sample = restored_img[:,:,::-1] + + if st.session_state["RealESRGAN"].model.name != realesrgan_model_name: + #try_loading_RealESRGAN(realesrgan_model_name) + load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name) + + output, img_mode = st.session_state["RealESRGAN"].enhance(gfpgan_sample[:,:,::-1]) + gfpgan_esrgan_filename = original_filename + '-gfpgan-esrgan4x' + gfpgan_esrgan_sample = output[:,:,::-1] + gfpgan_esrgan_image = Image.fromarray(gfpgan_esrgan_sample) + + save_sample(gfpgan_esrgan_image, sample_path_i, gfpgan_esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, + normalize_prompt_weights, False, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, + save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images=False) + + output_images.append(gfpgan_esrgan_image) #287 + + if simple_templating: + grid_captions.append( captions[i] + "\ngfpgan_esrgan" ) + + if mask_restore and init_mask: + #init_mask = init_mask if keep_mask else ImageOps.invert(init_mask) + init_mask = init_mask.filter(ImageFilter.GaussianBlur(mask_blur_strength)) + init_mask = init_mask.convert('L') + init_img = init_img.convert('RGB') + image = image.convert('RGB') + + if use_RealESRGAN and st.session_state["RealESRGAN"] is not None: + if st.session_state["RealESRGAN"].model.name != realesrgan_model_name: + #try_loading_RealESRGAN(realesrgan_model_name) + load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name) + + output, img_mode = st.session_state["RealESRGAN"].enhance(np.array(init_img, dtype=np.uint8)) + init_img = Image.fromarray(output) + init_img = init_img.convert('RGB') + + output, img_mode = st.session_state["RealESRGAN"].enhance(np.array(init_mask, dtype=np.uint8)) + init_mask = Image.fromarray(output) + init_mask = init_mask.convert('L') + + image = Image.composite(init_img, image, init_mask) + + if save_individual_images: + save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, + normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, + save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images) + + if not use_GFPGAN or not use_RealESRGAN: + output_images.append(image) + + #if add_original_image or not simple_templating: + #output_images.append(image) + #if simple_templating: + #grid_captions.append( captions[i] ) + + if defaults.general.optimized: + mem = torch.cuda.memory_allocated()/1e6 + modelFS.to("cpu") + while(torch.cuda.memory_allocated()/1e6 >= mem): + time.sleep(1) + + if prompt_matrix or save_grid: + if prompt_matrix: + if simple_templating: + grid = image_grid(output_images, n_iter, force_n_rows=frows, captions=grid_captions) + else: + grid = image_grid(output_images, n_iter, force_n_rows=1 << ((len(prompt_matrix_parts)-1)//2)) + try: + grid = draw_prompt_matrix(grid, width, height, prompt_matrix_parts) + except: + import traceback + print("Error creating prompt_matrix text:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + else: + grid = image_grid(output_images, batch_size) + + if grid and (batch_size > 1 or n_iter > 1): + output_images.insert(0, grid) + + grid_count = get_next_sequence_number(outpath, 'grid-') + grid_file = f"grid-{grid_count:05}-{seed}_{slugify(prompts[i].replace(' ', '_')[:220-len(full_path)])}.{grid_ext}" + grid.save(os.path.join(outpath, grid_file), grid_format, quality=grid_quality, lossless=grid_lossless, optimize=True) + + toc = time.time() + + mem_max_used, mem_total = mem_mon.read_and_stop() + time_diff = time.time()-start_time + + info = f""" + {prompt} + Steps: {steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', Denoising strength: '+str(denoising_strength) if init_img is not None else ''}{', GFPGAN' if use_GFPGAN and st.session_state["GFPGAN"] is not None else ''}{', '+realesrgan_model_name if use_RealESRGAN and st.session_state["RealESRGAN"] is not None else ''}{', Prompt Matrix Mode.' if prompt_matrix else ''}""".strip() + stats = f''' + Took { round(time_diff, 2) }s total ({ round(time_diff/(len(all_prompts)),2) }s per image) + Peak memory usage: { -(mem_max_used // -1_048_576) } MiB / { -(mem_total // -1_048_576) } MiB / { round(mem_max_used/mem_total*100, 3) }%''' + + for comment in comments: + info += "\n\n" + comment + + #mem_mon.stop() + #del mem_mon + torch_gc() + + return output_images, seed, info, stats + + +def resize_image(resize_mode, im, width, height): + LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) + if resize_mode == 0: + res = im.resize((width, height), resample=LANCZOS) + elif resize_mode == 1: + ratio = width / height + src_ratio = im.width / im.height + + src_w = width if ratio > src_ratio else im.width * height // im.height + src_h = height if ratio <= src_ratio else im.height * width // im.width + + resized = im.resize((src_w, src_h), resample=LANCZOS) + res = Image.new("RGBA", (width, height)) + res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) + else: + ratio = width / height + src_ratio = im.width / im.height + + src_w = width if ratio < src_ratio else im.width * height // im.height + src_h = height if ratio >= src_ratio else im.height * width // im.width + + resized = im.resize((src_w, src_h), resample=LANCZOS) + res = Image.new("RGBA", (width, height)) + res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) + + if ratio < src_ratio: + fill_height = height // 2 - src_h // 2 + res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0)) + res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h)) + elif ratio > src_ratio: + fill_width = width // 2 - src_w // 2 + res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) + res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0)) + + return res + +import skimage + +def img2img(prompt: str = '', init_info: any = None, init_info_mask: any = None, mask_mode: int = 0, mask_blur_strength: int = 3, + mask_restore: bool = False, ddim_steps: int = 50, sampler_name: str = 'DDIM', + n_iter: int = 1, cfg_scale: float = 7.5, denoising_strength: float = 0.8, + seed: int = -1, noise_mode: int = 0, find_noise_steps: str = "", height: int = 512, width: int = 512, resize_mode: int = 0, fp = None, + variant_amount: float = None, variant_seed: int = None, ddim_eta:float = 0.0, + write_info_files:bool = True, RealESRGAN_model: str = "RealESRGAN_x4plus_anime_6B", + separate_prompts:bool = False, normalize_prompt_weights:bool = True, + save_individual_images: bool = True, save_grid: bool = True, group_by_prompt: bool = True, + save_as_jpg: bool = True, use_GFPGAN: bool = True, use_RealESRGAN: bool = True, loopback: bool = False, + random_seed_loopback: bool = False + ): + + outpath = defaults.general.outdir_img2img or defaults.general.outdir or "outputs/img2img-samples" + err = False + #loopback = False + #skip_save = False + seed = seed_to_int(seed) + + batch_size = 1 + + #prompt_matrix = 0 + #normalize_prompt_weights = 1 in toggles + #loopback = 2 in toggles + #random_seed_loopback = 3 in toggles + #skip_save = 4 not in toggles + #save_grid = 5 in toggles + #sort_samples = 6 in toggles + #write_info_files = 7 in toggles + #write_sample_info_to_log_file = 8 in toggles + #jpg_sample = 9 in toggles + #use_GFPGAN = 10 in toggles + #use_RealESRGAN = 11 in toggles + + if sampler_name == 'PLMS': + sampler = PLMSSampler(st.session_state["model"]) + elif sampler_name == 'DDIM': + sampler = DDIMSampler(st.session_state["model"]) + elif sampler_name == 'k_dpm_2_a': + sampler = KDiffusionSampler(st.session_state["model"],'dpm_2_ancestral') + elif sampler_name == 'k_dpm_2': + sampler = KDiffusionSampler(st.session_state["model"],'dpm_2') + elif sampler_name == 'k_euler_a': + sampler = KDiffusionSampler(st.session_state["model"],'euler_ancestral') + elif sampler_name == 'k_euler': + sampler = KDiffusionSampler(st.session_state["model"],'euler') + elif sampler_name == 'k_heun': + sampler = KDiffusionSampler(st.session_state["model"],'heun') + elif sampler_name == 'k_lms': + sampler = KDiffusionSampler(st.session_state["model"],'lms') + else: + raise Exception("Unknown sampler: " + sampler_name) + + def process_init_mask(init_mask: Image): + if init_mask.mode == "RGBA": + init_mask = init_mask.convert('RGBA') + background = Image.new('RGBA', init_mask.size, (0, 0, 0)) + init_mask = Image.alpha_composite(background, init_mask) + init_mask = init_mask.convert('RGB') + return init_mask + + init_img = init_info + init_mask = None + if mask_mode == 0: + if init_info_mask: + init_mask = process_init_mask(init_info_mask) + elif mask_mode == 1: + if init_info_mask: + init_mask = process_init_mask(init_info_mask) + init_mask = ImageOps.invert(init_mask) + elif mask_mode == 2: + init_img_transparency = init_img.split()[-1].convert('L')#.point(lambda x: 255 if x > 0 else 0, mode='1') + init_mask = init_img_transparency + init_mask = init_mask.convert("RGB") + init_mask = resize_image(resize_mode, init_mask, width, height) + init_mask = init_mask.convert("RGB") + + assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' + t_enc = int(denoising_strength * ddim_steps) + + if init_mask is not None and (noise_mode == 2 or noise_mode == 3) and init_img is not None: + noise_q = 0.99 + color_variation = 0.0 + mask_blend_factor = 1.0 + + np_init = (np.asarray(init_img.convert("RGB"))/255.0).astype(np.float64) # annoyingly complex mask fixing + np_mask_rgb = 1. - (np.asarray(ImageOps.invert(init_mask).convert("RGB"))/255.0).astype(np.float64) + np_mask_rgb -= np.min(np_mask_rgb) + np_mask_rgb /= np.max(np_mask_rgb) + np_mask_rgb = 1. - np_mask_rgb + np_mask_rgb_hardened = 1. - (np_mask_rgb < 0.99).astype(np.float64) + blurred = skimage.filters.gaussian(np_mask_rgb_hardened[:], sigma=16., channel_axis=2, truncate=32.) + blurred2 = skimage.filters.gaussian(np_mask_rgb_hardened[:], sigma=16., channel_axis=2, truncate=32.) + #np_mask_rgb_dilated = np_mask_rgb + blurred # fixup mask todo: derive magic constants + #np_mask_rgb = np_mask_rgb + blurred + np_mask_rgb_dilated = np.clip((np_mask_rgb + blurred2) * 0.7071, 0., 1.) + np_mask_rgb = np.clip((np_mask_rgb + blurred) * 0.7071, 0., 1.) + + noise_rgb = matched_noise.get_matched_noise(np_init, np_mask_rgb, noise_q, color_variation) + blend_mask_rgb = np.clip(np_mask_rgb_dilated,0.,1.) ** (mask_blend_factor) + noised = noise_rgb[:] + blend_mask_rgb **= (2.) + noised = np_init[:] * (1. - blend_mask_rgb) + noised * blend_mask_rgb + + np_mask_grey = np.sum(np_mask_rgb, axis=2)/3. + ref_mask = np_mask_grey < 1e-3 + + all_mask = np.ones((height, width), dtype=bool) + noised[all_mask,:] = skimage.exposure.match_histograms(noised[all_mask,:]**1., noised[ref_mask,:], channel_axis=1) + + init_img = Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB") + st.session_state["editor_image"].image(init_img) # debug + + def init(): + image = init_img.convert('RGB') + image = np.array(image).astype(np.float32) / 255.0 + image = image[None].transpose(0, 3, 1, 2) + image = torch.from_numpy(image) + + mask_channel = None + if init_mask: + alpha = resize_image(resize_mode, init_mask, width // 8, height // 8) + mask_channel = alpha.split()[-1] + + mask = None + if mask_channel is not None: + mask = np.array(mask_channel).astype(np.float32) / 255.0 + mask = (1 - mask) + mask = np.tile(mask, (4, 1, 1)) + mask = mask[None].transpose(0, 1, 2, 3) + mask = torch.from_numpy(mask).to(st.session_state["device"]) + + if defaults.general.optimized: + modelFS.to(st.session_state["device"] ) + + init_image = 2. * image - 1. + init_image = init_image.to(st.session_state["device"]) + init_latent = (st.session_state["model"] if not defaults.general.optimized else modelFS).get_first_stage_encoding((st.session_state["model"] if not defaults.general.optimized else modelFS).encode_first_stage(init_image)) # move to latent space + + if defaults.general.optimized: + mem = torch.cuda.memory_allocated()/1e6 + modelFS.to("cpu") + while(torch.cuda.memory_allocated()/1e6 >= mem): + time.sleep(1) + + return init_latent, mask, + + def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name): + t_enc_steps = t_enc + obliterate = False + if ddim_steps == t_enc_steps: + t_enc_steps = t_enc_steps - 1 + obliterate = True + + if sampler_name != 'DDIM': + x0, z_mask = init_data + + sigmas = sampler.model_wrap.get_sigmas(ddim_steps) + noise = x * sigmas[ddim_steps - t_enc_steps - 1] + + xi = x0 + noise + + # Obliterate masked image + if z_mask is not None and obliterate: + random = torch.randn(z_mask.shape, device=xi.device) + xi = (z_mask * noise) + ((1-z_mask) * xi) + + sigma_sched = sigmas[ddim_steps - t_enc_steps - 1:] + model_wrap_cfg = CFGMaskedDenoiser(sampler.model_wrap) + samples_ddim = K.sampling.__dict__[f'sample_{sampler.get_sampler_name()}'](model_wrap_cfg, xi, sigma_sched, + extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, + 'cond_scale': cfg_scale, 'mask': z_mask, 'x0': x0, 'xi': xi}, disable=False, + callback=generation_callback) + else: + + x0, z_mask = init_data + + sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=0.0, verbose=False) + z_enc = sampler.stochastic_encode(x0, torch.tensor([t_enc_steps]*batch_size).to(st.session_state["device"] )) + + # Obliterate masked image + if z_mask is not None and obliterate: + random = torch.randn(z_mask.shape, device=z_enc.device) + z_enc = (z_mask * random) + ((1-z_mask) * z_enc) + + # decode it + samples_ddim = sampler.decode(z_enc, conditioning, t_enc_steps, + unconditional_guidance_scale=cfg_scale, + unconditional_conditioning=unconditional_conditioning, + z_mask=z_mask, x0=x0) + return samples_ddim + + + + if loopback: + output_images, info = None, None + history = [] + initial_seed = None + + do_color_correction = False + try: + from skimage import exposure + do_color_correction = True + except: + print("Install scikit-image to perform color correction on loopback") + + for i in range(n_iter): + if do_color_correction and i == 0: + correction_target = cv2.cvtColor(np.asarray(init_img.copy()), cv2.COLOR_RGB2LAB) + + output_images, seed, info, stats = process_images( + outpath=outpath, + func_init=init, + func_sample=sample, + prompt=prompt, + seed=seed, + sampler_name=sampler_name, + save_grid=save_grid, + batch_size=1, + n_iter=1, + steps=ddim_steps, + cfg_scale=cfg_scale, + width=width, + height=height, + prompt_matrix=separate_prompts, + use_GFPGAN=use_GFPGAN, + use_RealESRGAN=use_RealESRGAN, # Forcefully disable upscaling when using loopback + realesrgan_model_name=RealESRGAN_model, + fp=fp, + normalize_prompt_weights=normalize_prompt_weights, + save_individual_images=save_individual_images, + init_img=init_img, + init_mask=init_mask, + mask_blur_strength=mask_blur_strength, + mask_restore=mask_restore, + denoising_strength=denoising_strength, + noise_mode=noise_mode, + find_noise_steps=find_noise_steps, + resize_mode=resize_mode, + uses_loopback=loopback, + uses_random_seed_loopback=random_seed_loopback, + sort_samples=group_by_prompt, + write_info_files=write_info_files, + jpg_sample=save_as_jpg + ) + + if initial_seed is None: + initial_seed = seed + + init_img = output_images[0] + + if do_color_correction and correction_target is not None: + init_img = Image.fromarray(cv2.cvtColor(exposure.match_histograms( + cv2.cvtColor( + np.asarray(init_img), + cv2.COLOR_RGB2LAB + ), + correction_target, + channel_axis=2 + ), cv2.COLOR_LAB2RGB).astype("uint8")) + + if not random_seed_loopback: + seed = seed + 1 + else: + seed = seed_to_int(None) + + denoising_strength = max(denoising_strength * 0.95, 0.1) + history.append(init_img) + + output_images = history + seed = initial_seed + + else: + output_images, seed, info, stats = process_images( + outpath=outpath, + func_init=init, + func_sample=sample, + prompt=prompt, + seed=seed, + sampler_name=sampler_name, + save_grid=save_grid, + batch_size=batch_size, + n_iter=n_iter, + steps=ddim_steps, + cfg_scale=cfg_scale, + width=width, + height=height, + prompt_matrix=separate_prompts, + use_GFPGAN=use_GFPGAN, + use_RealESRGAN=use_RealESRGAN, + realesrgan_model_name=RealESRGAN_model, + fp=fp, + normalize_prompt_weights=normalize_prompt_weights, + save_individual_images=save_individual_images, + init_img=init_img, + init_mask=init_mask, + mask_blur_strength=mask_blur_strength, + denoising_strength=denoising_strength, + noise_mode=noise_mode, + find_noise_steps=find_noise_steps, + mask_restore=mask_restore, + resize_mode=resize_mode, + uses_loopback=loopback, + sort_samples=group_by_prompt, + write_info_files=write_info_files, + jpg_sample=save_as_jpg + ) + + del sampler + + return output_images, seed, info, stats + +@retry((RuntimeError, KeyError) , tries=3) +def txt2img(prompt: str, ddim_steps: int, sampler_name: str, realesrgan_model_name: str, + n_iter: int, batch_size: int, cfg_scale: float, seed: Union[int, str, None], + height: int, width: int, separate_prompts:bool = False, normalize_prompt_weights:bool = True, + save_individual_images: bool = True, save_grid: bool = True, group_by_prompt: bool = True, + save_as_jpg: bool = True, use_GFPGAN: bool = True, use_RealESRGAN: bool = True, + RealESRGAN_model: str = "RealESRGAN_x4plus_anime_6B", fp = None, variant_amount: float = None, + variant_seed: int = None, ddim_eta:float = 0.0, write_info_files:bool = True): + + outpath = defaults.general.outdir_txt2img or defaults.general.outdir or "outputs/txt2img-samples" + + err = False + seed = seed_to_int(seed) + + #prompt_matrix = 0 in toggles + #normalize_prompt_weights = 1 in toggles + #skip_save = 2 not in toggles + #save_grid = 3 not in toggles + #sort_samples = 4 in toggles + #write_info_files = 5 in toggles + #jpg_sample = 6 in toggles + #use_GFPGAN = 7 in toggles + #use_RealESRGAN = 8 in toggles + + if sampler_name == 'PLMS': + sampler = PLMSSampler(st.session_state["model"]) + elif sampler_name == 'DDIM': + sampler = DDIMSampler(st.session_state["model"]) + elif sampler_name == 'k_dpm_2_a': + sampler = KDiffusionSampler(st.session_state["model"],'dpm_2_ancestral') + elif sampler_name == 'k_dpm_2': + sampler = KDiffusionSampler(st.session_state["model"],'dpm_2') + elif sampler_name == 'k_euler_a': + sampler = KDiffusionSampler(st.session_state["model"],'euler_ancestral') + elif sampler_name == 'k_euler': + sampler = KDiffusionSampler(st.session_state["model"],'euler') + elif sampler_name == 'k_heun': + sampler = KDiffusionSampler(st.session_state["model"],'heun') + elif sampler_name == 'k_lms': + sampler = KDiffusionSampler(st.session_state["model"],'lms') + else: + raise Exception("Unknown sampler: " + sampler_name) + + def init(): + pass + + def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name): + samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=cfg_scale, + unconditional_conditioning=unconditional_conditioning, eta=ddim_eta, x_T=x, img_callback=generation_callback, + log_every_t=int(defaults.general.update_preview_frequency)) + + return samples_ddim + + #try: + output_images, seed, info, stats = process_images( + outpath=outpath, + func_init=init, + func_sample=sample, + prompt=prompt, + seed=seed, + sampler_name=sampler_name, + save_grid=save_grid, + batch_size=batch_size, + n_iter=n_iter, + steps=ddim_steps, + cfg_scale=cfg_scale, + width=width, + height=height, + prompt_matrix=separate_prompts, + use_GFPGAN=use_GFPGAN, + use_RealESRGAN=use_RealESRGAN, + realesrgan_model_name=realesrgan_model_name, + fp=fp, + ddim_eta=ddim_eta, + normalize_prompt_weights=normalize_prompt_weights, + save_individual_images=save_individual_images, + sort_samples=group_by_prompt, + write_info_files=write_info_files, + jpg_sample=save_as_jpg, + variant_amount=variant_amount, + variant_seed=variant_seed, + ) + + del sampler + + return output_images, seed, info, stats + + #except RuntimeError as e: + #err = e + #err_msg = f'CRASHED:


Please wait while the program restarts.' + #stats = err_msg + #return [], seed, 'err', stats + + +# +def txt2vid( + # -------------------------------------- + # args you probably want to change + prompts = ["blueberry spaghetti", "strawberry spaghetti"], # prompt to dream about + gpu:int = defaults.general.gpu, # id of the gpu to run on + #name:str = 'test', # name of this project, for the output directory + #rootdir:str = defaults.general.outdir, + num_steps:int = 200, # number of steps between each pair of sampled points + max_frames:int = 10000, # number of frames to write and then exit the script + num_inference_steps:int = 50, # more (e.g. 100, 200 etc) can create slightly better images + cfg_scale:float = 5.0, # can depend on the prompt. usually somewhere between 3-10 is good + do_loop = False, + use_lerp_for_text = False, + seeds = None, + quality:int = 100, # for jpeg compression of the output images + eta:float = 0.0, + width:int = 256, + height:int = 256, + weights_path = "CompVis/stable-diffusion-v1-4", + scheduler="klms", # choices: default, ddim, klms + disable_tqdm = False, + #----------------------------------------------- + beta_start = 0.0001, + beta_end = 0.00012, + beta_schedule = "scaled_linear" + ): + """ + prompt = ["blueberry spaghetti", "strawberry spaghetti"], # prompt to dream about + gpu:int = defaults.general.gpu, # id of the gpu to run on + #name:str = 'test', # name of this project, for the output directory + #rootdir:str = defaults.general.outdir, + num_steps:int = 200, # number of steps between each pair of sampled points + max_frames:int = 10000, # number of frames to write and then exit the script + num_inference_steps:int = 50, # more (e.g. 100, 200 etc) can create slightly better images + cfg_scale:float = 5.0, # can depend on the prompt. usually somewhere between 3-10 is good + do_loop = False, + use_lerp_for_text = False, + seed = None, + quality:int = 100, # for jpeg compression of the output images + eta:float = 0.0, + width:int = 256, + height:int = 256, + weights_path = "CompVis/stable-diffusion-v1-4", + scheduler="klms", # choices: default, ddim, klms + disable_tqdm = False, + beta_start = 0.0001, + beta_end = 0.00012, + beta_schedule = "scaled_linear" + """ + mem_mon = MemUsageMonitor('MemMon') + mem_mon.start() + + + seeds = seed_to_int(seeds) + + # We add an extra frame because most + # of the time the first frame is just the noise. + max_frames +=1 + + assert torch.cuda.is_available() + assert height % 8 == 0 and width % 8 == 0 + torch.manual_seed(seeds) + torch_device = f"cuda:{gpu}" + + # init the output dir + sanitized_prompt = slugify(prompts) + + full_path = os.path.join(os.getcwd(), defaults.general.outdir, "txt2vid-samples", "samples", sanitized_prompt) + + if len(full_path) > 220: + sanitized_prompt = sanitized_prompt[:220-len(full_path)] + full_path = os.path.join(os.getcwd(), defaults.general.outdir, "txt2vid-samples", "samples", sanitized_prompt) + + os.makedirs(full_path, exist_ok=True) + + # Write prompt info to file in output dir so we can keep track of what we did + if st.session_state.write_info_files: + with open(os.path.join(full_path , f'{slugify(str(seeds))}_config.json' if len(prompts) > 1 else "prompts_config.json"), "w") as outfile: + outfile.write(json.dumps( + dict( + prompts = prompts, + gpu = gpu, + num_steps = num_steps, + max_frames = max_frames, + num_inference_steps = num_inference_steps, + cfg_scale = cfg_scale, + do_loop = do_loop, + use_lerp_for_text = use_lerp_for_text, + seeds = seeds, + quality = quality, + eta = eta, + width = width, + height = height, + weights_path = weights_path, + scheduler=scheduler, + disable_tqdm = disable_tqdm, + beta_start = beta_start, + beta_end = beta_end, + beta_schedule = beta_schedule + ), + indent=2, + sort_keys=False, + )) + + #print(scheduler) + default_scheduler = PNDMScheduler( + beta_start=beta_start, beta_end=beta_end, beta_schedule=beta_schedule + ) + # ------------------------------------------------------------------------------ + #Schedulers + ddim_scheduler = DDIMScheduler( + beta_start=beta_start, + beta_end=beta_end, + beta_schedule=beta_schedule, + clip_sample=False, + set_alpha_to_one=False, + ) + + klms_scheduler = LMSDiscreteScheduler( + beta_start=beta_start, beta_end=beta_end, beta_schedule=beta_schedule + ) + + SCHEDULERS = dict(default=default_scheduler, ddim=ddim_scheduler, klms=klms_scheduler) + + # ------------------------------------------------------------------------------ + + #if weights_path == "Stable Diffusion v1.4": + #weights_path = "CompVis/stable-diffusion-v1-4" + #else: + #weights_path = os.path.join("./models", "custom", f"{weights_path}.ckpt") + + try: + if "model" in st.session_state: + del st.session_state["model"] + except: + pass + + #print (st.session_state["weights_path"] != weights_path) + + try: + if not st.session_state["pipe"] or st.session_state["weights_path"] != weights_path: + if st.session_state["weights_path"] != weights_path: + del st.session_state["weights_path"] + + st.session_state["weights_path"] = weights_path + st.session_state["pipe"] = StableDiffusionPipeline.from_pretrained( + weights_path, + use_local_file=True, + use_auth_token=True, + #torch_dtype=torch.float16 if not defaults.general.no_half else None, + revision="fp16" if not defaults.general.no_half else None + ) + + st.session_state["pipe"].unet.to(torch_device) + st.session_state["pipe"].vae.to(torch_device) + st.session_state["pipe"].text_encoder.to(torch_device) + print("Tx2Vid Model Loaded") + else: + print("Tx2Vid Model already Loaded") + + except: + #del st.session_state["weights_path"] + #del st.session_state["pipe"] + + st.session_state["weights_path"] = weights_path + st.session_state["pipe"] = StableDiffusionPipeline.from_pretrained( + weights_path, + use_local_file=True, + use_auth_token=True, + #torch_dtype=torch.float16 if not defaults.general.no_half else None, + revision="fp16" if not defaults.general.no_half else None + ) + + st.session_state["pipe"].unet.to(torch_device) + st.session_state["pipe"].vae.to(torch_device) + st.session_state["pipe"].text_encoder.to(torch_device) + print("Tx2Vid Model Loaded") + + st.session_state["pipe"].scheduler = SCHEDULERS[scheduler] + + # get the conditional text embeddings based on the prompt + text_input = st.session_state["pipe"].tokenizer(prompts, padding="max_length", max_length=st.session_state["pipe"].tokenizer.model_max_length, truncation=True, return_tensors="pt") + cond_embeddings = st.session_state["pipe"].text_encoder(text_input.input_ids.to(torch_device))[0] # shape [1, 77, 768] + + # sample a source + init1 = torch.randn((1, st.session_state["pipe"].unet.in_channels, height // 8, width // 8), device=torch_device) + + if do_loop: + prompts = [prompts, prompts] + seeds = [seeds, seeds] + #first_seed, *seeds = seeds + #prompts.append(prompts) + #seeds.append(first_seed) + + + # iterate the loop + frames = [] + frame_index = 0 + + st.session_state["frame_total_duration"] = 0 + st.session_state["frame_total_speed"] = 0 + + try: + while frame_index < max_frames: + st.session_state["frame_duration"] = 0 + st.session_state["frame_speed"] = 0 + st.session_state["current_frame"] = frame_index + + # sample the destination + init2 = torch.randn((1, st.session_state["pipe"].unet.in_channels, height // 8, width // 8), device=torch_device) + + for i, t in enumerate(np.linspace(0, 1, num_steps)): + start = timeit.default_timer() + print(f"COUNT: {frame_index+1}/{num_steps}") + + #if use_lerp_for_text: + #init = torch.lerp(init1, init2, float(t)) + #else: + #init = slerp(gpu, float(t), init1, init2) + + init = slerp(gpu, float(t), init1, init2) + + with autocast("cuda"): + image = diffuse(st.session_state["pipe"], cond_embeddings, init, num_inference_steps, cfg_scale, eta) + + im = Image.fromarray(image) + outpath = os.path.join(full_path, 'frame%06d.png' % frame_index) + im.save(outpath, quality=quality) + + # send the image to the UI to update it + #st.session_state["preview_image"].image(im) + + #append the frames to the frames list so we can use them later. + frames.append(np.asarray(im)) + + #increase frame_index counter. + frame_index += 1 + + st.session_state["current_frame"] = frame_index + + duration = timeit.default_timer() - start + + if duration >= 1: + speed = "s/it" + else: + speed = "it/s" + duration = 1 / duration + + st.session_state["frame_duration"] = duration + st.session_state["frame_speed"] = speed + + init1 = init2 + + except StopException: + pass + + + if st.session_state['save_video']: + # write video to memory + #output = io.BytesIO() + #writer = imageio.get_writer(os.path.join(os.getcwd(), defaults.general.outdir, "txt2vid-samples"), im, extension=".mp4", fps=30) + try: + video_path = os.path.join(os.getcwd(), defaults.general.outdir, "txt2vid-samples","temp.mp4") + writer = imageio.get_writer(video_path, fps=24) + for frame in frames: + writer.append_data(frame) + writer.close() + except: + print("Can't save video, skipping.") + + # show video preview on the UI + st.session_state["preview_video"].video(open(video_path, 'rb').read()) + + mem_max_used, mem_total = mem_mon.read_and_stop() + time_diff = time.time()- start + + info = f""" + {prompts} + Sampling Steps: {num_steps}, Sampler: {scheduler}, CFG scale: {cfg_scale}, Seed: {seeds}, Max Frames: {max_frames}""".strip() + stats = f''' + Took { round(time_diff, 2) }s total ({ round(time_diff/(max_frames),2) }s per image) + Peak memory usage: { -(mem_max_used // -1_048_576) } MiB / { -(mem_total // -1_048_576) } MiB / { round(mem_max_used/mem_total*100, 3) }%''' + + return im, seeds, info, stats + + +# functions to load css locally OR remotely starts here. Options exist for future flexibility. Called as st.markdown with unsafe_allow_html as css injection +# TODO, maybe look into async loading the file especially for remote fetching +def local_css(file_name): + with open(file_name) as f: + st.markdown(f'', unsafe_allow_html=True) + +def remote_css(url): + st.markdown(f'', unsafe_allow_html=True) + +def load_css(isLocal, nameOrURL): + if(isLocal): + local_css(nameOrURL) + else: + remote_css(nameOrURL) + + +# main functions to define streamlit layout here +def layout(): + + st.set_page_config(page_title="Stable Diffusion Playground", layout="wide") + + with st.empty(): + # load css as an external file, function has an option to local or remote url. Potential use when running from cloud infra that might not have access to local path. + load_css(True, 'frontend/css/streamlit.main.css') + + # check if the models exist on their respective folders + if os.path.exists(os.path.join(defaults.general.GFPGAN_dir, "experiments", "pretrained_models", "GFPGANv1.3.pth")): + GFPGAN_available = True + else: + GFPGAN_available = False + + if os.path.exists(os.path.join(defaults.general.RealESRGAN_dir, "experiments","pretrained_models", f"{defaults.general.RealESRGAN_model}.pth")): + RealESRGAN_available = True + else: + RealESRGAN_available = False + + # Allow for custom models to be used instead of the default one, + # an example would be Waifu-Diffusion or any other fine tune of stable diffusion + custom_models:sorted = [] + for root, dirs, files in os.walk(os.path.join("models", "custom")): + for file in files: + if os.path.splitext(file)[1] == '.ckpt': + fullpath = os.path.join(root, file) + #print(fullpath) + custom_models.append(os.path.splitext(file)[0]) + #print (os.path.splitext(file)[0]) + + if len(custom_models) > 0: + CustomModel_available = True + custom_models.append("Stable Diffusion v1.4") + else: + CustomModel_available = False + + with st.sidebar: + # The global settings section will be moved to the Settings page. + #with st.expander("Global Settings:"): + #st.write("Global Settings:") + #defaults.general.update_preview = st.checkbox("Update Image Preview", value=defaults.general.update_preview, + #help="If enabled the image preview will be updated during the generation instead of at the end. You can use the Update Preview \ + #Frequency option bellow to customize how frequent it's updated. By default this is enabled and the frequency is set to 1 step.") + #st.session_state.update_preview_frequency = st.text_input("Update Image Preview Frequency", value=defaults.general.update_preview_frequency, + #help="Frequency in steps at which the the preview image is updated. By default the frequency is set to 1 step.") + + tabs = on_hover_tabs(tabName=['Stable Diffusion', "Textual Inversion","Model Manager","Settings"], + iconName=['dashboard','model_training' ,'cloud_download', 'settings'], default_choice=0) + + + if tabs =='Stable Diffusion': + txt2img_tab, img2img_tab, txt2vid_tab, postprocessing_tab = st.tabs(["Text-to-Image Unified", "Image-to-Image Unified", + "Text-to-Video","Post-Processing"]) + with txt2img_tab: + with st.form("txt2img-inputs"): + st.session_state["generation_mode"] = "txt2img" + + input_col1, generate_col1 = st.columns([10,1]) + + with input_col1: + #prompt = st.text_area("Input Text","") + prompt = st.text_input("Input Text","", placeholder="A corgi wearing a top hat as an oil painting.") + + # Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way. + generate_col1.write("") + generate_col1.write("") + generate_button = generate_col1.form_submit_button("Generate") + + # creating the page layout using columns + col1, col2, col3 = st.columns([1,2,1], gap="large") + + with col1: + width = st.slider("Width:", min_value=64, max_value=1024, value=defaults.txt2img.width, step=64) + height = st.slider("Height:", min_value=64, max_value=1024, value=defaults.txt2img.height, step=64) + cfg_scale = st.slider("CFG (Classifier Free Guidance Scale):", min_value=1.0, max_value=30.0, value=defaults.txt2img.cfg_scale, step=0.5, help="How strongly the image should follow the prompt.") + seed = st.text_input("Seed:", value=defaults.txt2img.seed, help=" The seed to use, if left blank a random seed will be generated.") + batch_count = st.slider("Batch count.", min_value=1, max_value=100, value=defaults.txt2img.batch_count, step=1, help="How many iterations or batches of images to generate in total.") + #batch_size = st.slider("Batch size", min_value=1, max_value=250, value=defaults.txt2img.batch_size, step=1, + #help="How many images are at once in a batch.\ + #It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish generation as more images are generated at once.\ + #Default: 1") + + with st.expander("Preview Settings"): + st.session_state["update_preview"] = st.checkbox("Update Image Preview", value=defaults.txt2img.update_preview, + help="If enabled the image preview will be updated during the generation instead of at the end. \ + You can use the Update Preview \Frequency option bellow to customize how frequent it's updated. \ + By default this is enabled and the frequency is set to 1 step.") + + st.session_state["update_preview_frequency"] = st.text_input("Update Image Preview Frequency", value=defaults.txt2img.update_preview_frequency, + help="Frequency in steps at which the the preview image is updated. By default the frequency \ + is set to 1 step.") + + with col2: + preview_tab, gallery_tab = st.tabs(["Preview", "Gallery"]) + + with preview_tab: + #st.write("Image") + #Image for testing + #image = Image.open(requests.get("https://icon-library.com/images/image-placeholder-icon/image-placeholder-icon-13.jpg", stream=True).raw).convert('RGB') + #new_image = image.resize((175, 240)) + #preview_image = st.image(image) + + # create an empty container for the image, progress bar, etc so we can update it later and use session_state to hold them globally. + st.session_state["preview_image"] = st.empty() + st.session_state["preview_video"] = st.empty() + + st.session_state["loading"] = st.empty() + + st.session_state["progress_bar_text"] = st.empty() + st.session_state["progress_bar"] = st.empty() + + message = st.empty() + + with gallery_tab: + st.write('Here should be the image gallery, if I could make a grid in streamlit.') + + with col3: + # If we have custom models available on the "models/custom" + #folder then we show a menu to select which model we want to use, otherwise we use the main model for SD + if CustomModel_available: + custom_model = st.selectbox("Custom Model:", custom_models, + index=custom_models.index(defaults.general.default_model), + help="Select the model you want to use. This option is only available if you have custom models \ + on your 'models/custom' folder. The model name that will be shown here is the same as the name\ + the file for the model has on said folder, it is recommended to give the .ckpt file a name that \ + will make it easier for you to distinguish it from other models. Default: Stable Diffusion v1.4") + else: + custom_model = "Stable Diffusion v1.4" + + st.session_state.sampling_steps = st.slider("Sampling Steps", value=defaults.txt2img.sampling_steps, min_value=1, max_value=250) + + sampler_name_list = ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"] + sampler_name = st.selectbox("Sampling method", sampler_name_list, + index=sampler_name_list.index(defaults.txt2img.default_sampler), help="Sampling method to use. Default: k_euler") + + + + #basic_tab, advanced_tab = st.tabs(["Basic", "Advanced"]) + + #with basic_tab: + #summit_on_enter = st.radio("Submit on enter?", ("Yes", "No"), horizontal=True, + #help="Press the Enter key to summit, when 'No' is selected you can use the Enter key to write multiple lines.") + + with st.expander("Advanced"): + separate_prompts = st.checkbox("Create Prompt Matrix.", value=False, + help="Separate multiple prompts using the `|` character, and get all combinations of them.") + normalize_prompt_weights = st.checkbox("Normalize Prompt Weights.", + value=defaults.txt2img.normalize_prompt_weights, help="Ensure the sum of all weights add up to 1.0") + save_individual_images = st.checkbox("Save individual images.", value=defaults.txt2img.save_individual_images, + help="Save each image generated before any filter or enhancement is applied.") + save_grid = st.checkbox("Save grid",value=defaults.txt2img.save_grid, help="Save a grid with all the images generated into a single image.") + group_by_prompt = st.checkbox("Group results by prompt", value=defaults.txt2img.group_by_prompt, + help="Saves all the images with the same prompt into the same folder. \ + When using a prompt matrix each prompt combination will have its own folder.") + write_info_files = st.checkbox("Write Info file", value=defaults.txt2img.write_info_files, + help="Save a file next to the image with informartion about the generation.") + save_as_jpg = st.checkbox("Save samples as jpg", value=defaults.txt2img.save_as_jpg, help="Saves the images as jpg instead of png.") + + if GFPGAN_available: + use_GFPGAN = st.checkbox("Use GFPGAN", value=defaults.txt2img.use_GFPGAN, + help="Uses the GFPGAN model to improve faces after the generation. This greatly improve the quality and \ + consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.") + else: + use_GFPGAN = False + + if RealESRGAN_available: + use_RealESRGAN = st.checkbox("Use RealESRGAN", value=defaults.txt2img.use_RealESRGAN, + help="Uses the RealESRGAN model to upscale the images after the generation. This greatly improve the \ + quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.") + RealESRGAN_model = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0) + else: + use_RealESRGAN = False + RealESRGAN_model = "RealESRGAN_x4plus" + + variant_amount = st.slider("Variant Amount:", value=defaults.txt2img.variant_amount, min_value=0.0, max_value=1.0, step=0.01) + variant_seed = st.text_input("Variant Seed:", value=defaults.txt2img.seed, + help="The seed to use when generating a variant, if left blank a random seed will be generated.") + + + if generate_button: + #print("Loading models") + # load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry. + load_models(False, use_GFPGAN, use_RealESRGAN, RealESRGAN_model, CustomModel_available, custom_model) + + try: + output_images, seed, info, stats = txt2img(prompt, st.session_state.sampling_steps, sampler_name, RealESRGAN_model, batch_count, 1, + cfg_scale, seed, height, width, separate_prompts, normalize_prompt_weights, save_individual_images, + save_grid, group_by_prompt, save_as_jpg, use_GFPGAN, use_RealESRGAN, RealESRGAN_model, fp=defaults.general.fp, + variant_amount=variant_amount, variant_seed=variant_seed, write_info_files=write_info_files) + + message.success('Render Complete: ' + info + '; Stats: ' + stats, icon="✅") + + except KeyError: + output_images, seed, info, stats = txt2img(prompt, st.session_state.sampling_steps, sampler_name, RealESRGAN_model, batch_count, 1, + cfg_scale, seed, height, width, separate_prompts, normalize_prompt_weights, save_individual_images, + save_grid, group_by_prompt, save_as_jpg, use_GFPGAN, use_RealESRGAN, RealESRGAN_model, fp=defaults.general.fp, + variant_amount=variant_amount, variant_seed=variant_seed, write_info_files=write_info_files) + + message.success('Render Complete: ' + info + '; Stats: ' + stats, icon="✅") + + except (StopException): + print(f"Received Streamlit StopException") + + # this will render all the images at the end of the generation but its better if its moved to a second tab inside col2 and shown as a gallery. + # use the current col2 first tab to show the preview_img and update it as its generated. + #preview_image.image(output_images) + + with img2img_tab: + with st.form("img2img-inputs"): + st.session_state["generation_mode"] = "img2img" + + img2img_input_col, img2img_generate_col = st.columns([10,1]) + with img2img_input_col: + #prompt = st.text_area("Input Text","") + prompt = st.text_input("Input Text","", placeholder="A corgi wearing a top hat as an oil painting.") + + # Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way. + img2img_generate_col.write("") + img2img_generate_col.write("") + generate_button = img2img_generate_col.form_submit_button("Generate") + + + # creating the page layout using columns + col1_img2img_layout, col2_img2img_layout, col3_img2img_layout = st.columns([1,2,2], gap="small") + + with col1_img2img_layout: + # If we have custom models available on the "models/custom" + #folder then we show a menu to select which model we want to use, otherwise we use the main model for SD + if CustomModel_available: + custom_model = st.selectbox("Custom Model:", custom_models, + index=custom_models.index(defaults.general.default_model), + help="Select the model you want to use. This option is only available if you have custom models \ + on your 'models/custom' folder. The model name that will be shown here is the same as the name\ + the file for the model has on said folder, it is recommended to give the .ckpt file a name that \ + will make it easier for you to distinguish it from other models. Default: Stable Diffusion v1.4") + else: + custom_model = "Stable Diffusion v1.4" + + st.session_state["sampling_steps"] = st.slider("Sampling Steps", value=defaults.img2img.sampling_steps, min_value=1, max_value=500) + st.session_state["sampler_name"] = st.selectbox("Sampling method", + ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"], + index=sampler_name_list.index(defaults.img2img.sampler_name), + help="Sampling method to use.") + + mask_mode_list = ["Mask", "Inverted mask", "Image alpha"] + mask_mode = st.selectbox("Mask Mode", mask_mode_list, + help="Select how you want your image to be masked.\"Mask\" modifies the image where the mask is white.\n\ + \"Inverted mask\" modifies the image where the mask is black. \"Image alpha\" modifies the image where the image is transparent." + ) + mask_mode = mask_mode_list.index(mask_mode) + + width = st.slider("Width:", min_value=64, max_value=1024, value=defaults.img2img.width, step=64) + height = st.slider("Height:", min_value=64, max_value=1024, value=defaults.img2img.height, step=64) + seed = st.text_input("Seed:", value=defaults.img2img.seed, help=" The seed to use, if left blank a random seed will be generated.") + noise_mode_list = ["Seed", "Find Noise", "Matched Noise", "Find+Matched Noise"] + noise_mode = st.selectbox( + "Noise Mode", noise_mode_list, + help="" + ) + noise_mode = noise_mode_list.index(noise_mode) + find_noise_steps = st.slider("Find Noise Steps", value=100, min_value=1, max_value=500) + batch_count = st.slider("Batch count.", min_value=1, max_value=100, value=defaults.img2img.batch_count, step=1, + help="How many iterations or batches of images to generate in total.") + + # + with st.expander("Advanced"): + separate_prompts = st.checkbox("Create Prompt Matrix.", value=defaults.img2img.separate_prompts, + help="Separate multiple prompts using the `|` character, and get all combinations of them.") + normalize_prompt_weights = st.checkbox("Normalize Prompt Weights.", value=defaults.img2img.normalize_prompt_weights, + help="Ensure the sum of all weights add up to 1.0") + loopback = st.checkbox("Loopback.", value=defaults.img2img.loopback, help="Use images from previous batch when creating next batch.") + random_seed_loopback = st.checkbox("Random loopback seed.", value=defaults.img2img.random_seed_loopback, help="Random loopback seed") + save_individual_images = st.checkbox("Save individual images.", value=defaults.img2img.save_individual_images, + help="Save each image generated before any filter or enhancement is applied.") + save_grid = st.checkbox("Save grid",value=defaults.img2img.save_grid, help="Save a grid with all the images generated into a single image.") + group_by_prompt = st.checkbox("Group results by prompt", value=defaults.img2img.group_by_prompt, + help="Saves all the images with the same prompt into the same folder. \ + When using a prompt matrix each prompt combination will have its own folder.") + write_info_files = st.checkbox("Write Info file", value=defaults.img2img.write_info_files, + help="Save a file next to the image with informartion about the generation.") + save_as_jpg = st.checkbox("Save samples as jpg", value=defaults.img2img.save_as_jpg, help="Saves the images as jpg instead of png.") + + if GFPGAN_available: + use_GFPGAN = st.checkbox("Use GFPGAN", value=defaults.img2img.use_GFPGAN, help="Uses the GFPGAN model to improve faces after the generation.\ + This greatly improve the quality and consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.") + else: + use_GFPGAN = False + + if RealESRGAN_available: + use_RealESRGAN = st.checkbox("Use RealESRGAN", value=defaults.img2img.use_RealESRGAN, + help="Uses the RealESRGAN model to upscale the images after the generation.\ + This greatly improve the quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.") + RealESRGAN_model = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0) + else: + use_RealESRGAN = False + RealESRGAN_model = "RealESRGAN_x4plus" + + variant_amount = st.slider("Variant Amount:", value=defaults.img2img.variant_amount, min_value=0.0, max_value=1.0, step=0.01) + variant_seed = st.text_input("Variant Seed:", value=defaults.img2img.variant_seed, + help="The seed to use when generating a variant, if left blank a random seed will be generated.") + cfg_scale = st.slider("CFG (Classifier Free Guidance Scale):", min_value=1.0, max_value=30.0, value=defaults.img2img.cfg_scale, step=0.5, + help="How strongly the image should follow the prompt.") + batch_size = st.slider("Batch size", min_value=1, max_value=100, value=defaults.img2img.batch_size, step=1, + help="How many images are at once in a batch.\ + It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish \ + generation as more images are generated at once.\ + Default: 1") + + st.session_state["denoising_strength"] = st.slider("Denoising Strength:", value=defaults.img2img.denoising_strength, + min_value=0.01, max_value=1.0, step=0.01) + + with st.expander("Preview Settings"): + st.session_state["update_preview"] = st.checkbox("Update Image Preview", value=defaults.img2img.update_preview, + help="If enabled the image preview will be updated during the generation instead of at the end. \ + You can use the Update Preview \Frequency option bellow to customize how frequent it's updated. \ + By default this is enabled and the frequency is set to 1 step.") + + st.session_state["update_preview_frequency"] = st.text_input("Update Image Preview Frequency", value=defaults.img2img.update_preview_frequency, + help="Frequency in steps at which the the preview image is updated. By default the frequency \ + is set to 1 step.") + + with col2_img2img_layout: + editor_tab = st.tabs(["Editor"]) + + editor_image = st.empty() + st.session_state["editor_image"] = editor_image + + refresh_button = st.form_submit_button("Refresh") + + masked_image_holder = st.empty() + image_holder = st.empty() + + uploaded_images = st.file_uploader( + "Upload Image", accept_multiple_files=False, type=["png", "jpg", "jpeg"], + help="Upload an image which will be used for the image to image generation.", + ) + if uploaded_images: + image = Image.open(uploaded_images).convert('RGBA') + new_img = image.resize((width, height)) + image_holder.image(new_img) + + mask_holder = st.empty() + + uploaded_masks = st.file_uploader( + "Upload Mask", accept_multiple_files=False, type=["png", "jpg", "jpeg"], + help="Upload an mask image which will be used for masking the image to image generation.", + ) + if uploaded_masks: + mask = Image.open(uploaded_masks) + if mask.mode == "RGBA": + mask = mask.convert('RGBA') + background = Image.new('RGBA', mask.size, (0, 0, 0)) + mask = Image.alpha_composite(background, mask) + mask = mask.resize((width, height)) + mask_holder.image(mask) + + if uploaded_images and uploaded_masks: + if mask_mode != 2: + final_img = new_img.copy() + alpha_layer = mask.convert('L') + strength = st.session_state["denoising_strength"] + if mask_mode == 0: + alpha_layer = ImageOps.invert(alpha_layer) + alpha_layer = alpha_layer.point(lambda a: a * strength) + alpha_layer = ImageOps.invert(alpha_layer) + elif mask_mode == 1: + alpha_layer = alpha_layer.point(lambda a: a * strength) + alpha_layer = ImageOps.invert(alpha_layer) + + final_img.putalpha(alpha_layer) + + with masked_image_holder.container(): + st.text("Masked Image Preview") + st.image(final_img) + + + with col3_img2img_layout: + result_tab = st.tabs(["Result"]) + + # create an empty container for the image, progress bar, etc so we can update it later and use session_state to hold them globally. + preview_image = st.empty() + st.session_state["preview_image"] = preview_image + + #st.session_state["loading"] = st.empty() + + st.session_state["progress_bar_text"] = st.empty() + st.session_state["progress_bar"] = st.empty() + + + message = st.empty() + + #if uploaded_images: + #image = Image.open(uploaded_images).convert('RGB') + ##img_array = np.array(image) # if you want to pass it to OpenCV + #new_img = image.resize((width, height)) + #st.image(new_img, use_column_width=True) + + + if generate_button: + #print("Loading models") + # load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry. + load_models(False, use_GFPGAN, use_RealESRGAN, RealESRGAN_model, CustomModel_available, custom_model) + if uploaded_images: + image = Image.open(uploaded_images).convert('RGBA') + new_img = image.resize((width, height)) + #img_array = np.array(image) # if you want to pass it to OpenCV + new_mask = None + if uploaded_masks: + mask = Image.open(uploaded_masks).convert('RGBA') + new_mask = mask.resize((width, height)) + + try: + output_images, seed, info, stats = img2img(prompt=prompt, init_info=new_img, init_info_mask=new_mask, mask_mode=mask_mode, ddim_steps=st.session_state["sampling_steps"], + sampler_name=st.session_state["sampler_name"], n_iter=batch_count, + cfg_scale=cfg_scale, denoising_strength=st.session_state["denoising_strength"], variant_seed=variant_seed, + seed=seed, noise_mode=noise_mode, find_noise_steps=find_noise_steps, width=width, height=height, fp=defaults.general.fp, variant_amount=variant_amount, + ddim_eta=0.0, write_info_files=write_info_files, RealESRGAN_model=RealESRGAN_model, + separate_prompts=separate_prompts, normalize_prompt_weights=normalize_prompt_weights, + save_individual_images=save_individual_images, save_grid=save_grid, + group_by_prompt=group_by_prompt, save_as_jpg=save_as_jpg, use_GFPGAN=use_GFPGAN, + use_RealESRGAN=use_RealESRGAN if not loopback else False, loopback=loopback + ) + + #show a message when the generation is complete. + message.success('Render Complete: ' + info + '; Stats: ' + stats, icon="✅") + + except (StopException, KeyError): + print(f"Received Streamlit StopException") + + # this will render all the images at the end of the generation but its better if its moved to a second tab inside col2 and shown as a gallery. + # use the current col2 first tab to show the preview_img and update it as its generated. + #preview_image.image(output_images, width=750) + + with txt2vid_tab: + with st.form("txt2vid-inputs"): + st.session_state["generation_mode"] = "txt2vid" + + input_col1, generate_col1 = st.columns([10,1]) + with input_col1: + #prompt = st.text_area("Input Text","") + prompt = st.text_input("Input Text","", placeholder="A corgi wearing a top hat as an oil painting.") + + # Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way. + generate_col1.write("") + generate_col1.write("") + generate_button = generate_col1.form_submit_button("Generate") + + # creating the page layout using columns + col1, col2, col3 = st.columns([1,2,1], gap="large") + + with col1: + width = st.slider("Width:", min_value=64, max_value=2048, value=defaults.txt2vid.width, step=64) + height = st.slider("Height:", min_value=64, max_value=2048, value=defaults.txt2vid.height, step=64) + cfg_scale = st.slider("CFG (Classifier Free Guidance Scale):", min_value=1.0, max_value=30.0, value=defaults.txt2vid.cfg_scale, step=0.5, help="How strongly the image should follow the prompt.") + seed = st.text_input("Seed:", value=defaults.txt2vid.seed, help=" The seed to use, if left blank a random seed will be generated.") + batch_count = st.slider("Batch count.", min_value=1, max_value=100, value=defaults.txt2vid.batch_count, step=1, help="How many iterations or batches of images to generate in total.") + #batch_size = st.slider("Batch size", min_value=1, max_value=250, value=defaults.txt2vid.batch_size, step=1, + #help="How many images are at once in a batch.\ + #It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish generation as more images are generated at once.\ + #Default: 1") + + st.session_state["max_frames"] = int(st.text_input("Max Frames:", value=defaults.txt2vid.max_frames, help="Specify the max number of frames you want to generate.")) + + with st.expander("Preview Settings"): + st.session_state["update_preview"] = st.checkbox("Update Image Preview", value=defaults.txt2vid.update_preview, + help="If enabled the image preview will be updated during the generation instead of at the end. \ + You can use the Update Preview \Frequency option bellow to customize how frequent it's updated. \ + By default this is enabled and the frequency is set to 1 step.") + + st.session_state["update_preview_frequency"] = st.text_input("Update Image Preview Frequency", value=defaults.txt2vid.update_preview_frequency, + help="Frequency in steps at which the the preview image is updated. By default the frequency \ + is set to 1 step.") + with col2: + preview_tab, gallery_tab = st.tabs(["Preview", "Gallery"]) + + with preview_tab: + #st.write("Image") + #Image for testing + #image = Image.open(requests.get("https://icon-library.com/images/image-placeholder-icon/image-placeholder-icon-13.jpg", stream=True).raw).convert('RGB') + #new_image = image.resize((175, 240)) + #preview_image = st.image(image) + + # create an empty container for the image, progress bar, etc so we can update it later and use session_state to hold them globally. + st.session_state["preview_image"] = st.empty() + + st.session_state["loading"] = st.empty() + + st.session_state["progress_bar_text"] = st.empty() + st.session_state["progress_bar"] = st.empty() + + generate_video = st.empty() + st.session_state["preview_video"] = st.empty() + + message = st.empty() + + with gallery_tab: + st.write('Here should be the image gallery, if I could make a grid in streamlit.') + + with col3: + # If we have custom models available on the "models/custom" + #folder then we show a menu to select which model we want to use, otherwise we use the main model for SD + #if CustomModel_available: + custom_model = st.selectbox("Custom Model:", defaults.txt2vid.custom_models_list, + index=defaults.txt2vid.custom_models_list.index(defaults.txt2vid.default_model), + help="Select the model you want to use. This option is only available if you have custom models \ + on your 'models/custom' folder. The model name that will be shown here is the same as the name\ + the file for the model has on said folder, it is recommended to give the .ckpt file a name that \ + will make it easier for you to distinguish it from other models. Default: Stable Diffusion v1.4") + + #st.session_state["weights_path"] = custom_model + #else: + #custom_model = "CompVis/stable-diffusion-v1-4" + #st.session_state["weights_path"] = f"CompVis/{slugify(custom_model.lower())}" + + st.session_state.sampling_steps = st.slider("Sampling Steps", value=defaults.txt2vid.sampling_steps, min_value=10, step=10, max_value=500, + help="Number of steps between each pair of sampled points") + st.session_state.num_inference_steps = st.slider("Inference Steps:", value=defaults.txt2vid.num_inference_steps, min_value=10,step=10, max_value=500, + help="Higher values (e.g. 100, 200 etc) can create better images.") + + #sampler_name_list = ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"] + #sampler_name = st.selectbox("Sampling method", sampler_name_list, + #index=sampler_name_list.index(defaults.txt2vid.default_sampler), help="Sampling method to use. Default: k_euler") + scheduler_name_list = ["klms", "ddim"] + scheduler_name = st.selectbox("Scheduler:", scheduler_name_list, + index=scheduler_name_list.index(defaults.txt2vid.scheduler_name), help="Scheduler to use. Default: klms") + + beta_scheduler_type_list = ["scaled_linear", "linear"] + beta_scheduler_type = st.selectbox("Beta Schedule Type:", beta_scheduler_type_list, + index=beta_scheduler_type_list.index(defaults.txt2vid.beta_scheduler_type), help="Schedule Type to use. Default: linear") + + + #basic_tab, advanced_tab = st.tabs(["Basic", "Advanced"]) + + #with basic_tab: + #summit_on_enter = st.radio("Submit on enter?", ("Yes", "No"), horizontal=True, + #help="Press the Enter key to summit, when 'No' is selected you can use the Enter key to write multiple lines.") + + with st.expander("Advanced"): + st.session_state["separate_prompts"] = st.checkbox("Create Prompt Matrix.", value=defaults.txt2vid.separate_prompts, + help="Separate multiple prompts using the `|` character, and get all combinations of them.") + st.session_state["normalize_prompt_weights"] = st.checkbox("Normalize Prompt Weights.", + value=defaults.txt2vid.normalize_prompt_weights, help="Ensure the sum of all weights add up to 1.0") + st.session_state["save_individual_images"] = st.checkbox("Save individual images.", + value=defaults.txt2vid.save_individual_images, help="Save each image generated before any filter or enhancement is applied.") + st.session_state["save_video"] = st.checkbox("Save video",value=defaults.txt2vid.save_video, help="Save a video with all the images generated as frames at the end of the generation.") + st.session_state["group_by_prompt"] = st.checkbox("Group results by prompt", value=defaults.txt2vid.group_by_prompt, + help="Saves all the images with the same prompt into the same folder. When using a prompt matrix each prompt combination will have its own folder.") + st.session_state["write_info_files"] = st.checkbox("Write Info file", value=defaults.txt2vid.write_info_files, + help="Save a file next to the image with informartion about the generation.") + st.session_state["dynamic_preview_frequency"] = st.checkbox("Dynamic Preview Frequency", value=defaults.txt2vid.dynamic_preview_frequency, + help="This option tries to find the best value at which we can update \ + the preview image during generation while minimizing the impact it has in performance. Default: True") + st.session_state["do_loop"] = st.checkbox("Do Loop", value=defaults.txt2vid.do_loop, + help="Do loop") + st.session_state["save_as_jpg"] = st.checkbox("Save samples as jpg", value=defaults.txt2vid.save_as_jpg, help="Saves the images as jpg instead of png.") + + if GFPGAN_available: + st.session_state["use_GFPGAN"] = st.checkbox("Use GFPGAN", value=defaults.txt2vid.use_GFPGAN, help="Uses the GFPGAN model to improve faces after the generation. This greatly improve the quality and consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.") + else: + st.session_state["use_GFPGAN"] = False + + if RealESRGAN_available: + st.session_state["use_RealESRGAN"] = st.checkbox("Use RealESRGAN", value=defaults.txt2vid.use_RealESRGAN, + help="Uses the RealESRGAN model to upscale the images after the generation. This greatly improve the quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.") + st.session_state["RealESRGAN_model"] = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0) + else: + st.session_state["use_RealESRGAN"] = False + st.session_state["RealESRGAN_model"] = "RealESRGAN_x4plus" + + st.session_state["variant_amount"] = st.slider("Variant Amount:", value=defaults.txt2vid.variant_amount, min_value=0.0, max_value=1.0, step=0.01) + st.session_state["variant_seed"] = st.text_input("Variant Seed:", value=defaults.txt2vid.seed, help="The seed to use when generating a variant, if left blank a random seed will be generated.") + st.session_state["beta_start"] = st.slider("Beta Start:", value=defaults.txt2vid.beta_start, min_value=0.0001, max_value=0.03, step=0.0001, format="%.4f") + st.session_state["beta_end"] = st.slider("Beta End:", value=defaults.txt2vid.beta_end, min_value=0.0001, max_value=0.03, step=0.0001, format="%.4f") + + if generate_button: + #print("Loading models") + # load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry. + #load_models(False, False, False, RealESRGAN_model, CustomModel_available=CustomModel_available, custom_model=custom_model) + + # run video generation + image, seed, info, stats = txt2vid(prompts=prompt, gpu=defaults.general.gpu, + num_steps=st.session_state.sampling_steps, max_frames=int(st.session_state.max_frames), + num_inference_steps=st.session_state.num_inference_steps, + cfg_scale=cfg_scale,do_loop=st.session_state["do_loop"], + seeds=seed, quality=100, eta=0.0, width=width, + height=height, weights_path=custom_model, scheduler=scheduler_name, + disable_tqdm=False, beta_start=st.session_state["beta_start"], beta_end=st.session_state["beta_end"], + beta_schedule=beta_scheduler_type) + + #message.success('Done!', icon="✅") + message.success('Render Complete: ' + info + '; Stats: ' + stats, icon="✅") + + #except (StopException, KeyError): + #print(f"Received Streamlit StopException") + + # this will render all the images at the end of the generation but its better if its moved to a second tab inside col2 and shown as a gallery. + # use the current col2 first tab to show the preview_img and update it as its generated. + #preview_image.image(output_images) + + # + elif tabs == 'Model Manager': + #search = st.text_input(label="Search", placeholder="Type the name of the model you want to search for.", help="") + + csvString = f""" + ,Stable Diffusion v1.4 , ./models/ldm/stable-diffusion-v1 , https://www.googleapis.com/storage/v1/b/aai-blog-files/o/sd-v1-4.ckpt?alt=media + ,GFPGAN v1.3 , ./src/gfpgan/experiments/pretrained_models , https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth + ,RealESRGAN_x4plus , ./src/realesrgan/experiments/pretrained_models , https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth + ,RealESRGAN_x4plus_anime_6B , ./src/realesrgan/experiments/pretrained_models , https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth + ,Waifu Diffusion v1.2 , ./models/custom , http://wd.links.sd:8880/wd-v1-2-full-ema.ckpt + ,TrinArt Stable Diffusion v2 , ./models/custom , https://huggingface.co/naclbit/trinart_stable_diffusion_v2/resolve/main/trinart2_step115000.ckpt + """ + colms = st.columns((1, 3, 5, 5)) + columns = ["№",'Model Name','Save Location','Download Link'] + + # Convert String into StringIO + csvStringIO = StringIO(csvString) + df = pd.read_csv(csvStringIO, sep=",", header=None, names=columns) + + for col, field_name in zip(colms, columns): + # table header + col.write(field_name) + + for x, model_name in enumerate(df["Model Name"]): + col1, col2, col3, col4 = st.columns((1, 3, 4, 6)) + col1.write(x) # index + col2.write(df['Model Name'][x]) + col3.write(df['Save Location'][x]) + col4.write(df['Download Link'][x]) + + + elif tabs == 'Settings': + import Settings + + st.write("Settings") + +if __name__ == '__main__': + layout()