mirror of
https://github.com/sd-webui/stable-diffusion-webui.git
synced 2024-12-14 23:02:00 +03:00
- Added the functions to load the optimized models, this "should" make it so optimized and turbo mode work now but needs to be tested more.
- Added function to load LDSR.
This commit is contained in:
parent
2e684f948f
commit
374b144e77
@ -13,6 +13,7 @@ general:
|
||||
GFPGAN_dir: "./src/gfpgan"
|
||||
RealESRGAN_dir: "./src/realesrgan"
|
||||
RealESRGAN_model: "RealESRGAN_x4plus"
|
||||
LDSR_dir: "./src/latent-diffusion"
|
||||
outdir_txt2img: outputs/txt2img-samples
|
||||
outdir_img2img: outputs/img2img-samples
|
||||
gfpgan_cpu: False
|
||||
|
@ -1,21 +1,20 @@
|
||||
import warnings
|
||||
# base webui import and utils.
|
||||
from webui_streamlit import st
|
||||
|
||||
import piexif
|
||||
import piexif.helper
|
||||
|
||||
# streamlit imports
|
||||
|
||||
|
||||
#other imports
|
||||
|
||||
import warnings
|
||||
import json
|
||||
|
||||
import streamlit as st
|
||||
from streamlit import StopException
|
||||
|
||||
#streamlit components section
|
||||
from st_on_hover_tabs import on_hover_tabs
|
||||
|
||||
import base64, cv2
|
||||
import os, sys, re, random, datetime, timeit
|
||||
from PIL import Image, ImageFont, ImageDraw, ImageFilter, ImageOps
|
||||
import base64
|
||||
import os, sys, re, random, datetime, time, math
|
||||
from PIL import Image, ImageFont, ImageDraw, ImageFilter
|
||||
from PIL.PngImagePlugin import PngInfo
|
||||
from scipy import integrate
|
||||
import pandas as pd
|
||||
import torch
|
||||
from torchdiffeq import odeint
|
||||
import k_diffusion as K
|
||||
@ -24,36 +23,28 @@ import mimetypes
|
||||
import numpy as np
|
||||
import pynvml
|
||||
import threading
|
||||
import time, inspect
|
||||
import torch
|
||||
from torch import autocast
|
||||
from torchvision import transforms
|
||||
import torch.nn as nn
|
||||
from omegaconf import OmegaConf
|
||||
import yaml
|
||||
from typing import Union
|
||||
from pathlib import Path
|
||||
#from tqdm import tqdm
|
||||
from contextlib import nullcontext
|
||||
from einops import rearrange
|
||||
from omegaconf import OmegaConf
|
||||
from io import StringIO
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
from ldm.util import instantiate_from_config
|
||||
from retry import retry
|
||||
import find_noise_for_image
|
||||
import matched_noise
|
||||
|
||||
# these are for testing txt2vid, should be removed and we should use things from our own code.
|
||||
from diffusers import StableDiffusionPipeline
|
||||
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
||||
|
||||
#will be used for saving and reading a video made by the txt2vid function
|
||||
import imageio, io
|
||||
|
||||
# we use python-slugify to make the filenames safe for windows and linux, its better than doing it manually
|
||||
# install it with 'pip install python-slugify'
|
||||
from slugify import slugify
|
||||
import skimage
|
||||
import piexif
|
||||
import piexif.helper
|
||||
from tqdm import trange
|
||||
|
||||
# Temp imports
|
||||
|
||||
|
||||
# end of imports
|
||||
#---------------------------------------------------------------------------------------------------------------
|
||||
|
||||
try:
|
||||
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
|
||||
@ -241,58 +232,6 @@ def load_sd_from_config(ckpt, verbose=False):
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
sd = pl_sd["state_dict"]
|
||||
return sd
|
||||
#
|
||||
@retry(tries=5)
|
||||
def generation_callback(img, i=0):
|
||||
|
||||
try:
|
||||
if i == 0:
|
||||
if img['i']: i = img['i']
|
||||
except TypeError:
|
||||
pass
|
||||
|
||||
|
||||
if i % int(defaults.general.update_preview_frequency) == 0 and defaults.general.update_preview:
|
||||
#print (img)
|
||||
#print (type(img))
|
||||
# The following lines will convert the tensor we got on img to an actual image we can render on the UI.
|
||||
# It can probably be done in a better way for someone who knows what they're doing. I don't.
|
||||
#print (img,isinstance(img, torch.Tensor))
|
||||
if isinstance(img, torch.Tensor):
|
||||
x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(img)
|
||||
else:
|
||||
# When using the k Diffusion samplers they return a dict instead of a tensor that look like this:
|
||||
# {'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}
|
||||
x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(img["denoised"])
|
||||
|
||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
pil_image = transforms.ToPILImage()(x_samples_ddim.squeeze_(0))
|
||||
|
||||
# update image on the UI so we can see the progress
|
||||
st.session_state["preview_image"].image(pil_image)
|
||||
|
||||
# Show a progress bar so we can keep track of the progress even when the image progress is not been shown,
|
||||
# Dont worry, it doesnt affect the performance.
|
||||
if st.session_state["generation_mode"] == "txt2img":
|
||||
percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps))
|
||||
st.session_state["progress_bar_text"].text(
|
||||
f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps} {percent if percent < 100 else 100}%")
|
||||
else:
|
||||
if st.session_state["generation_mode"] == "img2img":
|
||||
round_sampling_steps = round(st.session_state.sampling_steps * st.session_state["denoising_strength"])
|
||||
percent = int(100 * float(i+1 if i+1 < round_sampling_steps else round_sampling_steps)/float(round_sampling_steps))
|
||||
st.session_state["progress_bar_text"].text(
|
||||
f"""Running step: {i+1 if i+1 < round_sampling_steps else round_sampling_steps}/{round_sampling_steps} {percent if percent < 100 else 100}%""")
|
||||
else:
|
||||
if st.session_state["generation_mode"] == "txt2vid":
|
||||
percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps))
|
||||
st.session_state["progress_bar_text"].text(
|
||||
f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps}"
|
||||
f"{percent if percent < 100 else 100}%")
|
||||
|
||||
st.session_state["progress_bar"].progress(percent if percent < 100 else 100)
|
||||
|
||||
|
||||
|
||||
class MemUsageMonitor(threading.Thread):
|
||||
@ -379,6 +318,204 @@ def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return append_zero(sigmas).to(device)
|
||||
|
||||
#
|
||||
# helper fft routines that keep ortho normalization and auto-shift before and after fft
|
||||
def _fft2(data):
|
||||
if data.ndim > 2: # has channels
|
||||
out_fft = np.zeros((data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128)
|
||||
for c in range(data.shape[2]):
|
||||
c_data = data[:,:,c]
|
||||
out_fft[:,:,c] = np.fft.fft2(np.fft.fftshift(c_data),norm="ortho")
|
||||
out_fft[:,:,c] = np.fft.ifftshift(out_fft[:,:,c])
|
||||
else: # one channel
|
||||
out_fft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128)
|
||||
out_fft[:,:] = np.fft.fft2(np.fft.fftshift(data),norm="ortho")
|
||||
out_fft[:,:] = np.fft.ifftshift(out_fft[:,:])
|
||||
|
||||
return out_fft
|
||||
|
||||
def _ifft2(data):
|
||||
if data.ndim > 2: # has channels
|
||||
out_ifft = np.zeros((data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128)
|
||||
for c in range(data.shape[2]):
|
||||
c_data = data[:,:,c]
|
||||
out_ifft[:,:,c] = np.fft.ifft2(np.fft.fftshift(c_data),norm="ortho")
|
||||
out_ifft[:,:,c] = np.fft.ifftshift(out_ifft[:,:,c])
|
||||
else: # one channel
|
||||
out_ifft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128)
|
||||
out_ifft[:,:] = np.fft.ifft2(np.fft.fftshift(data),norm="ortho")
|
||||
out_ifft[:,:] = np.fft.ifftshift(out_ifft[:,:])
|
||||
|
||||
return out_ifft
|
||||
|
||||
def _get_gaussian_window(width, height, std=3.14, mode=0):
|
||||
|
||||
window_scale_x = float(width / min(width, height))
|
||||
window_scale_y = float(height / min(width, height))
|
||||
|
||||
window = np.zeros((width, height))
|
||||
x = (np.arange(width) / width * 2. - 1.) * window_scale_x
|
||||
for y in range(height):
|
||||
fy = (y / height * 2. - 1.) * window_scale_y
|
||||
if mode == 0:
|
||||
window[:, y] = np.exp(-(x**2+fy**2) * std)
|
||||
else:
|
||||
window[:, y] = (1/((x**2+1.) * (fy**2+1.))) ** (std/3.14) # hey wait a minute that's not gaussian
|
||||
|
||||
return window
|
||||
|
||||
def _get_masked_window_rgb(np_mask_grey, hardness=1.):
|
||||
np_mask_rgb = np.zeros((np_mask_grey.shape[0], np_mask_grey.shape[1], 3))
|
||||
if hardness != 1.:
|
||||
hardened = np_mask_grey[:] ** hardness
|
||||
else:
|
||||
hardened = np_mask_grey[:]
|
||||
for c in range(3):
|
||||
np_mask_rgb[:,:,c] = hardened[:]
|
||||
return np_mask_rgb
|
||||
|
||||
def get_matched_noise(_np_src_image, np_mask_rgb, noise_q, color_variation):
|
||||
"""
|
||||
Explanation:
|
||||
Getting good results in/out-painting with stable diffusion can be challenging.
|
||||
Although there are simpler effective solutions for in-painting, out-painting can be especially challenging because there is no color data
|
||||
in the masked area to help prompt the generator. Ideally, even for in-painting we'd like work effectively without that data as well.
|
||||
Provided here is my take on a potential solution to this problem.
|
||||
|
||||
By taking a fourier transform of the masked src img we get a function that tells us the presence and orientation of each feature scale in the unmasked src.
|
||||
Shaping the init/seed noise for in/outpainting to the same distribution of feature scales, orientations, and positions increases output coherence
|
||||
by helping keep features aligned. This technique is applicable to any continuous generation task such as audio or video, each of which can
|
||||
be conceptualized as a series of out-painting steps where the last half of the input "frame" is erased. For multi-channel data such as color
|
||||
or stereo sound the "color tone" or histogram of the seed noise can be matched to improve quality (using scikit-image currently)
|
||||
This method is quite robust and has the added benefit of being fast independently of the size of the out-painted area.
|
||||
The effects of this method include things like helping the generator integrate the pre-existing view distance and camera angle.
|
||||
|
||||
Carefully managing color and brightness with histogram matching is also essential to achieving good coherence.
|
||||
|
||||
noise_q controls the exponent in the fall-off of the distribution can be any positive number, lower values means higher detail (range > 0, default 1.)
|
||||
color_variation controls how much freedom is allowed for the colors/palette of the out-painted area (range 0..1, default 0.01)
|
||||
This code is provided as is under the Unlicense (https://unlicense.org/)
|
||||
Although you have no obligation to do so, if you found this code helpful please find it in your heart to credit me [parlance-zz].
|
||||
|
||||
Questions or comments can be sent to parlance@fifth-harmonic.com (https://github.com/parlance-zz/)
|
||||
This code is part of a new branch of a discord bot I am working on integrating with diffusers (https://github.com/parlance-zz/g-diffuser-bot)
|
||||
|
||||
"""
|
||||
|
||||
global DEBUG_MODE
|
||||
global TMP_ROOT_PATH
|
||||
|
||||
width = _np_src_image.shape[0]
|
||||
height = _np_src_image.shape[1]
|
||||
num_channels = _np_src_image.shape[2]
|
||||
|
||||
np_src_image = _np_src_image[:] * (1. - np_mask_rgb)
|
||||
np_mask_grey = (np.sum(np_mask_rgb, axis=2)/3.)
|
||||
np_src_grey = (np.sum(np_src_image, axis=2)/3.)
|
||||
all_mask = np.ones((width, height), dtype=bool)
|
||||
img_mask = np_mask_grey > 1e-6
|
||||
ref_mask = np_mask_grey < 1e-3
|
||||
|
||||
windowed_image = _np_src_image * (1.-_get_masked_window_rgb(np_mask_grey))
|
||||
windowed_image /= np.max(windowed_image)
|
||||
windowed_image += np.average(_np_src_image) * np_mask_rgb# / (1.-np.average(np_mask_rgb)) # rather than leave the masked area black, we get better results from fft by filling the average unmasked color
|
||||
#windowed_image += np.average(_np_src_image) * (np_mask_rgb * (1.- np_mask_rgb)) / (1.-np.average(np_mask_rgb)) # compensate for darkening across the mask transition area
|
||||
#_save_debug_img(windowed_image, "windowed_src_img")
|
||||
|
||||
src_fft = _fft2(windowed_image) # get feature statistics from masked src img
|
||||
src_dist = np.absolute(src_fft)
|
||||
src_phase = src_fft / src_dist
|
||||
#_save_debug_img(src_dist, "windowed_src_dist")
|
||||
|
||||
noise_window = _get_gaussian_window(width, height, mode=1) # start with simple gaussian noise
|
||||
noise_rgb = np.random.random_sample((width, height, num_channels))
|
||||
noise_grey = (np.sum(noise_rgb, axis=2)/3.)
|
||||
noise_rgb *= color_variation # the colorfulness of the starting noise is blended to greyscale with a parameter
|
||||
for c in range(num_channels):
|
||||
noise_rgb[:,:,c] += (1. - color_variation) * noise_grey
|
||||
|
||||
noise_fft = _fft2(noise_rgb)
|
||||
for c in range(num_channels):
|
||||
noise_fft[:,:,c] *= noise_window
|
||||
noise_rgb = np.real(_ifft2(noise_fft))
|
||||
shaped_noise_fft = _fft2(noise_rgb)
|
||||
shaped_noise_fft[:,:,:] = np.absolute(shaped_noise_fft[:,:,:])**2 * (src_dist ** noise_q) * src_phase # perform the actual shaping
|
||||
|
||||
brightness_variation = 0.#color_variation # todo: temporarily tieing brightness variation to color variation for now
|
||||
contrast_adjusted_np_src = _np_src_image[:] * (brightness_variation + 1.) - brightness_variation * 2.
|
||||
|
||||
# scikit-image is used for histogram matching, very convenient!
|
||||
shaped_noise = np.real(_ifft2(shaped_noise_fft))
|
||||
shaped_noise -= np.min(shaped_noise)
|
||||
shaped_noise /= np.max(shaped_noise)
|
||||
shaped_noise[img_mask,:] = skimage.exposure.match_histograms(shaped_noise[img_mask,:]**1., contrast_adjusted_np_src[ref_mask,:], channel_axis=1)
|
||||
shaped_noise = _np_src_image[:] * (1. - np_mask_rgb) + shaped_noise * np_mask_rgb
|
||||
#_save_debug_img(shaped_noise, "shaped_noise")
|
||||
|
||||
matched_noise = np.zeros((width, height, num_channels))
|
||||
matched_noise = shaped_noise[:]
|
||||
#matched_noise[all_mask,:] = skimage.exposure.match_histograms(shaped_noise[all_mask,:], _np_src_image[ref_mask,:], channel_axis=1)
|
||||
#matched_noise = _np_src_image[:] * (1. - np_mask_rgb) + matched_noise * np_mask_rgb
|
||||
|
||||
#_save_debug_img(matched_noise, "matched_noise")
|
||||
|
||||
"""
|
||||
todo:
|
||||
color_variation doesnt have to be a single number, the overall color tone of the out-painted area could be param controlled
|
||||
"""
|
||||
|
||||
return np.clip(matched_noise, 0., 1.)
|
||||
|
||||
|
||||
#
|
||||
def find_noise_for_image(model, device, init_image, prompt, steps=200, cond_scale=2.0, verbose=False, normalize=False, generation_callback=None):
|
||||
image = np.array(init_image).astype(np.float32) / 255.0
|
||||
image = image[None].transpose(0, 3, 1, 2)
|
||||
image = torch.from_numpy(image)
|
||||
image = 2. * image - 1.
|
||||
image = image.to(device)
|
||||
x = model.get_first_stage_encoding(model.encode_first_stage(image))
|
||||
|
||||
uncond = model.get_learned_conditioning([''])
|
||||
cond = model.get_learned_conditioning([prompt])
|
||||
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
dnw = K.external.CompVisDenoiser(model)
|
||||
sigmas = dnw.get_sigmas(steps).flip(0)
|
||||
|
||||
if verbose:
|
||||
print(sigmas)
|
||||
|
||||
for i in trange(1, len(sigmas)):
|
||||
x_in = torch.cat([x] * 2)
|
||||
sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)
|
||||
cond_in = torch.cat([uncond, cond])
|
||||
|
||||
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
|
||||
|
||||
if i == 1:
|
||||
t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
|
||||
else:
|
||||
t = dnw.sigma_to_t(sigma_in)
|
||||
|
||||
eps = model.apply_model(x_in * c_in, t, cond=cond_in)
|
||||
denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)
|
||||
|
||||
denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cond_scale
|
||||
|
||||
if i == 1:
|
||||
d = (x - denoised) / (2 * sigmas[i])
|
||||
else:
|
||||
d = (x - denoised) / sigmas[i - 1]
|
||||
|
||||
if generation_callback is not None:
|
||||
generation_callback(x, i)
|
||||
|
||||
dt = sigmas[i] - sigmas[i - 1]
|
||||
x = x + d * dt
|
||||
|
||||
return x / sigmas[-1]
|
||||
|
||||
|
||||
def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
|
||||
"""Constructs an exponential noise schedule."""
|
||||
@ -511,6 +648,190 @@ def load_RealESRGAN(model_name: str):
|
||||
|
||||
return instance
|
||||
|
||||
#
|
||||
def load_LDSR(checking=False):
|
||||
model_name = 'model'
|
||||
yaml_name = 'project'
|
||||
model_path = os.path.join(defaults.general.LDSR_dir, 'experiments/pretrained_models', model_name + '.ckpt')
|
||||
yaml_path = os.path.join(defaults.general.LDSR_dir, 'experiments/pretrained_models', yaml_name + '.yaml')
|
||||
if not os.path.isfile(model_path):
|
||||
raise Exception("LDSR model not found at path "+model_path)
|
||||
if not os.path.isfile(yaml_path):
|
||||
raise Exception("LDSR model not found at path "+yaml_path)
|
||||
if checking == True:
|
||||
return True
|
||||
|
||||
sys.path.append(os.path.abspath(defaults.general.LDSR_dir))
|
||||
from LDSR import LDSR
|
||||
LDSRObject = LDSR(model_path, yaml_path)
|
||||
return LDSRObject
|
||||
|
||||
#
|
||||
LDSR = None
|
||||
def try_loading_LDSR(model_name: str,checking=False):
|
||||
global LDSR
|
||||
if os.path.exists(defaults.general.LDSR_dir):
|
||||
try:
|
||||
LDSR = load_LDSR(checking=True) # TODO: Should try to load both models before giving up
|
||||
if checking == True:
|
||||
print("Found LDSR")
|
||||
return True
|
||||
print("Latent Diffusion Super Sampling (LDSR) model loaded")
|
||||
except Exception:
|
||||
import traceback
|
||||
print("Error loading LDSR:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
else:
|
||||
print("LDSR not found at path, please make sure you have cloned the LDSR repo to ./src/latent-diffusion/")
|
||||
|
||||
#try_loading_LDSR('model',checking=True)
|
||||
|
||||
def load_SD_model():
|
||||
if defaults.general.optimized:
|
||||
sd = load_sd_from_config(defaults.general.default_model_path)
|
||||
li, lo = [], []
|
||||
for key, v_ in sd.items():
|
||||
sp = key.split('.')
|
||||
if(sp[0]) == 'model':
|
||||
if('input_blocks' in sp):
|
||||
li.append(key)
|
||||
elif('middle_block' in sp):
|
||||
li.append(key)
|
||||
elif('time_embed' in sp):
|
||||
li.append(key)
|
||||
else:
|
||||
lo.append(key)
|
||||
for key in li:
|
||||
sd['model1.' + key[6:]] = sd.pop(key)
|
||||
for key in lo:
|
||||
sd['model2.' + key[6:]] = sd.pop(key)
|
||||
|
||||
config = OmegaConf.load("optimizedSD/v1-inference.yaml")
|
||||
device = torch.device(f"cuda:{opt.gpu}") if torch.cuda.is_available() else torch.device("cpu")
|
||||
|
||||
model = instantiate_from_config(config.modelUNet)
|
||||
_, _ = model.load_state_dict(sd, strict=False)
|
||||
model.cuda()
|
||||
model.eval()
|
||||
model.turbo = defaults.general.optimized_turbo
|
||||
|
||||
modelCS = instantiate_from_config(config.modelCondStage)
|
||||
_, _ = modelCS.load_state_dict(sd, strict=False)
|
||||
modelCS.cond_stage_model.device = device
|
||||
modelCS.eval()
|
||||
|
||||
modelFS = instantiate_from_config(config.modelFirstStage)
|
||||
_, _ = modelFS.load_state_dict(sd, strict=False)
|
||||
modelFS.eval()
|
||||
|
||||
del sd
|
||||
|
||||
if not defaults.general.no_half:
|
||||
model = model.half()
|
||||
modelCS = modelCS.half()
|
||||
modelFS = modelFS.half()
|
||||
return model,modelCS,modelFS,device, config
|
||||
else:
|
||||
config = OmegaConf.load(defaults.general.default_model_config)
|
||||
model = load_model_from_config(config, defaults.general.default_model_path)
|
||||
|
||||
device = torch.device(f"cuda:{opt.gpu}") if torch.cuda.is_available() else torch.device("cpu")
|
||||
model = (model if defaults.general.no_half else model.half()).to(device)
|
||||
return model, device,config
|
||||
|
||||
#
|
||||
|
||||
#
|
||||
def ModelLoader(models,load=False,unload=False,imgproc_realesrgan_model_name='RealESRGAN_x4plus'):
|
||||
#get global variables
|
||||
global_vars = globals()
|
||||
#check if m is in globals
|
||||
if unload:
|
||||
for m in models:
|
||||
if m in global_vars:
|
||||
#if it is, delete it
|
||||
del global_vars[m]
|
||||
if defaults.general.optimized:
|
||||
if m == 'model':
|
||||
del global_vars[m+'FS']
|
||||
del global_vars[m+'CS']
|
||||
if m =='model':
|
||||
m='Stable Diffusion'
|
||||
print('Unloaded ' + m)
|
||||
if load:
|
||||
for m in models:
|
||||
if m not in global_vars or m in global_vars and type(global_vars[m]) == bool:
|
||||
#if it isn't, load it
|
||||
if m == 'GFPGAN':
|
||||
global_vars[m] = load_GFPGAN()
|
||||
elif m == 'model':
|
||||
sdLoader = load_sd_from_config()
|
||||
global_vars[m] = sdLoader[0]
|
||||
if defaults.general.optimized:
|
||||
global_vars[m+'CS'] = sdLoader[1]
|
||||
global_vars[m+'FS'] = sdLoader[2]
|
||||
elif m == 'RealESRGAN':
|
||||
global_vars[m] = load_RealESRGAN(imgproc_realesrgan_model_name)
|
||||
elif m == 'LDSR':
|
||||
global_vars[m] = load_LDSR()
|
||||
if m =='model':
|
||||
m='Stable Diffusion'
|
||||
print('Loaded ' + m)
|
||||
torch_gc()
|
||||
|
||||
|
||||
#
|
||||
@retry(tries=5)
|
||||
def generation_callback(img, i=0):
|
||||
|
||||
try:
|
||||
if i == 0:
|
||||
if img['i']: i = img['i']
|
||||
except TypeError:
|
||||
pass
|
||||
|
||||
if i % int(defaults.general.update_preview_frequency) == 0 and defaults.general.update_preview:
|
||||
#print (img)
|
||||
#print (type(img))
|
||||
# The following lines will convert the tensor we got on img to an actual image we can render on the UI.
|
||||
# It can probably be done in a better way for someone who knows what they're doing. I don't.
|
||||
#print (img,isinstance(img, torch.Tensor))
|
||||
if isinstance(img, torch.Tensor):
|
||||
x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(img)
|
||||
else:
|
||||
# When using the k Diffusion samplers they return a dict instead of a tensor that look like this:
|
||||
# {'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}
|
||||
x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(img["denoised"])
|
||||
|
||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
pil_image = transforms.ToPILImage()(x_samples_ddim.squeeze_(0))
|
||||
|
||||
# update image on the UI so we can see the progress
|
||||
st.session_state["preview_image"].image(pil_image)
|
||||
|
||||
# Show a progress bar so we can keep track of the progress even when the image progress is not been shown,
|
||||
# Dont worry, it doesnt affect the performance.
|
||||
if st.session_state["generation_mode"] == "txt2img":
|
||||
percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps))
|
||||
st.session_state["progress_bar_text"].text(
|
||||
f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps} {percent if percent < 100 else 100}%")
|
||||
else:
|
||||
if st.session_state["generation_mode"] == "img2img":
|
||||
round_sampling_steps = round(st.session_state.sampling_steps * st.session_state["denoising_strength"])
|
||||
percent = int(100 * float(i+1 if i+1 < round_sampling_steps else round_sampling_steps)/float(round_sampling_steps))
|
||||
st.session_state["progress_bar_text"].text(
|
||||
f"""Running step: {i+1 if i+1 < round_sampling_steps else round_sampling_steps}/{round_sampling_steps} {percent if percent < 100 else 100}%""")
|
||||
else:
|
||||
if st.session_state["generation_mode"] == "txt2vid":
|
||||
percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps))
|
||||
st.session_state["progress_bar_text"].text(
|
||||
f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps}"
|
||||
f"{percent if percent < 100 else 100}%")
|
||||
|
||||
st.session_state["progress_bar"].progress(percent if percent < 100 else 100)
|
||||
|
||||
|
||||
prompt_parser = re.compile("""
|
||||
(?P<prompt> # capture group for 'prompt'
|
||||
[^:]+ # match one or more non ':' characters
|
||||
@ -574,44 +895,6 @@ def optimize_update_preview_frequency(current_chunk_speed, previous_chunk_speed,
|
||||
return current_chunk_speed, previous_chunk_speed, update_preview_frequency
|
||||
|
||||
|
||||
#
|
||||
def ModelLoader(models,load=False,unload=False,imgproc_realesrgan_model_name='RealESRGAN_x4plus'):
|
||||
#get global variables
|
||||
global_vars = globals()
|
||||
#check if m is in globals
|
||||
if unload:
|
||||
for m in models:
|
||||
if m in global_vars:
|
||||
#if it is, delete it
|
||||
del global_vars[m]
|
||||
if defaults.general.optimized:
|
||||
if m == 'model':
|
||||
del global_vars[m+'FS']
|
||||
del global_vars[m+'CS']
|
||||
if m =='model':
|
||||
m='Stable Diffusion'
|
||||
print('Unloaded ' + m)
|
||||
if load:
|
||||
for m in models:
|
||||
if m not in global_vars or m in global_vars and type(global_vars[m]) == bool:
|
||||
#if it isn't, load it
|
||||
if m == 'GFPGAN':
|
||||
global_vars[m] = load_GFPGAN()
|
||||
elif m == 'model':
|
||||
sdLoader = load_sd_from_config()
|
||||
global_vars[m] = sdLoader[0]
|
||||
if defaults.general.optimized:
|
||||
global_vars[m+'CS'] = sdLoader[1]
|
||||
global_vars[m+'FS'] = sdLoader[2]
|
||||
elif m == 'RealESRGAN':
|
||||
global_vars[m] = load_RealESRGAN(imgproc_realesrgan_model_name)
|
||||
elif m == 'LDSR':
|
||||
global_vars[m] = load_LDSR()
|
||||
if m =='model':
|
||||
m='Stable Diffusion'
|
||||
print('Loaded ' + m)
|
||||
torch_gc()
|
||||
|
||||
|
||||
|
||||
def get_font(fontsize):
|
||||
@ -679,6 +962,71 @@ def seed_to_int(s):
|
||||
n = n >> 32
|
||||
return n
|
||||
|
||||
#
|
||||
def draw_prompt_matrix(im, width, height, all_prompts):
|
||||
def wrap(text, d, font, line_length):
|
||||
lines = ['']
|
||||
for word in text.split():
|
||||
line = f'{lines[-1]} {word}'.strip()
|
||||
if d.textlength(line, font=font) <= line_length:
|
||||
lines[-1] = line
|
||||
else:
|
||||
lines.append(word)
|
||||
return '\n'.join(lines)
|
||||
|
||||
def draw_texts(pos, x, y, texts, sizes):
|
||||
for i, (text, size) in enumerate(zip(texts, sizes)):
|
||||
active = pos & (1 << i) != 0
|
||||
|
||||
if not active:
|
||||
text = '\u0336'.join(text) + '\u0336'
|
||||
|
||||
d.multiline_text((x, y + size[1] / 2), text, font=fnt, fill=color_active if active else color_inactive, anchor="mm", align="center")
|
||||
|
||||
y += size[1] + line_spacing
|
||||
|
||||
fontsize = (width + height) // 25
|
||||
line_spacing = fontsize // 2
|
||||
fnt = get_font(fontsize)
|
||||
color_active = (0, 0, 0)
|
||||
color_inactive = (153, 153, 153)
|
||||
|
||||
pad_top = height // 4
|
||||
pad_left = width * 3 // 4 if len(all_prompts) > 2 else 0
|
||||
|
||||
cols = im.width // width
|
||||
rows = im.height // height
|
||||
|
||||
prompts = all_prompts[1:]
|
||||
|
||||
result = Image.new("RGB", (im.width + pad_left, im.height + pad_top), "white")
|
||||
result.paste(im, (pad_left, pad_top))
|
||||
|
||||
d = ImageDraw.Draw(result)
|
||||
|
||||
boundary = math.ceil(len(prompts) / 2)
|
||||
prompts_horiz = [wrap(x, d, fnt, width) for x in prompts[:boundary]]
|
||||
prompts_vert = [wrap(x, d, fnt, pad_left) for x in prompts[boundary:]]
|
||||
|
||||
sizes_hor = [(x[2] - x[0], x[3] - x[1]) for x in [d.multiline_textbbox((0, 0), x, font=fnt) for x in prompts_horiz]]
|
||||
sizes_ver = [(x[2] - x[0], x[3] - x[1]) for x in [d.multiline_textbbox((0, 0), x, font=fnt) for x in prompts_vert]]
|
||||
hor_text_height = sum([x[1] + line_spacing for x in sizes_hor]) - line_spacing
|
||||
ver_text_height = sum([x[1] + line_spacing for x in sizes_ver]) - line_spacing
|
||||
|
||||
for col in range(cols):
|
||||
x = pad_left + width * col + width / 2
|
||||
y = pad_top / 2 - hor_text_height / 2
|
||||
|
||||
draw_texts(col, x, y, prompts_horiz, sizes_hor)
|
||||
|
||||
for row in range(rows):
|
||||
x = pad_left / 2
|
||||
y = pad_top + height * row + height / 2 - ver_text_height / 2
|
||||
|
||||
draw_texts(row, x, y, prompts_vert, sizes_ver)
|
||||
|
||||
return result
|
||||
|
||||
def check_prompt_length(prompt, comments):
|
||||
"""this function tests if prompt is too long, and if so, adds a message to comments"""
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user