diff --git a/frontend/css_and_js.py b/frontend/css_and_js.py
index 0ee5a5c..266cf43 100644
--- a/frontend/css_and_js.py
+++ b/frontend/css_and_js.py
@@ -15,14 +15,9 @@ def css(opt):
# TODO: @altryne restore this before merge
if not opt.no_progressbar_hiding:
styling += readTextFile("css", "no_progress_bar.css")
- if opt.custom_css:
- try:
- styling += readTextFile("css", "custom.css")
- print("Custom CSS loaded")
- except:
- pass
return styling
+
def js(opt):
data = readTextFile("js", "index.js")
data = "(z) => {" + data + "; return z ?? [] }"
diff --git a/frontend/frontend.py b/frontend/frontend.py
index 3627210..ae764c1 100644
--- a/frontend/frontend.py
+++ b/frontend/frontend.py
@@ -57,21 +57,20 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x,imgproc=lambda
output_txt2img_params = gr.Highlightedtext(label="Generation parameters", interactive=False, elem_id='highlight')
with gr.Group():
with gr.Row(elem_id='txt2img_output_row'):
- output_txt2img_copy_params = gr.Button("Copy all").click(
+ output_txt2img_copy_params = gr.Button("Copy full parameters").click(
inputs=[output_txt2img_params], outputs=[],
_js=js_copy_txt2img_output,
fn=None, show_progress=False)
output_txt2img_seed = gr.Number(label='Seed', interactive=False, visible=False)
- output_txt2img_copy_seed = gr.Button("Copy seed").click(
+ output_txt2img_copy_seed = gr.Button("Copy only seed").click(
inputs=[output_txt2img_seed], outputs=[],
_js='(x) => navigator.clipboard.writeText(x)', fn=None, show_progress=False)
output_txt2img_stats = gr.HTML(label='Stats')
with gr.Column():
- with gr.Row():
- txt2img_steps = gr.Slider(minimum=1, maximum=250, step=1, label="Sampling Steps",
- value=txt2img_defaults['ddim_steps'])
- txt2img_sampling = gr.Dropdown(label='Sampling method (k_lms is default k-diffusion sampler)',
+ txt2img_steps = gr.Slider(minimum=1, maximum=250, step=1, label="Sampling Steps",
+ value=txt2img_defaults['ddim_steps'])
+ txt2img_sampling = gr.Dropdown(label='Sampling method (k_lms is default k-diffusion sampler)',
choices=["DDIM", "PLMS", 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a',
'k_euler', 'k_heun', 'k_lms'],
value=txt2img_defaults['sampler_name'])
@@ -158,28 +157,22 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x,imgproc=lambda
img2img_btn_editor = gr.Button("Generate", variant="primary", elem_id="img2img_edit_btn")
with gr.Row().style(equal_height=False):
with gr.Column():
- with gr.Tabs():
- with gr.TabItem("Img2Img Input"):
- #gr.Markdown('#### Img2Img Input')
- img2img_image_editor = gr.Image(value=sample_img2img, source="upload", interactive=True,
- type="pil", tool="select", elem_id="img2img_editor",
- image_mode="RGBA")
- img2img_image_mask = gr.Image(value=sample_img2img, source="upload", interactive=True,
- type="pil", tool="sketch", visible=False,
- elem_id="img2img_mask")
-
- with gr.TabItem("Img2Img Mask Input"):
- img2img_mask_input = gr.Image(label="Mask",source="upload", interactive=False,
- type="pil", visible=True)
+ gr.Markdown('#### Img2Img Input')
+ img2img_image_editor = gr.Image(value=sample_img2img, source="upload", interactive=True,
+ type="pil", tool="select", elem_id="img2img_editor", image_mode="RGBA"
+ )
+ img2img_image_mask = gr.Image(value=sample_img2img, source="upload", interactive=True,
+ type="pil", tool="sketch", visible=False, image_mode="RGBA",
+ elem_id="img2img_mask")
with gr.Tabs():
with gr.TabItem("Editor Options"):
with gr.Row():
img2img_image_editor_mode = gr.Radio(choices=["Mask", "Crop", "Uncrop"], label="Image Editor Mode",
value="Crop", elem_id='edit_mode_select')
- img2img_mask = gr.Radio(choices=["Keep masked area", "Regenerate only masked area", "Resize and regenerate only masked area"],
+ img2img_mask = gr.Radio(choices=["Keep masked area", "Regenerate only masked area"],
label="Mask Mode", type="index",
- value=img2img_mask_modes[img2img_defaults['mask_mode']], visible=False)
+ value=img2img_mask_modes[img2img_defaults['mask_mode']], visible=False)
img2img_mask_blur_strength = gr.Slider(minimum=1, maximum=10, step=1,
label="How much blurry should the mask be? (to avoid hard edges)",
@@ -263,16 +256,22 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x,imgproc=lambda
img2img_image_editor_mode.change(
uifn.change_image_editor_mode,
- [img2img_image_editor_mode, img2img_image_editor, img2img_resize, img2img_width, img2img_height],
+ [img2img_image_editor_mode,
+ img2img_image_editor,
+ img2img_image_mask,
+ img2img_resize,
+ img2img_width,
+ img2img_height
+ ],
[img2img_image_editor, img2img_image_mask, img2img_btn_editor, img2img_btn_mask,
- img2img_painterro_btn, img2img_mask, img2img_mask_blur_strength, img2img_mask_input]
+ img2img_painterro_btn, img2img_mask, img2img_mask_blur_strength]
)
- img2img_image_editor.edit(
- uifn.update_image_mask,
- [img2img_image_editor, img2img_resize, img2img_width, img2img_height],
- img2img_image_mask
- )
+ # img2img_image_editor_mode.change(
+ # uifn.update_image_mask,
+ # [img2img_image_editor, img2img_resize, img2img_width, img2img_height],
+ # img2img_image_mask
+ # )
output_txt2img_copy_to_input_btn.click(
uifn.copy_img_to_input,
@@ -306,11 +305,11 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x,imgproc=lambda
)
img2img_func = img2img
- img2img_inputs = [img2img_prompt, img2img_image_editor_mode, img2img_image_editor, img2img_image_mask, img2img_mask,
+ img2img_inputs = [img2img_prompt, img2img_image_editor_mode, img2img_mask,
img2img_mask_blur_strength, img2img_steps, img2img_sampling, img2img_toggles,
img2img_realesrgan_model_name, img2img_batch_count, img2img_cfg,
img2img_denoising, img2img_seed, img2img_height, img2img_width, img2img_resize,
- img2img_embeddings, img2img_mask_input]
+ img2img_image_editor, img2img_image_mask, img2img_embeddings]
img2img_outputs = [output_img2img_gallery, output_img2img_seed, output_img2img_params, output_img2img_stats]
# If a JobManager was passed in then wrap the Generate functions
@@ -321,33 +320,23 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x,imgproc=lambda
outputs=img2img_outputs,
)
- def generate(*args):
- args_list = list(args)
- init_info_mask = args_list[3]
- # Get the mask input and remove it from the list
- mask_input = args_list[18]
- del args_list[18]
-
- # If an external mask is set, use it
- if mask_input:
- init_info_mask['mask'] = mask_input
-
- args_list[3] = init_info_mask
-
- # Return the result of img2img
- return img2img_func(*args_list)
-
img2img_btn_mask.click(
- generate,
+ img2img_func,
img2img_inputs,
img2img_outputs
)
-
- img2img_btn_editor.click(
- img2img_func,
+ def img2img_submit_params():
+ #print([img2img_prompt, img2img_image_editor_mode, img2img_mask,
+ # img2img_mask_blur_strength, img2img_steps, img2img_sampling, img2img_toggles,
+ # img2img_realesrgan_model_name, img2img_batch_count, img2img_cfg,
+ # img2img_denoising, img2img_seed, img2img_height, img2img_width, img2img_resize,
+ # img2img_image_editor, img2img_image_mask, img2img_embeddings])
+ return (img2img_func,
img2img_inputs,
img2img_outputs)
+ img2img_btn_editor.click(*img2img_submit_params())
+
# GENERATE ON ENTER
img2img_prompt.submit(None, None, None,
_js=call_JS("clickFirstVisibleButton",
@@ -374,7 +363,7 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x,imgproc=lambda
# value=gfpgan_defaults['strength'])
#select folder with images to process
with gr.TabItem('Batch Process'):
- imgproc_folder = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file")
+ imgproc_folder = gr.File(label="Batch Process", file_count="multiple",source="upload", interactive=True, type="file")
imgproc_pngnfo = gr.Textbox(label="PNG Metadata", placeholder="PngNfo", visible=False, max_lines=5)
with gr.Row():
imgproc_btn = gr.Button("Process", variant="primary")
@@ -580,7 +569,7 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x,imgproc=lambda
For help and advanced usage guides, visit the Project Wiki
Stable Diffusion WebUI is an open-source project. You can find the latest stable builds on the main repository.
- If you would like to contribute to development or test bleeding edge builds, you can visit the development repository.
+ If you would like to contribute to development or test bleeding edge builds, you can visit the
developement repository.
""")
# Hack: Detect the load event on the frontend
diff --git a/frontend/job_manager.py b/frontend/job_manager.py
index 038b1d9..8eda8d9 100644
--- a/frontend/job_manager.py
+++ b/frontend/job_manager.py
@@ -1,7 +1,7 @@
''' Provides simple job management for gradio, allowing viewing and stopping in-progress multi-batch generations '''
from __future__ import annotations
import gradio as gr
-from gradio.components import Component, Gallery, Slider
+from gradio.components import Component, Gallery
from threading import Event, Timer
from typing import Callable, List, Dict, Tuple, Optional, Any
from dataclasses import dataclass, field
@@ -30,17 +30,7 @@ class JobInfo:
session_key: str
job_token: Optional[int] = None
images: List[Image] = field(default_factory=list)
- active_image: Image = None
- rec_steps_enabled: bool = False
- rec_steps_imgs: List[Image] = field(default_factory=list)
- rec_steps_intrvl: int = None
- rec_steps_to_gallery: bool = False
- rec_steps_to_file: bool = False
should_stop: Event = field(default_factory=Event)
- refresh_active_image_requested: Event = field(default_factory=Event)
- refresh_active_image_done: Event = field(default_factory=Event)
- stop_cur_iter: Event = field(default_factory=Event)
- active_iteration_cnt: int = field(default_factory=int)
job_status: str = field(default_factory=str)
finished: bool = False
removed_output_idxs: List[int] = field(default_factory=list)
@@ -86,7 +76,7 @@ class JobManagerUi:
'''
return self._job_manager._wrap_func(
func=func, inputs=inputs, outputs=outputs,
- job_ui=self
+ refresh_btn=self._refresh_btn, stop_btn=self._stop_btn, status_text=self._status_text
)
_refresh_btn: gr.Button
@@ -94,13 +84,6 @@ class JobManagerUi:
_status_text: gr.Textbox
_stop_all_session_btn: gr.Button
_free_done_sessions_btn: gr.Button
- _active_image: gr.Image
- _active_image_stop_btn: gr.Button
- _active_image_refresh_btn: gr.Button
- _rec_steps_intrvl_sldr: gr.Slider
- _rec_steps_checkbox: gr.Checkbox
- _save_rec_steps_to_gallery_chkbx: gr.Checkbox
- _save_rec_steps_to_file_chkbx: gr.Checkbox
_job_manager: JobManager
@@ -119,23 +102,11 @@ class JobManager:
'''
assert gr.context.Context.block is not None, "draw_gradio_ui must be called within a 'gr.Blocks' 'with' context"
with gr.Tabs():
- with gr.TabItem("Job Controls"):
+ with gr.TabItem("Current Session"):
with gr.Row():
- stop_btn = gr.Button("Stop All Batches", elem_id="stop", variant="secondary")
- refresh_btn = gr.Button("Refresh Finished Batches", elem_id="refresh", variant="secondary")
+ stop_btn = gr.Button("Stop", elem_id="stop", variant="secondary")
+ refresh_btn = gr.Button("Refresh", elem_id="refresh", variant="secondary")
status_text = gr.Textbox(placeholder="Job Status", interactive=False, show_label=False)
- with gr.Row():
- active_image_stop_btn = gr.Button("Skip Active Batch", variant="secondary")
- active_image_refresh_btn = gr.Button("View Batch Progress", variant="secondary")
- active_image = gr.Image(type="pil", interactive=False, visible=False, elem_id="active_iteration_image")
- with gr.TabItem("Batch Progress Settings"):
- with gr.Row():
- record_steps_checkbox = gr.Checkbox(value=False, label="Enable Batch Progress Grid")
- record_steps_interval_slider = gr.Slider(
- value=3, label="Record Interval (steps)", minimum=1, maximum=25, step=1)
- with gr.Row() as record_steps_box:
- steps_to_gallery_checkbox = gr.Checkbox(value=False, label="Save Progress Grid to Gallery")
- steps_to_file_checkbox = gr.Checkbox(value=False, label="Save Progress Grid to File")
with gr.TabItem("Maintenance"):
with gr.Row():
gr.Markdown(
@@ -147,15 +118,9 @@ class JobManager:
free_done_sessions_btn = gr.Button(
"Clear Finished Jobs", elem_id="clear_finished", variant="secondary"
)
-
return JobManagerUi(_refresh_btn=refresh_btn, _stop_btn=stop_btn, _status_text=status_text,
_stop_all_session_btn=stop_all_sessions_btn, _free_done_sessions_btn=free_done_sessions_btn,
- _active_image=active_image, _active_image_stop_btn=active_image_stop_btn,
- _active_image_refresh_btn=active_image_refresh_btn,
- _rec_steps_checkbox=record_steps_checkbox,
- _save_rec_steps_to_gallery_chkbx=steps_to_gallery_checkbox,
- _save_rec_steps_to_file_chkbx=steps_to_file_checkbox,
- _rec_steps_intrvl_sldr=record_steps_interval_slider, _job_manager=self)
+ _job_manager=self)
def clear_all_finished_jobs(self):
''' Removes all currently finished jobs, across all sessions.
@@ -169,7 +134,6 @@ class JobManager:
for session in self._sessions.values():
for job in session.jobs.values():
job.should_stop.set()
- job.stop_cur_iter.set()
def _get_job_token(self, block: bool = False) -> Optional[int]:
''' Attempts to acquire a job token, optionally blocking until available '''
@@ -211,26 +175,6 @@ class JobManager:
job_info.should_stop.set()
return "Stopping after current batch finishes"
- def _refresh_cur_iter_func(self, func_key: FuncKey, session_key: str) -> List[Component]:
- ''' Updates information from the active iteration '''
- session_info, job_info = self._get_call_info(func_key, session_key)
- if job_info is None:
- return [None, f"Session {session_key} was not running function {func_key}"]
-
- job_info.refresh_active_image_requested.set()
- if job_info.refresh_active_image_done.wait(timeout=20.0):
- job_info.refresh_active_image_done.clear()
- return [gr.Image.update(value=job_info.active_image, visible=True), f"Sample iteration {job_info.active_iteration_cnt}"]
- return [gr.Image.update(visible=False), "Timed out getting image"]
-
- def _stop_cur_iter_func(self, func_key: FuncKey, session_key: str) -> List[Component]:
- ''' Marks that the active iteration should be stopped'''
- session_info, job_info = self._get_call_info(func_key, session_key)
- if job_info is None:
- return [None, f"Session {session_key} was not running function {func_key}"]
- job_info.stop_cur_iter.set()
- return [gr.Image.update(visible=False), "Stopping current iteration"]
-
def _get_call_info(self, func_key: FuncKey, session_key: str) -> Tuple[SessionInfo, JobInfo]:
''' Helper to get the SessionInfo and JobInfo. '''
session_info = self._sessions.get(session_key, None)
@@ -263,8 +207,7 @@ class JobManager:
def _pre_call_func(
self, func_key: FuncKey, output_dummy_obj: Component, refresh_btn: gr.Button, stop_btn: gr.Button,
- status_text: gr.Textbox, active_image: gr.Image, active_refresh_btn: gr.Button, active_stop_btn: gr.Button,
- session_key: str) -> List[Component]:
+ status_text: gr.Textbox, session_key: str) -> List[Component]:
''' Called when a job is about to start '''
session_info, job_info = self._get_call_info(func_key, session_key)
@@ -276,9 +219,7 @@ class JobManager:
return {output_dummy_obj: triggerChangeEvent(),
refresh_btn: gr.Button.update(variant="primary", value=refresh_btn.value),
stop_btn: gr.Button.update(variant="primary", value=stop_btn.value),
- status_text: gr.Textbox.update(value="Generation has started. Click 'Refresh' to see finished images, 'View Batch Progress' for active images"),
- active_refresh_btn: gr.Button.update(variant="primary", value=active_refresh_btn.value),
- active_stop_btn: gr.Button.update(variant="primary", value=active_stop_btn.value),
+ status_text: gr.Textbox.update(value="Generation has started. Click 'Refresh' for updates")
}
def _call_func(self, func_key: FuncKey, session_key: str) -> List[Component]:
@@ -292,7 +233,7 @@ class JobManager:
except Exception as e:
job_info.job_status = f"Error: {e}"
print(f"Exception processing job {job_info}: {e}\n{traceback.format_exc()}")
- raise
+ outputs = []
# Filter the function output for any removed outputs
filtered_output = []
@@ -313,16 +254,12 @@ class JobManager:
def _post_call_func(
self, func_key: FuncKey, output_dummy_obj: Component, refresh_btn: gr.Button, stop_btn: gr.Button,
- status_text: gr.Textbox, active_image: gr.Image, active_refresh_btn: gr.Button, active_stop_btn: gr.Button,
- session_key: str) -> List[Component]:
+ status_text: gr.Textbox, session_key: str) -> List[Component]:
''' Called when a job completes '''
return {output_dummy_obj: triggerChangeEvent(),
refresh_btn: gr.Button.update(variant="secondary", value=refresh_btn.value),
stop_btn: gr.Button.update(variant="secondary", value=stop_btn.value),
- status_text: gr.Textbox.update(value="Generation has finished!"),
- active_refresh_btn: gr.Button.update(variant="secondary", value=active_refresh_btn.value),
- active_stop_btn: gr.Button.update(variant="secondary", value=active_stop_btn.value),
- active_image: gr.Image.update(visible=False)
+ status_text: gr.Textbox.update(value="Generation has finished!")
}
def _update_gallery_event(self, func_key: FuncKey, session_key: str) -> List[Component]:
@@ -338,15 +275,16 @@ class JobManager:
return job_info.images
- def _wrap_func(self, func: Callable, inputs: List[Component],
- outputs: List[Component],
- job_ui: JobManagerUi) -> Tuple[Callable, List[Component]]:
+ def _wrap_func(
+ self, func: Callable, inputs: List[Component], outputs: List[Component],
+ refresh_btn: gr.Button = None, stop_btn: gr.Button = None,
+ status_text: Optional[gr.Textbox] = None) -> Tuple[Callable, List[Component]]:
''' handles JobManageUI's wrap_func'''
assert gr.context.Context.block is not None, "wrap_func must be called within a 'gr.Blocks' 'with' context"
# Create a unique key for this job
- func_key = FuncKey(job_id=uuid.uuid4().hex, func=func)
+ func_key = FuncKey(job_id=uuid.uuid4(), func=func)
# Create a unique session key (next gradio release can use gr.State, see https://gradio.app/state_in_blocks/)
if self._session_key is None:
@@ -364,6 +302,9 @@ class JobManager:
del outputs[idx]
break
+ # Add the session key to the inputs
+ inputs += [self._session_key]
+
# Create dummy objects
update_gallery_obj = gr.JSON(visible=False, elem_id="JobManagerDummyObject")
update_gallery_obj.change(
@@ -372,44 +313,20 @@ class JobManager:
[gallery_comp]
)
- if job_ui._refresh_btn:
- job_ui._refresh_btn.variant = 'secondary'
- job_ui._refresh_btn.click(
+ if refresh_btn:
+ refresh_btn.variant = 'secondary'
+ refresh_btn.click(
partial(self._refresh_func, func_key),
[self._session_key],
- [update_gallery_obj, job_ui._status_text]
+ [update_gallery_obj, status_text]
)
- if job_ui._stop_btn:
- job_ui._stop_btn.variant = 'secondary'
- job_ui._stop_btn.click(
+ if stop_btn:
+ stop_btn.variant = 'secondary'
+ stop_btn.click(
partial(self._stop_wrapped_func, func_key),
[self._session_key],
- [job_ui._status_text]
- )
-
- if job_ui._active_image and job_ui._active_image_refresh_btn:
- job_ui._active_image_refresh_btn.click(
- partial(self._refresh_cur_iter_func, func_key),
- [self._session_key],
- [job_ui._active_image, job_ui._status_text]
- )
-
- if job_ui._active_image_stop_btn:
- job_ui._active_image_stop_btn.click(
- partial(self._stop_cur_iter_func, func_key),
- [self._session_key],
- [job_ui._active_image, job_ui._status_text]
- )
-
- if job_ui._stop_all_session_btn:
- job_ui._stop_all_session_btn.click(
- self.stop_all_jobs, [], []
- )
-
- if job_ui._free_done_sessions_btn:
- job_ui._free_done_sessions_btn.click(
- self.clear_all_finished_jobs, [], []
+ [status_text]
)
# (ab)use gr.JSON to forward events.
@@ -426,8 +343,7 @@ class JobManager:
# Since some parameters are optional it makes sense to use the 'dict' return value type, which requires
# the Component as a key... so group together the UI components that the event listeners are going to update
# to make it easy to append to function calls and outputs
- job_ui_params = [job_ui._refresh_btn, job_ui._stop_btn, job_ui._status_text,
- job_ui._active_image, job_ui._active_image_refresh_btn, job_ui._active_image_stop_btn]
+ job_ui_params = [refresh_btn, stop_btn, status_text]
job_ui_outputs = [comp for comp in job_ui_params if comp is not None]
# Here a chain is constructed that will make a 'pre' call, a 'run' call, and a 'post' call,
@@ -453,39 +369,27 @@ class JobManager:
[call_dummyobj] + job_ui_outputs
)
- # Add any components that we want the runtime values for
- added_inputs = [self._session_key, job_ui._rec_steps_checkbox, job_ui._save_rec_steps_to_gallery_chkbx,
- job_ui._save_rec_steps_to_file_chkbx, job_ui._rec_steps_intrvl_sldr]
-
# Now replace the original function with one that creates a JobInfo and triggers the dummy obj
- def wrapped_func(*wrapped_inputs):
- # Remove the added_inputs (pop opposite order of list)
- wrapped_inputs = list(wrapped_inputs)
- rec_steps_interval: int = wrapped_inputs.pop()
- save_rec_steps_file: bool = wrapped_inputs.pop()
- save_rec_steps_grid: bool = wrapped_inputs.pop()
- record_steps_enabled: bool = wrapped_inputs.pop()
- session_key: str = wrapped_inputs.pop()
- job_inputs = tuple(wrapped_inputs)
+ def wrapped_func(*inputs):
+ session_key = inputs[-1]
+ inputs = inputs[:-1]
# Get or create a session for this key
session_info = self._sessions.setdefault(session_key, SessionInfo())
# Is this session already running this job?
if func_key in session_info.jobs:
- return {job_ui._status_text: "This session is already running that function!"}
+ return {status_text: "This session is already running that function!"}
job_token = self._get_job_token(block=False)
- job = JobInfo(
- inputs=job_inputs, func=func, removed_output_idxs=removed_idxs, session_key=session_key,
- job_token=job_token, rec_steps_enabled=record_steps_enabled, rec_steps_intrvl=rec_steps_interval,
- rec_steps_to_gallery=save_rec_steps_grid, rec_steps_to_file=save_rec_steps_file)
+ job = JobInfo(inputs=inputs, func=func, removed_output_idxs=removed_idxs, session_key=session_key,
+ job_token=job_token)
session_info.jobs[func_key] = job
ret = {pre_call_dummyobj: triggerChangeEvent()}
if job_token is None:
- ret[job_ui._status_text] = "Job is queued"
+ ret[status_text] = "Job is queued"
return ret
- return wrapped_func, inputs + added_inputs, [pre_call_dummyobj, job_ui._status_text]
+ return wrapped_func, inputs, [pre_call_dummyobj, status_text]
diff --git a/frontend/ui_functions.py b/frontend/ui_functions.py
index a85d154..cebe34e 100644
--- a/frontend/ui_functions.py
+++ b/frontend/ui_functions.py
@@ -6,33 +6,17 @@ import base64
import re
-def change_image_editor_mode(choice, cropped_image, resize_mode, width, height):
+def change_image_editor_mode(choice, cropped_image, masked_image, resize_mode, width, height):
if choice == "Mask":
- return [gr.Image.update(visible=False),
- gr.Image.update(visible=True),
- gr.Button.update("Generate", variant="primary", visible=False),
- gr.Button.update("Generate", variant="primary", visible=True),
- gr.Button.update("Advanced Editor", visible=False),
- gr.Radio.update(choices=["Keep masked area", "Regenerate only masked area"],
- label="Mask Mode",
- value="Regenerate only masked area", visible=True),
- gr.Slider.update(minimum=1, maximum=10, step=1, label="How much blurry should the mask be? (to avoid hard edges)", value=3, visible=True),
- gr.Image.update(interactive=True)]
- else:
- return [gr.Image.update(visible=True),
- gr.Image.update(visible=False),
- gr.Button.update("Generate", variant="primary", visible=True),
- gr.Button.update("Generate", variant="primary", visible=False),
- gr.Button.update("Advanced Editor", visible=True),
- gr.Radio.update(choices=["Keep masked area", "Regenerate only masked area"],
- label="Mask Mode",
- value="Regenerate only masked area", visible=False),
- gr.Slider.update(minimum=1, maximum=10, step=1, label="How much blurry should the mask be? (to avoid hard edges)", value=3, visible=False),
- gr.Image.update(interactive=False)]
+ update_image_result = update_image_mask(cropped_image, resize_mode, width, height)
+ return [gr.update(visible=False), update_image_result, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)]
+
+ update_image_result = update_image_mask(masked_image["image"], resize_mode, width, height)
+ return [update_image_result, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)]
def update_image_mask(cropped_image, resize_mode, width, height):
resized_cropped_image = resize_image(resize_mode, cropped_image, width, height) if cropped_image else None
- return gr.Image.update(value=resized_cropped_image)
+ return gr.update(value=resized_cropped_image, visible=True)
def toggle_options_gfpgan(selection):
if 0 in selection:
diff --git a/scripts/webui.py b/scripts/webui.py
index 529abb2..e65de04 100644
--- a/scripts/webui.py
+++ b/scripts/webui.py
@@ -1,5 +1,7 @@
import argparse, os, sys, glob, re
+import cv2
+
from frontend.frontend import draw_gradio_ui
from frontend.job_manager import JobManager, JobInfo
from frontend.ui_functions import resize_image
@@ -37,11 +39,9 @@ parser.add_argument("--save-metadata", action='store_true', help="Store generati
parser.add_argument("--share-password", type=str, help="Sharing is open by default, use this to set a password. Username: webui", default=None)
parser.add_argument("--share", action='store_true', help="Should share your server on gradio.app, this allows you to use the UI from your mobile app", default=False)
parser.add_argument("--skip-grid", action='store_true', help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", default=False)
-parser.add_argument("--save-each", action='store_true', help="save individual samples. For speed measurements.", default=False)
+parser.add_argument("--skip-save", action='store_true', help="do not save indiviual samples. For speed measurements.", default=False)
parser.add_argument('--no-job-manager', action='store_true', help="Don't use the experimental job manager on top of gradio", default=False)
parser.add_argument("--max-jobs", type=int, help="Maximum number of concurrent 'generate' commands", default=1)
-parser.add_argument("--custom-css", action='store_true', help="Place custom.css in css folder to load a custom theme of the UI", default=False)
-
opt = parser.parse_args()
#Should not be needed anymore
@@ -66,12 +66,9 @@ import torch
import torch.nn as nn
import yaml
import glob
-import copy
-from typing import List, Union, Dict, Callable, Any
+from typing import List, Union, Dict
from pathlib import Path
from collections import namedtuple
-import cv2
-from functools import partial
from contextlib import contextmanager, nullcontext
from einops import rearrange, repeat
@@ -109,7 +106,6 @@ invalid_filename_chars = '<>:"/\|?*\n'
GFPGAN_dir = opt.gfpgan_dir
RealESRGAN_dir = opt.realesrgan_dir
LDSR_dir = opt.ldsr_dir
-returned_info = {}
if opt.optimized_turbo:
opt.optimized = True
@@ -140,13 +136,6 @@ elif grid_format[0] == 'webp':
grid_quality = abs(grid_quality)
-def toImgOpenCV(imgPIL): # Conver imgPIL to imgOpenCV
- i = np.array(imgPIL) # After mapping from PIL to numpy : [R,G,B,A]
- # numpy Image Channel system: [B,G,R,A]
- red = i[:,:,0].copy(); i[:,:,0] = i[:,:,2].copy(); i[:,:,2] = red
- return i
-def toImgPIL(imgOpenCV): return Image.fromarray(cv2.cvtColor(imgOpenCV, cv2.COLOR_BGR2RGB))
-
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
@@ -275,21 +264,15 @@ class KDiffusionSampler:
self.schedule = sampler
def get_sampler_name(self):
return self.schedule
- def sample(self, S, conditioning, batch_size, shape, verbose, unconditional_guidance_scale, unconditional_conditioning, eta, x_T, img_callback: Callable = None ):
+ def sample(self, S, conditioning, batch_size, shape, verbose, unconditional_guidance_scale, unconditional_conditioning, eta, x_T):
sigmas = self.model_wrap.get_sigmas(S)
x = x_T * sigmas[0]
model_wrap_cfg = CFGDenoiser(self.model_wrap)
- samples_ddim = K.sampling.__dict__[f'sample_{self.schedule}'](model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale}, disable=False, callback=partial(KDiffusionSampler.img_callback_wrapper, img_callback))
+
+ samples_ddim = K.sampling.__dict__[f'sample_{self.schedule}'](model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale}, disable=False)
return samples_ddim, None
- @classmethod
- def img_callback_wrapper(cls, callback: Callable, *args):
- ''' Converts a KDiffusion callback to the standard img_callback '''
- if callback:
- arg_dict = args[0]
- callback(image_sample=arg_dict['denoised'], iter_num=arg_dict['i'])
-
def create_random_tensors(shape, seeds):
xs = []
@@ -524,7 +507,6 @@ def seed_to_int(s):
n = n >> 32
return n
-
def draw_prompt_matrix(im, width, height, all_prompts):
def wrap(text, d, font, line_length):
lines = ['']
@@ -590,63 +572,6 @@ def draw_prompt_matrix(im, width, height, all_prompts):
return result
-def round_to_multiple(dimension, dimension_ceiling, multiple=64, round_down=True):
- if round_down:
- rounded_dimension = multiple * math.ceil(dimension / multiple)
- else:
- rounded_dimension = multiple * math.floor(dimension / multiple)
- return rounded_dimension
-
-
-def crop_image(img, mask, width, height):
- def get_mask_and_img(img, mask,dimension, coords, target_width, target_height):
- longest_target_dimension = round_to_multiple(dimension, dimension)
- func_crop_coords = (coords[0], coords[1], coords[0]+longest_target_dimension, coords[1]+longest_target_dimension)
- resized_img = img.crop(func_crop_coords)
- scale_dimension = target_width if target_width > target_height else target_height
- resized_img = resized_img.resize((scale_dimension, scale_dimension), resample=Image.Resampling.LANCZOS)
-
- resized_mask = mask.crop(func_crop_coords)
- cropped_img_width, cropped_img_height = resized_mask.size
- resized_mask = resized_mask.resize((scale_dimension, scale_dimension), resample=Image.Resampling.LANCZOS)
-
- alpha_mask = resized_mask.convert("RGBA")
- mask_data = alpha_mask.getdata()
- container = []
- for item in mask_data:
- if item[0] == 0 and item[1] == 0 and item[2] == 0:
- container.append((255, 255, 255, 0))
- else:
- container.append(item)
- alpha_mask.putdata(container)
-
- results = {
- "cropped_img": resized_img,
- "org_img": rgb_image,
- "cropped_mask": alpha_mask,
- "coords": crop_coords,
- "scale_width": width,
- "scale_height": height,
- "org_width": cropped_img_width,
- "org_height": cropped_img_height
- }
- return results
-
- rgb_image = img.convert("RGB")
- rgb_mask = mask.convert("RGB")
- np_mask = np.array(rgb_mask)
- white_columns = np.where(np_mask.max(axis=0)>= 255)[0]
- white_rows = np.where(np_mask.max(axis=1)>= 255)[0]
- crop_coords = (min(white_columns), min(white_rows), max(white_columns), max(white_rows))
- crop_to_size = rgb_image.crop(crop_coords)
- cropped_img_width, cropped_img_height = crop_to_size.size
-
- if cropped_img_width > cropped_img_height:
- results_dict = get_mask_and_img(rgb_image, mask, cropped_img_width, crop_coords, width, height)
- else:
- results_dict = get_mask_and_img(rgb_image, mask, cropped_img_height, crop_coords, width, height)
-
- return results_dict
def check_prompt_length(prompt, comments):
@@ -668,8 +593,8 @@ def check_prompt_length(prompt, comments):
comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
def save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
- normalize_prompt_weights, use_GFPGAN, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, save_each,
- skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, skip_metadata=True):
+normalize_prompt_weights, use_GFPGAN, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
+skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, skip_metadata=True):
filename_i = os.path.join(sample_path_i, filename)
if not jpg_sample:
if opt.save_metadata and not skip_metadata:
@@ -702,7 +627,7 @@ def save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, widt
toggles.append(2)
if uses_random_seed_loopback:
toggles.append(3)
- if save_each:
+ if not skip_save:
toggles.append(2 + offset)
if not skip_grid:
toggles.append(3 + offset)
@@ -852,12 +777,12 @@ def oxlamon_matrix(prompt, seed, n_iter, batch_size):
def process_images(
- outpath, func_init, func_sample, prompt, seed, sampler_name, skip_grid, save_each, batch_size,
+ outpath, func_init, func_sample, prompt, seed, sampler_name, skip_grid, skip_save, batch_size,
n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, use_RealESRGAN, realesrgan_model_name,
fp, ddim_eta=0.0, do_not_save_grid=False, normalize_prompt_weights=True, init_img=None, init_mask=None,
keep_mask=False, mask_blur_strength=3, denoising_strength=0.75, resize_mode=None, uses_loopback=False,
uses_random_seed_loopback=False, sort_samples=True, write_info_files=True, write_sample_info_to_log_file=False, jpg_sample=False,
- variant_amount=0.0, variant_seed=None,imgProcessorTask=False,resize_mask=False, job_info: JobInfo = None):
+ variant_amount=0.0, variant_seed=None,imgProcessorTask=False, job_info: JobInfo = None):
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
prompt = prompt or ''
torch_gc()
@@ -956,7 +881,6 @@ def process_images(
if job_info:
job_info.job_status = f"Processing Iteration {n+1}/{n_iter}. Batch size {batch_size}"
- job_info.rec_steps_imgs.clear()
for idx,(p,s) in enumerate(zip(prompts,seeds)):
job_info.job_status += f"\nItem {idx}: Seed {s}\nPrompt: {p}"
@@ -987,7 +911,7 @@ def process_images(
while(torch.cuda.memory_allocated()/1e6 >= mem):
time.sleep(1)
- cur_variant_amount = variant_amount
+ cur_variant_amount = variant_amount
if variant_amount == 0.0:
# we manually generate all input noises because each one should have a specific seed
x = create_random_tensors(shape, seeds=seeds)
@@ -1010,78 +934,17 @@ def process_images(
# finally, slerp base_x noise to target_x noise for creating a variant
x = slerp(device, max(0.0, min(1.0, cur_variant_amount)), base_x, target_x)
-
- # If in optimized mode then make a CPU-copy of the model to generate preview images
- if opt.optimized:
- step_preview_model = copy.deepcopy(modelFS).to("cpu")
- if not opt.no_half:
- step_preview_model.float()
- else:
- step_preview_model = model
-
- def sample_iteration_callback(image_sample: torch.Tensor, iter_num: int):
- ''' Called from the sampler every iteration '''
- if job_info:
- job_info.active_iteration_cnt = iter_num
- record_periodic_image = job_info.rec_steps_enabled and (0 == iter_num % job_info.rec_steps_intrvl)
- if record_periodic_image or job_info.refresh_active_image_requested.is_set():
- preview_start_time = time.time()
- if opt.optimized:
- image_sample = image_sample.to("cpu")
-
- batch_ddim = step_preview_model.decode_first_stage(image_sample)
- batch_ddim = torch.clamp((batch_ddim + 1.0) / 2.0, min=0.0, max=1.0)
- preview_elapsed_timed = time.time() - preview_start_time
-
- if preview_elapsed_timed > 1:
- print(
- f"Warning: Preview generation is slow! It took {preview_elapsed_timed:.2f}s to generate one preview!")
-
- images: List[Image.Image] = []
- # Convert tensor to image (copied from code below)
- for ddim in batch_ddim:
- x_sample = 255. * rearrange(ddim.cpu().numpy(), 'c h w -> h w c')
- x_sample = x_sample.astype(np.uint8)
- image = Image.fromarray(x_sample)
- images.append(image)
-
- caption = f"Iter {iter_num}"
- grid = image_grid(images, len(images), force_n_rows=1, captions=[caption]*len(images))
-
- # Save the images if recording steps, and append existing saved steps
- if job_info.rec_steps_enabled:
- gallery_img_size = tuple( int(0.25*dim) for dim in images[0].size)
- job_info.rec_steps_imgs.append(grid.resize(gallery_img_size))
-
- # Notify the requester that the image is updated
- if job_info.refresh_active_image_requested.is_set():
- if job_info.rec_steps_enabled:
- grid = image_grid(job_info.rec_steps_imgs, 1)
- job_info.active_image = grid
- job_info.refresh_active_image_done.set()
- job_info.refresh_active_image_requested.clear()
-
- # Interrupt current iteration?
- if job_info.stop_cur_iter.is_set():
- job_info.stop_cur_iter.clear()
- raise StopIteration()
-
- try:
- samples_ddim = func_sample(init_data=init_data, x=x, conditioning=c, unconditional_conditioning=uc, sampler_name=sampler_name, img_callback=sample_iteration_callback)
- except StopIteration:
- print("Skipping iteration")
- job_info.job_status = "Skipping iteration"
- continue
+ samples_ddim = func_sample(init_data=init_data, x=x, conditioning=c, unconditional_conditioning=uc, sampler_name=sampler_name)
if opt.optimized:
modelFS.to(device)
+
x_samples_ddim = (model if not opt.optimized else modelFS).decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
for i, x_sample in enumerate(x_samples_ddim):
sanitized_prompt = prompts[i].replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})
- sanitized_prompt = sanitized_prompt.lower()
if variant_seed != None and variant_seed != '':
if variant_amount == 0.0:
seed_used = f"{current_seeds[i]}-{variant_seed}"
@@ -1106,17 +969,6 @@ def process_images(
image = Image.fromarray(x_sample)
original_sample = x_sample
original_filename = filename
-
- if resize_mask:
- scaled_img = image.resize((returned_info["org_width"], returned_info["org_height"]), resample=Image.Resampling.LANCZOS).convert("RGB")
- scaled_mask = returned_info["cropped_mask"].resize((returned_info["org_width"], returned_info["org_height"]), resample=Image.Resampling.LANCZOS).convert("RGBA")
- scaled_mask = scaled_mask.filter(ImageFilter.GaussianBlur(mask_blur_strength))
- returned_info["org_img"].paste(scaled_img, (returned_info["coords"][0], returned_info["coords"][1]), mask=scaled_mask)
- image = returned_info["org_img"].copy()
- original_sample = np.asarray(image).astype(np.uint8)
- #returned_info["org_img"].save(sample_path_i+"\\"+filename+" test.png", format="PNG")
-
-
if use_GFPGAN and GFPGAN is not None and not use_RealESRGAN:
skip_save = True # #287 >_>
torch_gc()
@@ -1124,12 +976,10 @@ def process_images(
gfpgan_sample = restored_img[:,:,::-1]
gfpgan_image = Image.fromarray(gfpgan_sample)
gfpgan_filename = original_filename + '-gfpgan'
- if save_each:
- save_sample(gfpgan_image, sample_path_i, gfpgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
- normalize_prompt_weights, use_GFPGAN, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, save_each,
- skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, skip_metadata=True)
+ save_sample(gfpgan_image, sample_path_i, gfpgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
+normalize_prompt_weights, use_GFPGAN, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
+skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, skip_metadata=True)
output_images.append(gfpgan_image) #287
- # save_each = True # #287 >_>
#if simple_templating:
# grid_captions.append( captions[i] + "\ngfpgan" )
@@ -1140,30 +990,26 @@ def process_images(
esrgan_filename = original_filename + '-esrgan4x'
esrgan_sample = output[:,:,::-1]
esrgan_image = Image.fromarray(esrgan_sample)
- if save_each:
- save_sample(esrgan_image, sample_path_i, esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
- normalize_prompt_weights, use_GFPGAN, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, save_each,
- skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, skip_metadata=True)
+ save_sample(esrgan_image, sample_path_i, esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
+normalize_prompt_weights, use_GFPGAN,write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
+skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, skip_metadata=True)
output_images.append(esrgan_image) #287
- # save_each = False # #287 >_>
#if simple_templating:
# grid_captions.append( captions[i] + "\nesrgan" )
if use_RealESRGAN and RealESRGAN is not None and use_GFPGAN and GFPGAN is not None:
skip_save = True # #287 >_>
torch_gc()
- cropped_faces, restored_faces, restored_img = GFPGAN.enhance(original_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
+ cropped_faces, restored_faces, restored_img = GFPGAN.enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
gfpgan_sample = restored_img[:,:,::-1]
output, img_mode = RealESRGAN.enhance(gfpgan_sample[:,:,::-1])
gfpgan_esrgan_filename = original_filename + '-gfpgan-esrgan4x'
gfpgan_esrgan_sample = output[:,:,::-1]
gfpgan_esrgan_image = Image.fromarray(gfpgan_esrgan_sample)
- if save_each:
- save_sample(gfpgan_esrgan_image, sample_path_i, gfpgan_esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
- normalize_prompt_weights, use_GFPGAN, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, save_each,
- skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, skip_metadata=True)
+ save_sample(gfpgan_esrgan_image, sample_path_i, gfpgan_esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
+normalize_prompt_weights, use_GFPGAN, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
+skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, skip_metadata=True)
output_images.append(gfpgan_esrgan_image) #287
- # save_each = False # #287 >_>
#if simple_templating:
# grid_captions.append( captions[i] + "\ngfpgan_esrgan" )
@@ -1171,30 +1017,15 @@ def process_images(
if imgProcessorTask == True:
output_images.append(image)
-
- if save_each:
+ if not skip_save:
save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
- normalize_prompt_weights, use_GFPGAN, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, save_each,
- skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, False)
+normalize_prompt_weights, use_GFPGAN, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
+skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, False)
if add_original_image or not simple_templating:
output_images.append(image)
if simple_templating:
grid_captions.append( captions[i] )
- # Save the progress images?
- if job_info:
- if job_info.rec_steps_enabled and (job_info.rec_steps_to_file or job_info.rec_steps_to_gallery):
- steps_grid = image_grid(job_info.rec_steps_imgs, 1)
- if job_info.rec_steps_to_gallery:
- gallery_img_size = tuple(2*dim for dim in image.size)
- output_images.append( steps_grid.resize( gallery_img_size ) )
- if job_info.rec_steps_to_file:
- steps_grid_filename = f"{original_filename}_step_grid"
- save_sample(steps_grid, sample_path_i, steps_grid_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
- normalize_prompt_weights, use_GFPGAN, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
- skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, False)
-
-
if opt.optimized:
mem = torch.cuda.memory_allocated()/1e6
modelFS.to("cpu")
@@ -1263,7 +1094,7 @@ def txt2img(prompt: str, ddim_steps: int, sampler_name: str, toggles: List[int],
seed = seed_to_int(seed)
prompt_matrix = 0 in toggles
normalize_prompt_weights = 1 in toggles
- save_each = 2 in toggles
+ skip_save = 2 not in toggles
skip_grid = 3 not in toggles
sort_samples = 4 in toggles
write_info_files = 5 in toggles
@@ -1302,8 +1133,8 @@ def txt2img(prompt: str, ddim_steps: int, sampler_name: str, toggles: List[int],
def init():
pass
- def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name, img_callback: Callable = None):
- samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=unconditional_conditioning, eta=ddim_eta, x_T=x, img_callback=img_callback)
+ def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name):
+ samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=unconditional_conditioning, eta=ddim_eta, x_T=x)
return samples_ddim
try:
@@ -1314,7 +1145,7 @@ def txt2img(prompt: str, ddim_steps: int, sampler_name: str, toggles: List[int],
prompt=prompt,
seed=seed,
sampler_name=sampler_name,
- save_each=save_each,
+ skip_save=skip_save,
skip_grid=skip_grid,
batch_size=batch_size,
n_iter=n_iter,
@@ -1393,9 +1224,14 @@ class Flagging(gr.FlaggingCallback):
print("Logged:", filenames[0])
-def img2img(prompt: str, image_editor_mode: str, init_info: any, init_info_mask: any, mask_mode: str, mask_blur_strength: int, ddim_steps: int, sampler_name: str,
+def img2img(prompt: str, image_editor_mode: str, mask_mode: str, mask_blur_strength: int, ddim_steps: int, sampler_name: str,
toggles: List[int], realesrgan_model_name: str, n_iter: int, cfg_scale: float, denoising_strength: float,
- seed: int, height: int, width: int, resize_mode: int, fp = None, job_info: JobInfo = None):
+ seed: int, height: int, width: int, resize_mode: int, init_info: any = None, init_info_mask: any = None, fp = None, job_info: JobInfo = None):
+ print([prompt, image_editor_mode, init_info, init_info_mask, mask_mode,
+ mask_blur_strength, ddim_steps, sampler_name, toggles,
+ realesrgan_model_name, n_iter, cfg_scale,
+ denoising_strength, seed, height, width, resize_mode,
+ fp])
outpath = opt.outdir_img2img or opt.outdir or "outputs/img2img-samples"
err = False
seed = seed_to_int(seed)
@@ -1406,7 +1242,7 @@ def img2img(prompt: str, image_editor_mode: str, init_info: any, init_info_mask:
normalize_prompt_weights = 1 in toggles
loopback = 2 in toggles
random_seed_loopback = 3 in toggles
- save_each = 4 in toggles
+ skip_save = 4 not in toggles
skip_grid = 5 not in toggles
sort_samples = 6 in toggles
write_info_files = 7 in toggles
@@ -1441,44 +1277,35 @@ def img2img(prompt: str, image_editor_mode: str, init_info: any, init_info_mask:
raise Exception("Unknown sampler: " + sampler_name)
if image_editor_mode == 'Mask':
- global returned_info
init_img = init_info_mask["image"]
init_img = init_img.convert("RGB")
init_img = resize_image(resize_mode, init_img, width, height)
- image = image.convert("RGB")
+ init_img = init_img.convert("RGB")
init_mask = init_info_mask["mask"]
- init_mask = resize_image(resize_mode, init_mask, width, height)
- resize_mask = mask_mode == 2
-
- if resize_mask:
- returned_info = crop_image(init_img, init_mask, width, height)
- init_img = returned_info["cropped_img"]
- init_mask = returned_info["cropped_mask"]
-
- keep_mask = mask_mode == 0
init_mask = init_mask.convert("RGB")
+ init_mask = resize_image(resize_mode, init_mask, width, height)
+ init_mask = init_mask.convert("RGB")
+ keep_mask = mask_mode == 0
init_mask = init_mask if keep_mask else ImageOps.invert(init_mask)
else:
- init_img = init_info.convert("RGB")
+ init_img = init_info
init_mask = None
keep_mask = False
- resize_mask = False
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
t_enc = int(denoising_strength * ddim_steps)
def init():
image = init_img.convert("RGB")
- if resize_mask:
- image = resize_image(resize_mode, image, width, height)
- #image = image.convert("RGB") #todo: mask mode -> ValueError: could not convert string to float:
+ image = resize_image(resize_mode, image, width, height)
+ #image = image.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
mask_channel = None
if image_editor_mode == "Uncrop":
- alpha = init_img.convert("RGB")
+ alpha = init_img.convert("RGBA")
alpha = resize_image(resize_mode, alpha, width // 8, height // 8)
mask_channel = alpha.split()[-1]
mask_channel = mask_channel.filter(ImageFilter.GaussianBlur(4))
@@ -1486,7 +1313,7 @@ def img2img(prompt: str, image_editor_mode: str, init_info: any, init_info_mask:
mask_channel[mask_channel >= 255] = 255
mask_channel[mask_channel < 255] = 0
mask_channel = Image.fromarray(mask_channel).filter(ImageFilter.GaussianBlur(2))
- elif init_mask is not None:
+ elif image_editor_mode == "Mask":
alpha = init_mask.convert("RGBA")
alpha = resize_image(resize_mode, alpha, width // 8, height // 8)
mask_channel = alpha.split()[1]
@@ -1505,7 +1332,7 @@ def img2img(prompt: str, image_editor_mode: str, init_info: any, init_info_mask:
init_image = init_image.to(device)
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
init_latent = (model if not opt.optimized else modelFS).get_first_stage_encoding((model if not opt.optimized else modelFS).encode_first_stage(init_image)) # move to latent space
-
+
if opt.optimized:
mem = torch.cuda.memory_allocated()/1e6
modelFS.to("cpu")
@@ -1514,7 +1341,7 @@ def img2img(prompt: str, image_editor_mode: str, init_info: any, init_info_mask:
return init_latent, mask,
- def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name, img_callback: Callable = None):
+ def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name):
t_enc_steps = t_enc
obliterate = False
if ddim_steps == t_enc_steps:
@@ -1536,7 +1363,7 @@ def img2img(prompt: str, image_editor_mode: str, init_info: any, init_info_mask:
sigma_sched = sigmas[ddim_steps - t_enc_steps - 1:]
model_wrap_cfg = CFGMaskedDenoiser(sampler.model_wrap)
- samples_ddim = K.sampling.__dict__[f'sample_{sampler.get_sampler_name()}'](model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': cfg_scale, 'mask': z_mask, 'x0': x0, 'xi': xi}, disable=False, callback=partial(KDiffusionSampler.img_callback_wrapper, img_callback))
+ samples_ddim = K.sampling.__dict__[f'sample_{sampler.get_sampler_name()}'](model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': cfg_scale, 'mask': z_mask, 'x0': x0, 'xi': xi}, disable=False)
else:
x0, z_mask = init_data
@@ -1563,7 +1390,17 @@ def img2img(prompt: str, image_editor_mode: str, init_info: any, init_info_mask:
history = []
initial_seed = None
+ do_color_correction = False
+ try:
+ from skimage import exposure
+ do_color_correction = True
+ except:
+ print("Install scikit-image to perform color correction on loopback")
+
for i in range(n_iter):
+ if do_color_correction and i == 0:
+ correction_target = cv2.cvtColor(np.asarray(init_img.copy()), cv2.COLOR_RGB2LAB)
+
output_images, seed, info, stats = process_images(
outpath=outpath,
func_init=init,
@@ -1571,7 +1408,7 @@ def img2img(prompt: str, image_editor_mode: str, init_info: any, init_info_mask:
prompt=prompt,
seed=seed,
sampler_name=sampler_name,
- save_each=save_each,
+ skip_save=skip_save,
skip_grid=skip_grid,
batch_size=1,
n_iter=1,
@@ -1605,6 +1442,17 @@ def img2img(prompt: str, image_editor_mode: str, init_info: any, init_info_mask:
initial_seed = seed
init_img = output_images[0]
+
+ if do_color_correction and correction_target is not None:
+ init_img = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
+ cv2.cvtColor(
+ np.asarray(init_img),
+ cv2.COLOR_RGB2LAB
+ ),
+ correction_target,
+ channel_axis=2
+ ), cv2.COLOR_LAB2RGB).astype("uint8"))
+
if not random_seed_loopback:
seed = seed + 1
else:
@@ -1630,7 +1478,7 @@ def img2img(prompt: str, image_editor_mode: str, init_info: any, init_info_mask:
prompt=prompt,
seed=seed,
sampler_name=sampler_name,
- save_each=save_each,
+ skip_save=skip_save,
skip_grid=skip_grid,
batch_size=batch_size,
n_iter=n_iter,
@@ -1655,7 +1503,6 @@ def img2img(prompt: str, image_editor_mode: str, init_info: any, init_info_mask:
write_info_files=write_info_files,
write_sample_info_to_log_file=write_sample_info_to_log_file,
jpg_sample=jpg_sample,
- resize_mask=resize_mask,
job_info=job_info
)
@@ -1723,10 +1570,9 @@ def imgproc(image,image_batch,imgproc_prompt,imgproc_toggles, imgproc_upscale_to
output = []
images = []
def processGFPGAN(image,strength):
- cvimage = toImgOpenCV(image)
- cropped_faces, restored_faces, restored_img = GFPGAN.enhance(np.array(cvimage, dtype=np.uint8), has_aligned=False, only_center_face=False, paste_back=True)
- #save restored image
- result = toImgPIL(restored_img)
+ image = image.convert("RGB")
+ cropped_faces, restored_faces, restored_img = GFPGAN.enhance(np.array(image, dtype=np.uint8), has_aligned=False, only_center_face=False, paste_back=True)
+ result = Image.fromarray(restored_img)
if strength < 1.0:
result = Image.blend(image, result, strength)
@@ -1764,7 +1610,7 @@ def imgproc(image,image_batch,imgproc_prompt,imgproc_toggles, imgproc_upscale_to
height = int(imgproc_height)
cfg_scale = float(imgproc_cfg)
denoising_strength = float(imgproc_denoising)
- save_each = True
+ skip_save = True
skip_grid = True
prompt = imgproc_prompt
t_enc = int(denoising_strength * ddim_steps)
@@ -1918,7 +1764,7 @@ def imgproc(image,image_batch,imgproc_prompt,imgproc_toggles, imgproc_upscale_to
prompt=prompt,
seed=seed,
sampler_name=sampler_name,
- save_each=save_each,
+ skip_save=skip_save,
skip_grid=skip_grid,
batch_size=batch_size,
n_iter=n_iter,
@@ -1964,9 +1810,8 @@ def imgproc(image,image_batch,imgproc_prompt,imgproc_toggles, imgproc_upscale_to
return combined_image
def processLDSR(image):
result = LDSR.superResolution(image,int(imgproc_ldsr_steps),str(imgproc_ldsr_pre_downSample),str(imgproc_ldsr_post_downSample))
- return result
-
-
+ return result
+
if image_batch != None:
if image != None:
@@ -1993,7 +1838,7 @@ def imgproc(image,image_batch,imgproc_prompt,imgproc_toggles, imgproc_upscale_to
if 1 in imgproc_toggles:
if imgproc_upscale_toggles == 0:
ModelLoader(['GFPGAN','LDSR'],False,True) # Unload unused models
- ModelLoader(['RealESGAN'],True,False,imgproc_realesrgan_model_name) # Load used models
+ ModelLoader(['RealESGAN'],True,False,imgproc_realesrgan_model_name) # Load used models
elif imgproc_upscale_toggles == 1:
ModelLoader(['GFPGAN','LDSR'],False,True) # Unload unused models
ModelLoader(['RealESGAN','model'],True,False) # Load used models
@@ -2106,14 +1951,15 @@ def ModelLoader(models,load=False,unload=False,imgproc_realesrgan_model_name='Re
def run_GFPGAN(image, strength):
ModelLoader(['LDSR','RealESRGAN'],False,True)
ModelLoader(['GFPGAN'],True,False)
- cvimage = toImgOpenCV(image)
- cropped_faces, restored_faces, restored_img = GFPGAN.enhance(np.array(cvimage, dtype=np.uint8), has_aligned=False, only_center_face=False, paste_back=True)
- #save restored image
- result = toImgPIL(restored_img)
- if strength < 1.0:
- result = Image.blend(image, result, strength)
+ image = image.convert("RGB")
- return result
+ cropped_faces, restored_faces, restored_img = GFPGAN.enhance(np.array(image, dtype=np.uint8), has_aligned=False, only_center_face=False, paste_back=True)
+ res = Image.fromarray(restored_img)
+
+ if strength < 1.0:
+ res = Image.blend(image, res, strength)
+
+ return res
def run_RealESRGAN(image, model_name: str):
ModelLoader(['GFPGAN','LDSR'],False,True)
@@ -2195,9 +2041,9 @@ imgproc_mode_toggles = [
'Upscale'
]
-sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg"
-sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None
-
+#sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg"
+#sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None
+sample_img2img = None
# make sure these indicies line up at the top of img2img()
img2img_toggles = [
'Create prompt matrix (separate multiple prompts using |, and get all combinations of them)',
@@ -2226,7 +2072,6 @@ img2img_resize_modes = [
"Just resize",
"Crop and resize",
"Resize and fill",
- "Resize Masked Area"
]
img2img_defaults = {
@@ -2262,22 +2107,13 @@ def update_image_mask(cropped_image, resize_mode, width, height):
resized_cropped_image = resize_image(resize_mode, cropped_image, width, height) if cropped_image else None
return gr.update(value=resized_cropped_image)
-def copy_img_to_input(img):
- try:
- image_data = re.sub('^data:image/.+;base64,', '', img)
- processed_image = Image.open(BytesIO(base64.b64decode(image_data)))
- tab_update = gr.update(selected='img2img_tab')
- img_update = gr.update(value=processed_image)
- return {img2img_image_mask: processed_image, img2img_image_editor: img_update, tabs: tab_update}
- except IndexError:
- return [None, None]
def copy_img_to_upscale_esrgan(img):
update = gr.update(selected='realesrgan_tab')
image_data = re.sub('^data:image/.+;base64,', '', img)
processed_image = Image.open(BytesIO(base64.b64decode(image_data)))
- return {realesrgan_source: processed_image, tabs: update}
+ return {'realesrgan_source': processed_image, 'tabs': update}
help_text = """
@@ -2341,7 +2177,7 @@ class ServerLauncher(threading.Thread):
'inbrowser': opt.inbrowser,
'server_name': '0.0.0.0',
'server_port': opt.port,
- 'share': opt.share,
+ 'share': opt.share,
'show_error': True
}
if not opt.share: