Removed the "find_noise_for_image.py" and "matched_noise.py" scripts as their content is now part of "sd_utils.py"

This commit is contained in:
ZeroCool940711 2022-09-14 02:02:11 -07:00
parent 71be8f09f2
commit 2e684f948f
2 changed files with 0 additions and 209 deletions

View File

@ -1,57 +0,0 @@
# Credit to trygvebw for this implementation
# Original here: https://gist.github.com/trygvebw/c71334dd127d537a15e9d59790f7f5e1
import numpy as np
import torch
import k_diffusion as K
from tqdm.auto import trange, tqdm
def find_noise_for_image(model, device, init_image, prompt, steps=200, cond_scale=2.0, verbose=False, normalize=False, generation_callback=None):
image = np.array(init_image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
image = 2. * image - 1.
image = image.to(device)
x = model.get_first_stage_encoding(model.encode_first_stage(image))
uncond = model.get_learned_conditioning([''])
cond = model.get_learned_conditioning([prompt])
s_in = x.new_ones([x.shape[0]])
dnw = K.external.CompVisDenoiser(model)
sigmas = dnw.get_sigmas(steps).flip(0)
if verbose:
print(sigmas)
for i in trange(1, len(sigmas)):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)
cond_in = torch.cat([uncond, cond])
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
if i == 1:
t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
else:
t = dnw.sigma_to_t(sigma_in)
eps = model.apply_model(x_in * c_in, t, cond=cond_in)
denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)
denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cond_scale
if i == 1:
d = (x - denoised) / (2 * sigmas[i])
else:
d = (x - denoised) / sigmas[i - 1]
if generation_callback is not None:
generation_callback(x, i)
dt = sigmas[i] - sigmas[i - 1]
x = x + d * dt
return x / sigmas[-1]

View File

@ -1,152 +0,0 @@
# CREDIT TO parlance-zz for discovering and implementing this method
# This code is from https://github.com/parlance-zz/g-diffuser-bot
import numpy as np
import skimage
# helper fft routines that keep ortho normalization and auto-shift before and after fft
def _fft2(data):
if data.ndim > 2: # has channels
out_fft = np.zeros((data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128)
for c in range(data.shape[2]):
c_data = data[:,:,c]
out_fft[:,:,c] = np.fft.fft2(np.fft.fftshift(c_data),norm="ortho")
out_fft[:,:,c] = np.fft.ifftshift(out_fft[:,:,c])
else: # one channel
out_fft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128)
out_fft[:,:] = np.fft.fft2(np.fft.fftshift(data),norm="ortho")
out_fft[:,:] = np.fft.ifftshift(out_fft[:,:])
return out_fft
def _ifft2(data):
if data.ndim > 2: # has channels
out_ifft = np.zeros((data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128)
for c in range(data.shape[2]):
c_data = data[:,:,c]
out_ifft[:,:,c] = np.fft.ifft2(np.fft.fftshift(c_data),norm="ortho")
out_ifft[:,:,c] = np.fft.ifftshift(out_ifft[:,:,c])
else: # one channel
out_ifft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128)
out_ifft[:,:] = np.fft.ifft2(np.fft.fftshift(data),norm="ortho")
out_ifft[:,:] = np.fft.ifftshift(out_ifft[:,:])
return out_ifft
def _get_gaussian_window(width, height, std=3.14, mode=0):
window_scale_x = float(width / min(width, height))
window_scale_y = float(height / min(width, height))
window = np.zeros((width, height))
x = (np.arange(width) / width * 2. - 1.) * window_scale_x
for y in range(height):
fy = (y / height * 2. - 1.) * window_scale_y
if mode == 0:
window[:, y] = np.exp(-(x**2+fy**2) * std)
else:
window[:, y] = (1/((x**2+1.) * (fy**2+1.))) ** (std/3.14) # hey wait a minute that's not gaussian
return window
def _get_masked_window_rgb(np_mask_grey, hardness=1.):
np_mask_rgb = np.zeros((np_mask_grey.shape[0], np_mask_grey.shape[1], 3))
if hardness != 1.:
hardened = np_mask_grey[:] ** hardness
else:
hardened = np_mask_grey[:]
for c in range(3):
np_mask_rgb[:,:,c] = hardened[:]
return np_mask_rgb
"""
Explanation:
Getting good results in/out-painting with stable diffusion can be challenging.
Although there are simpler effective solutions for in-painting, out-painting can be especially challenging because there is no color data
in the masked area to help prompt the generator. Ideally, even for in-painting we'd like work effectively without that data as well.
Provided here is my take on a potential solution to this problem.
By taking a fourier transform of the masked src img we get a function that tells us the presence and orientation of each feature scale in the unmasked src.
Shaping the init/seed noise for in/outpainting to the same distribution of feature scales, orientations, and positions increases output coherence
by helping keep features aligned. This technique is applicable to any continuous generation task such as audio or video, each of which can
be conceptualized as a series of out-painting steps where the last half of the input "frame" is erased. For multi-channel data such as color
or stereo sound the "color tone" or histogram of the seed noise can be matched to improve quality (using scikit-image currently)
This method is quite robust and has the added benefit of being fast independently of the size of the out-painted area.
The effects of this method include things like helping the generator integrate the pre-existing view distance and camera angle.
Carefully managing color and brightness with histogram matching is also essential to achieving good coherence.
noise_q controls the exponent in the fall-off of the distribution can be any positive number, lower values means higher detail (range > 0, default 1.)
color_variation controls how much freedom is allowed for the colors/palette of the out-painted area (range 0..1, default 0.01)
This code is provided as is under the Unlicense (https://unlicense.org/)
Although you have no obligation to do so, if you found this code helpful please find it in your heart to credit me [parlance-zz].
Questions or comments can be sent to parlance@fifth-harmonic.com (https://github.com/parlance-zz/)
This code is part of a new branch of a discord bot I am working on integrating with diffusers (https://github.com/parlance-zz/g-diffuser-bot)
"""
def get_matched_noise(_np_src_image, np_mask_rgb, noise_q, color_variation):
global DEBUG_MODE
global TMP_ROOT_PATH
width = _np_src_image.shape[0]
height = _np_src_image.shape[1]
num_channels = _np_src_image.shape[2]
np_src_image = _np_src_image[:] * (1. - np_mask_rgb)
np_mask_grey = (np.sum(np_mask_rgb, axis=2)/3.)
np_src_grey = (np.sum(np_src_image, axis=2)/3.)
all_mask = np.ones((width, height), dtype=bool)
img_mask = np_mask_grey > 1e-6
ref_mask = np_mask_grey < 1e-3
windowed_image = _np_src_image * (1.-_get_masked_window_rgb(np_mask_grey))
windowed_image /= np.max(windowed_image)
windowed_image += np.average(_np_src_image) * np_mask_rgb# / (1.-np.average(np_mask_rgb)) # rather than leave the masked area black, we get better results from fft by filling the average unmasked color
#windowed_image += np.average(_np_src_image) * (np_mask_rgb * (1.- np_mask_rgb)) / (1.-np.average(np_mask_rgb)) # compensate for darkening across the mask transition area
#_save_debug_img(windowed_image, "windowed_src_img")
src_fft = _fft2(windowed_image) # get feature statistics from masked src img
src_dist = np.absolute(src_fft)
src_phase = src_fft / src_dist
#_save_debug_img(src_dist, "windowed_src_dist")
noise_window = _get_gaussian_window(width, height, mode=1) # start with simple gaussian noise
noise_rgb = np.random.random_sample((width, height, num_channels))
noise_grey = (np.sum(noise_rgb, axis=2)/3.)
noise_rgb *= color_variation # the colorfulness of the starting noise is blended to greyscale with a parameter
for c in range(num_channels):
noise_rgb[:,:,c] += (1. - color_variation) * noise_grey
noise_fft = _fft2(noise_rgb)
for c in range(num_channels):
noise_fft[:,:,c] *= noise_window
noise_rgb = np.real(_ifft2(noise_fft))
shaped_noise_fft = _fft2(noise_rgb)
shaped_noise_fft[:,:,:] = np.absolute(shaped_noise_fft[:,:,:])**2 * (src_dist ** noise_q) * src_phase # perform the actual shaping
brightness_variation = 0.#color_variation # todo: temporarily tieing brightness variation to color variation for now
contrast_adjusted_np_src = _np_src_image[:] * (brightness_variation + 1.) - brightness_variation * 2.
# scikit-image is used for histogram matching, very convenient!
shaped_noise = np.real(_ifft2(shaped_noise_fft))
shaped_noise -= np.min(shaped_noise)
shaped_noise /= np.max(shaped_noise)
shaped_noise[img_mask,:] = skimage.exposure.match_histograms(shaped_noise[img_mask,:]**1., contrast_adjusted_np_src[ref_mask,:], channel_axis=1)
shaped_noise = _np_src_image[:] * (1. - np_mask_rgb) + shaped_noise * np_mask_rgb
#_save_debug_img(shaped_noise, "shaped_noise")
matched_noise = np.zeros((width, height, num_channels))
matched_noise = shaped_noise[:]
#matched_noise[all_mask,:] = skimage.exposure.match_histograms(shaped_noise[all_mask,:], _np_src_image[ref_mask,:], channel_axis=1)
#matched_noise = _np_src_image[:] * (1. - np_mask_rgb) + matched_noise * np_mask_rgb
#_save_debug_img(matched_noise, "matched_noise")
"""
todo:
color_variation doesnt have to be a single number, the overall color tone of the out-painted area could be param controlled
"""
return np.clip(matched_noise, 0., 1.)