diff --git a/scripts/sd_utils/__init__.py b/scripts/sd_utils/__init__.py index 95fb769..bd3dc6c 100644 --- a/scripts/sd_utils/__init__.py +++ b/scripts/sd_utils/__init__.py @@ -99,7 +99,7 @@ shutup.please() if "defaults" in st.session_state: if st.session_state["defaults"].general.use_cudnn: torch.backends.cudnn.benchmark = True - torch.backends.cudnn.enabled = True + torch.backends.cudnn.enabled = True try: # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. @@ -294,7 +294,7 @@ def merge(file1, file2, out, weight): file2 += ".ckpt" if not(out.endswith(".ckpt")): out += ".ckpt" - try: + try: #Load Models model_0 = torch.load(file1) model_1 = torch.load(file2) @@ -310,7 +310,7 @@ def merge(file1, file2, out, weight): theta_0[key] = theta_1[key] torch.save(model_0, out) except: - logger.error("Error in merging") + logger.error("Error in merging") def human_readable_size(size, decimal_places=3): @@ -1325,7 +1325,7 @@ def torch_gc(): torch.cuda.ipc_collect() @retry(tries=5) -#@st.experimental_memo(persist="disk", show_spinner=False, suppress_st_warning=True) +#@st.experimental_memo(persist="disk", show_spinner=False) def load_GFPGAN(model_name='GFPGANv1.4'): #model_name = 'GFPGANv1.3' @@ -1629,10 +1629,10 @@ def ModelLoader(models,load=False,unload=False,imgproc_realesrgan_model_name='Re # @retry(tries=5) def generation_callback(img, i=0): - + # try to do garbage collection before decoding the image torch_gc() - + if "update_preview_frequency" not in st.session_state: raise StopException @@ -1757,7 +1757,7 @@ def slerp(device, t, v0:torch.Tensor, v1:torch.Tensor, DOT_THRESHOLD=0.9995): return v2 # -@st.experimental_memo(persist="disk", show_spinner=False, suppress_st_warning=True) +@st.experimental_memo(persist="disk", show_spinner=False) def optimize_update_preview_frequency(current_chunk_speed, previous_chunk_speed_list, update_preview_frequency, update_preview_frequency_list): """Find the optimal update_preview_frequency value maximizing performance while minimizing the time between updates.""" @@ -2420,7 +2420,7 @@ def process_images( else: # just behave like usual c = (server_state["model"] if not st.session_state['defaults'].general.optimized else server_state["modelCS"]).get_learned_conditioning(prompts) - + shape = [opt_C, height // opt_f, width // opt_f] if st.session_state['defaults'].general.optimized: