The Merge (#1387)
@ -1,4 +1,4 @@
|
||||
models/
|
||||
models/custom/
|
||||
outputs/
|
||||
src/
|
||||
gfpgan/
|
||||
|
@ -1,3 +1,19 @@
|
||||
# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
# Copyright 2022 sd-webui team.
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
# Validate the model files on every container restart
|
||||
# (useful to set to false after you're sure the model files are already in place)
|
||||
VALIDATE_MODELS=true
|
||||
@ -12,3 +28,5 @@ WEBUI_SCRIPT=webui.py
|
||||
# Pass cli arguments to webui.py e.g:
|
||||
# WEBUI_ARGS=--optimized --extra-models-cpu --gpu=1 --esrgan-gpu=1 --gfpgan-gpu=1
|
||||
WEBUI_ARGS=
|
||||
|
||||
STREAMLIT_SERVER_HEADLESS=true
|
||||
|
11
.github/ISSUE_TEMPLATE/config.yml
vendored
@ -1,11 +0,0 @@
|
||||
blank_issues_enabled: false
|
||||
contact_links:
|
||||
- name: WebUI developer repository
|
||||
url: https://github.com/hlky/stable-diffusion-webui/issues/new/choose
|
||||
about: MOST BUGS SHOULD GO HERE Have a bug related to the features? Please open a bug on the developer repository.
|
||||
- name: Feature Request, Question or Suggestion
|
||||
url: https://github.com/hlky/stable-diffusion-webui/discussions
|
||||
about: Please create a discussion and see if folks have already solved it
|
||||
- name: Colab version specific bug?
|
||||
url: https://github.com/altryne/sd-webui-colab/issues/new/choose
|
||||
about: Please open colab related bugs here
|
13
.github/dependabot.yml
vendored
Normal file
@ -0,0 +1,13 @@
|
||||
# To get started with Dependabot version updates, you'll need to specify which
|
||||
# package ecosystems to update and where the package manifests are located.
|
||||
# Please see the documentation for all configuration options:
|
||||
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
|
||||
|
||||
version: 2
|
||||
updates:
|
||||
- package-ecosystem: "pip" # See documentation for possible values
|
||||
directory: "/" # Location of package manifests
|
||||
target-branch: "dev"
|
||||
|
||||
schedule:
|
||||
interval: "daily"
|
11
.github/sync.yml
vendored
@ -1,11 +0,0 @@
|
||||
sd-webui/daisi:
|
||||
- source: configs/
|
||||
- source: data/
|
||||
- source: frontend/
|
||||
- source: ldm/
|
||||
- source: models/
|
||||
- source: outputs/
|
||||
- source: optimizedSD/
|
||||
- source: frontend/
|
||||
- source: scripts/
|
||||
dest: .
|
16
.github/workflows/sync.yml
vendored
@ -1,16 +0,0 @@
|
||||
name: Sync Files
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- dev
|
||||
workflow_dispatch:
|
||||
jobs:
|
||||
sync:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout Repository
|
||||
uses: actions/checkout@master
|
||||
- name: Run GitHub File Sync
|
||||
uses: BetaHuhn/repo-file-sync-action@v1
|
||||
with:
|
||||
GH_PAT: ${{ secrets.GH_PAT2 }}
|
2
.gitignore
vendored
@ -64,3 +64,5 @@ condaenv.*.requirements.txt
|
||||
/gfpgan/*
|
||||
/models/*
|
||||
z_version_env.tmp
|
||||
scripts/bridgeData.py
|
||||
/user_data/*
|
49
.streamlit/config.toml
Normal file
@ -0,0 +1,49 @@
|
||||
[global]
|
||||
disableWatchdogWarning = false
|
||||
showWarningOnDirectExecution = true
|
||||
dataFrameSerialization = "arrow"
|
||||
|
||||
[logger]
|
||||
level = "info"
|
||||
messageFormat = "%(asctime)s %(message)s"
|
||||
|
||||
[client]
|
||||
caching = true
|
||||
displayEnabled = true
|
||||
showErrorDetails = true
|
||||
|
||||
[runner]
|
||||
magicEnabled = true
|
||||
installTracer = false
|
||||
fixMatplotlib = true
|
||||
postScriptGC = true
|
||||
fastReruns = false
|
||||
|
||||
[server]
|
||||
folderWatchBlacklist = []
|
||||
fileWatcherType = "auto"
|
||||
cookieSecret = ""
|
||||
headless = false
|
||||
runOnSave = false
|
||||
port = 8501
|
||||
baseUrlPath = ""
|
||||
enableCORS = true
|
||||
enableXsrfProtection = true
|
||||
maxUploadSize = 200
|
||||
maxMessageSize = 200
|
||||
enableWebsocketCompression = false
|
||||
|
||||
[browser]
|
||||
serverAddress = "localhost"
|
||||
gatherUsageStats = false
|
||||
serverPort = 8501
|
||||
|
||||
[mapbox]
|
||||
token = ""
|
||||
|
||||
[deprecation]
|
||||
showfileUploaderEncoding = true
|
||||
showPyplotGlobalUse = true
|
||||
|
||||
[theme]
|
||||
base = "dark"
|
50
Dockerfile
@ -1,37 +1,59 @@
|
||||
# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
# Copyright 2022 sd-webui team.
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
# Assumes host environment is AMD64 architecture
|
||||
# ARG TARGETPLATFORM
|
||||
|
||||
# We should use the Pytorch CUDA/GPU-enabled base image. See: https://hub.docker.com/r/pytorch/pytorch/tags
|
||||
# FROM nvidia/cuda:11.3.1-runtime-ubuntu20.04
|
||||
# This is used to allow building against AMD GPUs
|
||||
# Annoyingly, you can't IF branch off of, say, TARGETGPU and set
|
||||
# the Dockerfile's FROM based on that, so we have to have the user
|
||||
# pass in the entire image path for us.
|
||||
ARG PYTORCH_IMAGE=pytorch/pytorch:1.12.1-cuda11.3-cudnn8-runtime
|
||||
# To build against AMD, use
|
||||
# --build-arg PYTORCH_IMAGE=rocm/pytorch:rocm5.2.3_ubuntu20.04_py3.7_pytorch_1.12.1
|
||||
|
||||
# Assumes AMD64 host architecture
|
||||
FROM pytorch/pytorch:1.12.1-cuda11.3-cudnn8-runtime
|
||||
FROM ${PYTORCH_IMAGE}
|
||||
|
||||
WORKDIR /install
|
||||
|
||||
SHELL ["/bin/bash", "-c"]
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y wget git && \
|
||||
apt-get install -y wget git build-essential && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
COPY ./sd_requirements.txt /install/
|
||||
RUN pip install -r /install/sd_requirements.txt
|
||||
|
||||
COPY ./requirements.txt /install/
|
||||
|
||||
RUN pip install -r /install/requirements.txt
|
||||
|
||||
COPY ./ext_requirements.txt /install
|
||||
RUN pip install -r /install/ext_requirements.txt
|
||||
|
||||
COPY ./ui_requirements.txt /install/
|
||||
RUN pip install -r /install/ui_requirements.txt
|
||||
# From base image. We need opencv-python-headless so we uninstall here
|
||||
RUN pip uninstall -y opencv-python && pip install opencv-python-headless==4.6.0.66
|
||||
|
||||
# Install font for prompt matrix
|
||||
COPY /data/DejaVuSans.ttf /usr/share/fonts/truetype/
|
||||
|
||||
ENV PYTHONPATH=/sd
|
||||
|
||||
COPY ./models /sd/models
|
||||
COPY ./configs /sd/configs
|
||||
COPY ./frontend /sd/frontend
|
||||
COPY ./ldm /sd/ldm
|
||||
# COPY ./gfpgan/ /sd/
|
||||
COPY ./optimizedSD /sd/optimizedSD
|
||||
COPY ./scripts /sd/scripts
|
||||
|
||||
EXPOSE 7860 8501
|
||||
|
||||
COPY ./entrypoint.sh /sd/
|
||||
|
@ -8,7 +8,6 @@
|
||||
- **[Windows](https://sd-webui.github.io/stable-diffusion-webui/docs/1.windows-installation.html)**
|
||||
- **[Linux](https://sd-webui.github.io/stable-diffusion-webui/docs/2.linux-installation.html)**
|
||||
|
||||
|
||||
### Want to ask a question or request a feature?
|
||||
|
||||
Come to our [Discord Server](https://discord.gg/gyXNe4NySY) or use [Discussions](https://github.com/sd-webui/stable-diffusion-webui/discussions).
|
||||
|
@ -1,3 +1,18 @@
|
||||
#!/bin/sh
|
||||
# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
# Copyright 2022 sd-webui team.
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
# Functionally equivalent to docker compose build
|
||||
docker build . -t stable-diffusion-webui:dev
|
||||
|
21
configs/blip/bert_config.json
Normal file
@ -0,0 +1,21 @@
|
||||
{
|
||||
"architectures": [
|
||||
"BertModel"
|
||||
],
|
||||
"attention_probs_dropout_prob": 0.1,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.1,
|
||||
"hidden_size": 768,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"layer_norm_eps": 1e-12,
|
||||
"max_position_embeddings": 512,
|
||||
"model_type": "bert",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 0,
|
||||
"type_vocab_size": 2,
|
||||
"vocab_size": 30522,
|
||||
"encoder_width": 768,
|
||||
"add_cross_attention": true
|
||||
}
|
33
configs/blip/caption_coco.yaml
Normal file
@ -0,0 +1,33 @@
|
||||
image_root: '/export/share/datasets/vision/coco/images/'
|
||||
ann_root: 'annotation'
|
||||
coco_gt_root: 'annotation/coco_gt'
|
||||
|
||||
# set pretrained as a file path or an url
|
||||
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
|
||||
|
||||
# size of vit model; base or large
|
||||
vit: 'base'
|
||||
vit_grad_ckpt: False
|
||||
vit_ckpt_layer: 0
|
||||
batch_size: 32
|
||||
init_lr: 1e-5
|
||||
|
||||
# vit: 'large'
|
||||
# vit_grad_ckpt: True
|
||||
# vit_ckpt_layer: 5
|
||||
# batch_size: 16
|
||||
# init_lr: 2e-6
|
||||
|
||||
image_size: 384
|
||||
|
||||
# generation configs
|
||||
max_length: 20
|
||||
min_length: 5
|
||||
num_beams: 3
|
||||
prompt: 'a picture of '
|
||||
|
||||
# optimizer
|
||||
weight_decay: 0.05
|
||||
min_lr: 0
|
||||
max_epoch: 5
|
||||
|
21
configs/blip/med_config.json
Normal file
@ -0,0 +1,21 @@
|
||||
{
|
||||
"architectures": [
|
||||
"BertModel"
|
||||
],
|
||||
"attention_probs_dropout_prob": 0.1,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.1,
|
||||
"hidden_size": 768,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"layer_norm_eps": 1e-12,
|
||||
"max_position_embeddings": 512,
|
||||
"model_type": "bert",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 0,
|
||||
"type_vocab_size": 2,
|
||||
"vocab_size": 30524,
|
||||
"encoder_width": 768,
|
||||
"add_cross_attention": true
|
||||
}
|
21
configs/blip/nlvr.yaml
Normal file
@ -0,0 +1,21 @@
|
||||
image_root: '/export/share/datasets/vision/NLVR2/'
|
||||
ann_root: 'annotation'
|
||||
|
||||
# set pretrained as a file path or an url
|
||||
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_nlvr.pth'
|
||||
|
||||
#size of vit model; base or large
|
||||
vit: 'base'
|
||||
batch_size_train: 16
|
||||
batch_size_test: 64
|
||||
vit_grad_ckpt: False
|
||||
vit_ckpt_layer: 0
|
||||
max_epoch: 15
|
||||
|
||||
image_size: 384
|
||||
|
||||
# optimizer
|
||||
weight_decay: 0.05
|
||||
init_lr: 3e-5
|
||||
min_lr: 0
|
||||
|
15
configs/blip/nocaps.yaml
Normal file
@ -0,0 +1,15 @@
|
||||
image_root: '/export/share/datasets/vision/nocaps/'
|
||||
ann_root: 'annotation'
|
||||
|
||||
# set pretrained as a file path or an url
|
||||
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
|
||||
|
||||
vit: 'base'
|
||||
batch_size: 32
|
||||
|
||||
image_size: 384
|
||||
|
||||
max_length: 20
|
||||
min_length: 5
|
||||
num_beams: 3
|
||||
prompt: 'a picture of '
|
27
configs/blip/pretrain.yaml
Normal file
@ -0,0 +1,27 @@
|
||||
train_file: ['/export/share/junnan-li/VL_pretrain/annotation/coco_karpathy_train.json',
|
||||
'/export/share/junnan-li/VL_pretrain/annotation/vg_caption.json',
|
||||
]
|
||||
laion_path: ''
|
||||
|
||||
# size of vit model; base or large
|
||||
vit: 'base'
|
||||
vit_grad_ckpt: False
|
||||
vit_ckpt_layer: 0
|
||||
|
||||
image_size: 224
|
||||
batch_size: 75
|
||||
|
||||
queue_size: 57600
|
||||
alpha: 0.4
|
||||
|
||||
# optimizer
|
||||
weight_decay: 0.05
|
||||
init_lr: 3e-4
|
||||
min_lr: 1e-6
|
||||
warmup_lr: 1e-6
|
||||
lr_decay_rate: 0.9
|
||||
max_epoch: 20
|
||||
warmup_steps: 3000
|
||||
|
||||
|
||||
|
34
configs/blip/retrieval_coco.yaml
Normal file
@ -0,0 +1,34 @@
|
||||
image_root: '/export/share/datasets/vision/coco/images/'
|
||||
ann_root: 'annotation'
|
||||
dataset: 'coco'
|
||||
|
||||
# set pretrained as a file path or an url
|
||||
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
|
||||
|
||||
# size of vit model; base or large
|
||||
|
||||
vit: 'base'
|
||||
batch_size_train: 32
|
||||
batch_size_test: 64
|
||||
vit_grad_ckpt: True
|
||||
vit_ckpt_layer: 4
|
||||
init_lr: 1e-5
|
||||
|
||||
# vit: 'large'
|
||||
# batch_size_train: 16
|
||||
# batch_size_test: 32
|
||||
# vit_grad_ckpt: True
|
||||
# vit_ckpt_layer: 12
|
||||
# init_lr: 5e-6
|
||||
|
||||
image_size: 384
|
||||
queue_size: 57600
|
||||
alpha: 0.4
|
||||
k_test: 256
|
||||
negative_all_rank: True
|
||||
|
||||
# optimizer
|
||||
weight_decay: 0.05
|
||||
min_lr: 0
|
||||
max_epoch: 6
|
||||
|
34
configs/blip/retrieval_flickr.yaml
Normal file
@ -0,0 +1,34 @@
|
||||
image_root: '/export/share/datasets/vision/flickr30k/'
|
||||
ann_root: 'annotation'
|
||||
dataset: 'flickr'
|
||||
|
||||
# set pretrained as a file path or an url
|
||||
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_flickr.pth'
|
||||
|
||||
# size of vit model; base or large
|
||||
|
||||
vit: 'base'
|
||||
batch_size_train: 32
|
||||
batch_size_test: 64
|
||||
vit_grad_ckpt: True
|
||||
vit_ckpt_layer: 4
|
||||
init_lr: 1e-5
|
||||
|
||||
# vit: 'large'
|
||||
# batch_size_train: 16
|
||||
# batch_size_test: 32
|
||||
# vit_grad_ckpt: True
|
||||
# vit_ckpt_layer: 10
|
||||
# init_lr: 5e-6
|
||||
|
||||
image_size: 384
|
||||
queue_size: 57600
|
||||
alpha: 0.4
|
||||
k_test: 128
|
||||
negative_all_rank: False
|
||||
|
||||
# optimizer
|
||||
weight_decay: 0.05
|
||||
min_lr: 0
|
||||
max_epoch: 6
|
||||
|
12
configs/blip/retrieval_msrvtt.yaml
Normal file
@ -0,0 +1,12 @@
|
||||
video_root: '/export/share/dongxuli/data/msrvtt_retrieval/videos'
|
||||
ann_root: 'annotation'
|
||||
|
||||
# set pretrained as a file path or an url
|
||||
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
|
||||
|
||||
# size of vit model; base or large
|
||||
vit: 'base'
|
||||
batch_size: 64
|
||||
k_test: 128
|
||||
image_size: 384
|
||||
num_frm_test: 8
|
25
configs/blip/vqa.yaml
Normal file
@ -0,0 +1,25 @@
|
||||
vqa_root: '/export/share/datasets/vision/VQA/Images/mscoco/' #followed by train2014/
|
||||
vg_root: '/export/share/datasets/vision/visual-genome/' #followed by image/
|
||||
train_files: ['vqa_train','vqa_val','vg_qa']
|
||||
ann_root: 'annotation'
|
||||
|
||||
# set pretrained as a file path or an url
|
||||
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'
|
||||
|
||||
# size of vit model; base or large
|
||||
vit: 'base'
|
||||
batch_size_train: 16
|
||||
batch_size_test: 32
|
||||
vit_grad_ckpt: False
|
||||
vit_ckpt_layer: 0
|
||||
init_lr: 2e-5
|
||||
|
||||
image_size: 480
|
||||
|
||||
k_test: 128
|
||||
inference: 'rank'
|
||||
|
||||
# optimizer
|
||||
weight_decay: 0.05
|
||||
min_lr: 0
|
||||
max_epoch: 10
|
@ -1,3 +1,19 @@
|
||||
# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
# Copyright 2022 sd-webui team.
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
# UI defaults configuration file. Is read automatically if located at configs/webui/webui.yaml, or specify path via --defaults.
|
||||
|
||||
txt2img:
|
||||
|
@ -1,8 +1,27 @@
|
||||
# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
# Copyright 2022 sd-webui team.
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
# UI defaults configuration file. It is automatically loaded if located at configs/webui/webui_streamlit.yaml.
|
||||
# Any changes made here will be available automatically on the web app without having to stop it.
|
||||
# You may add overrides in a file named "userconfig_streamlit.yaml" in this folder, which can contain any subset
|
||||
# of the properties below.
|
||||
general:
|
||||
streamlit_telemetry: False
|
||||
default_theme: dark
|
||||
huggingface_token: ""
|
||||
gpu: 0
|
||||
outdir: outputs
|
||||
default_model: "Stable Diffusion v1.4"
|
||||
@ -11,15 +30,20 @@ general:
|
||||
use_sd_concepts_library: True
|
||||
sd_concepts_library_folder: "models/custom/sd-concepts-library"
|
||||
GFPGAN_dir: "./src/gfpgan"
|
||||
GFPGAN_model: "GFPGANv1.4"
|
||||
LDSR_dir: "./models/ldsr"
|
||||
LDSR_model: "model"
|
||||
RealESRGAN_dir: "./src/realesrgan"
|
||||
RealESRGAN_model: "RealESRGAN_x4plus"
|
||||
LDSR_dir: "./src/latent-diffusion"
|
||||
outdir_txt2img: outputs/txt2img-samples
|
||||
outdir_img2img: outputs/img2img-samples
|
||||
upscaling_method: "RealESRGAN"
|
||||
outdir_txt2img: outputs/txt2img
|
||||
outdir_img2img: outputs/img2img
|
||||
gfpgan_cpu: False
|
||||
esrgan_cpu: False
|
||||
extra_models_cpu: False
|
||||
extra_models_gpu: False
|
||||
gfpgan_gpu: 0
|
||||
esrgan_gpu: 0
|
||||
save_metadata: True
|
||||
save_format: "png"
|
||||
skip_grid: False
|
||||
@ -34,7 +58,7 @@ general:
|
||||
optimized_turbo: False
|
||||
optimized_config: "optimizedSD/v1-inference.yaml"
|
||||
enable_attention_slicing: False
|
||||
enable_minimal_memory_usage : False
|
||||
enable_minimal_memory_usage: False
|
||||
update_preview: True
|
||||
update_preview_frequency: 10
|
||||
|
||||
@ -88,6 +112,7 @@ txt2img:
|
||||
save_as_jpg: False
|
||||
use_GFPGAN: False
|
||||
use_RealESRGAN: False
|
||||
use_LDSR: False
|
||||
RealESRGAN_model: "RealESRGAN_x4plus"
|
||||
|
||||
variant_amount:
|
||||
@ -101,7 +126,7 @@ txt2img:
|
||||
|
||||
txt2vid:
|
||||
default_model: "CompVis/stable-diffusion-v1-4"
|
||||
custom_models_list: ["CompVis/stable-diffusion-v1-4", "naclbit/trinart_stable_diffusion_v2", "hakurei/waifu-diffusion", "osanseviero/BigGAN-deep-128"]
|
||||
custom_models_list: ["CompVis/stable-diffusion-v1-4", "hakurei/waifu-diffusion"]
|
||||
prompt:
|
||||
width:
|
||||
value: 512
|
||||
@ -271,5 +296,21 @@ img2img:
|
||||
variant_seed: ""
|
||||
write_info_files: True
|
||||
|
||||
img2txt:
|
||||
batch_size: 420
|
||||
blip_image_eval_size: 512
|
||||
|
||||
concepts_library:
|
||||
concepts_per_page: 12
|
||||
|
||||
gfpgan:
|
||||
strength: 100
|
||||
|
||||
textual_inversion:
|
||||
pretrained_model_name_or_path: "models/ldm/stable-diffusion-v1-4"
|
||||
tokenizer_name: ""
|
||||
|
||||
|
||||
daisi_app:
|
||||
running_on_daisi_io: False
|
||||
|
26
daisi_app.py
Normal file
@ -0,0 +1,26 @@
|
||||
import os, subprocess
|
||||
import yaml
|
||||
|
||||
print (os.getcwd)
|
||||
|
||||
try:
|
||||
with open("environment.yaml") as file_handle:
|
||||
environment_data = yaml.load(file_handle, Loader=yaml.FullLoader)
|
||||
except FileNotFoundError:
|
||||
try:
|
||||
with open(os.path.join("..", "environment.yaml")) as file_handle:
|
||||
environment_data = yaml.load(file_handle, Loader=yaml.FullLoader)
|
||||
except:
|
||||
pass
|
||||
|
||||
try:
|
||||
for dependency in environment_data["dependencies"]:
|
||||
package_name, package_version = dependency.split("=")
|
||||
os.system("pip install {}=={}".format(package_name, package_version))
|
||||
except:
|
||||
pass
|
||||
|
||||
try:
|
||||
subprocess.run(['python', '-m', 'streamlit', "run" ,os.path.join("..","scripts/webui_streamlit.py"), "--theme.base dark"], stdout=subprocess.DEVNULL)
|
||||
except FileExistsError:
|
||||
subprocess.run(['python', '-m', 'streamlit', "run" ,"scripts/webui_streamlit.py", "--theme.base dark"], stdout=subprocess.DEVNULL)
|
10268
data/img2txt/artists.txt
Normal file
99800
data/img2txt/artstation/artstation_artists.txt
Normal file
0
data/img2txt/artstation/artstation_companies.txt
Normal file
49900
data/img2txt/artstation/artstation_links.txt
Normal file
0
data/img2txt/artstation/artstation_roles.txt
Normal file
0
data/img2txt/artstation/artstation_tags.txt
Normal file
397
data/img2txt/flavors.txt
Normal file
@ -0,0 +1,397 @@
|
||||
#film
|
||||
#myportfolio
|
||||
#pixelart
|
||||
#screenshotsaturday
|
||||
#vfxfriday
|
||||
1920s
|
||||
1970s
|
||||
1990s
|
||||
20 megapixels
|
||||
2d
|
||||
2d game art
|
||||
32k uhd
|
||||
35mm lens
|
||||
3840x2160
|
||||
3d
|
||||
4k
|
||||
8k
|
||||
8k 3d
|
||||
8k resolution
|
||||
I can't believe how beautiful this is
|
||||
academic art
|
||||
acrylic art
|
||||
adafruit
|
||||
aesthetic
|
||||
aftereffects
|
||||
airbrush art
|
||||
ambient occlusion
|
||||
ambrotype
|
||||
american propaganda
|
||||
anaglyph effect
|
||||
anaglyph filter
|
||||
anamorphic lens flare
|
||||
androgynous
|
||||
angelic photograph
|
||||
angular
|
||||
anime
|
||||
anime aesthetic
|
||||
antichrist
|
||||
apocalypse art
|
||||
apocalypse landscape
|
||||
art
|
||||
art deco
|
||||
art on instagram
|
||||
artstation hd
|
||||
artstation hq
|
||||
artwork
|
||||
associated press photo
|
||||
atmospheric
|
||||
award winning
|
||||
award-winning
|
||||
backlight
|
||||
beautiful
|
||||
behance hd
|
||||
bioluminescence
|
||||
biomorphic
|
||||
black and white
|
||||
black background
|
||||
blueprint
|
||||
bob ross
|
||||
bokeh
|
||||
booru
|
||||
bryce 3d
|
||||
calotype
|
||||
chalk art
|
||||
character
|
||||
charcoal drawing
|
||||
chiaroscuro
|
||||
childs drawing
|
||||
chillwave
|
||||
chromatic
|
||||
cinematic
|
||||
cinematic lighting
|
||||
cinematic view
|
||||
circuitry
|
||||
cityscape
|
||||
clean
|
||||
close up
|
||||
cluttered
|
||||
colorful
|
||||
colorized
|
||||
commission for
|
||||
complementary colors
|
||||
concept art
|
||||
concert poster
|
||||
congruent
|
||||
constructivism
|
||||
contest winner
|
||||
contrasting
|
||||
cosmic horror
|
||||
creative commons attribution
|
||||
creepypasta
|
||||
criterion collection
|
||||
cryengine
|
||||
cubism
|
||||
cyanotype
|
||||
d&d
|
||||
da vinci
|
||||
dark
|
||||
dark and mysterious
|
||||
darksynth
|
||||
datamosh
|
||||
daz3d
|
||||
dc comics
|
||||
demonic photograph
|
||||
depth of field
|
||||
destructive
|
||||
detailed
|
||||
detailed painting
|
||||
deviantart
|
||||
deviantart hd
|
||||
digital illustration
|
||||
digital painting
|
||||
digitally enhanced
|
||||
diorama
|
||||
dramatic
|
||||
dramatic lighting
|
||||
dslr
|
||||
dslr camera
|
||||
dutch golden age
|
||||
dye-transfer
|
||||
dynamic composition
|
||||
dynamic pose
|
||||
dystopian art
|
||||
egyptian art
|
||||
elegant
|
||||
elite
|
||||
enchanting
|
||||
epic
|
||||
ethereal
|
||||
extremely gendered
|
||||
fantasy
|
||||
fauvism
|
||||
feminine
|
||||
film grain
|
||||
filmic
|
||||
fine art
|
||||
fisheye lens
|
||||
flat colors
|
||||
flat shading
|
||||
flemish baroque
|
||||
flickering light
|
||||
flickr
|
||||
fractalism
|
||||
freakshow
|
||||
fresco
|
||||
full body
|
||||
full of details
|
||||
furaffinity
|
||||
future tech
|
||||
futuristic
|
||||
genderless
|
||||
geometric
|
||||
glitch art
|
||||
glitchy
|
||||
glitter
|
||||
global illumination
|
||||
glorious
|
||||
glowing lights
|
||||
glowing neon
|
||||
god rays
|
||||
golden ratio
|
||||
goth
|
||||
gothic
|
||||
greeble
|
||||
groovy
|
||||
grotesque
|
||||
hall of mirrors
|
||||
handsome
|
||||
hard surface modeling
|
||||
hd
|
||||
hd mod
|
||||
hdr
|
||||
hellish
|
||||
hellish background
|
||||
henry moore
|
||||
high contrast
|
||||
high definition
|
||||
high detail
|
||||
high detailed
|
||||
high dynamic range
|
||||
high quality
|
||||
high quality photo
|
||||
high resolution
|
||||
holographic
|
||||
horror film
|
||||
hyper realism
|
||||
hyper-realistic
|
||||
hypnotic
|
||||
ilford hp5
|
||||
ilya kuvshinov
|
||||
imax
|
||||
impressionism
|
||||
infrared
|
||||
ink drawing
|
||||
inspirational
|
||||
instax
|
||||
intricate
|
||||
intricate patterns
|
||||
iridescent
|
||||
irridescent
|
||||
iso 200
|
||||
isometric
|
||||
kinetic
|
||||
kodak ektar
|
||||
kodak gold 200
|
||||
kodak portra
|
||||
lighthearted
|
||||
logo
|
||||
lomo
|
||||
long exposure
|
||||
long lens
|
||||
lovecraftian
|
||||
lovely
|
||||
low contrast
|
||||
low poly
|
||||
lowbrow
|
||||
luminescence
|
||||
macabre
|
||||
macro lens
|
||||
macro photography
|
||||
made of all of the above
|
||||
made of beads and yarn
|
||||
made of cardboard
|
||||
made of cheese
|
||||
made of crystals
|
||||
made of feathers
|
||||
made of flowers
|
||||
made of glass
|
||||
made of insects
|
||||
made of liquid metal
|
||||
made of mist
|
||||
made of paperclips
|
||||
made of plastic
|
||||
made of rubber
|
||||
made of trash
|
||||
made of vines
|
||||
made of wire
|
||||
made of wrought iron
|
||||
majestic
|
||||
marble sculpture
|
||||
marvel comics
|
||||
masculine
|
||||
masterpiece
|
||||
matte background
|
||||
matte drawing
|
||||
matte painting
|
||||
matte photo
|
||||
maximalist
|
||||
messy
|
||||
minimalist
|
||||
minimalistic
|
||||
mist
|
||||
mixed media
|
||||
movie poster
|
||||
movie still
|
||||
multiple exposure
|
||||
muted
|
||||
mystical
|
||||
national geographic photo
|
||||
neon
|
||||
nightmare
|
||||
nightscape
|
||||
octane render
|
||||
official art
|
||||
oil on canvas
|
||||
ominous
|
||||
ominous vibe
|
||||
ornate
|
||||
orthogonal
|
||||
outlined art
|
||||
outrun
|
||||
painterly
|
||||
panorama
|
||||
parallax
|
||||
pencil sketch
|
||||
phallic
|
||||
photo
|
||||
photo taken with ektachrome
|
||||
photo taken with fujifilm superia
|
||||
photo taken with nikon d750
|
||||
photo taken with provia
|
||||
photocollage
|
||||
photocopy
|
||||
photoillustration
|
||||
photorealistic
|
||||
physically based rendering
|
||||
picasso
|
||||
pixel perfect
|
||||
pixiv
|
||||
playstation 5 screenshot
|
||||
polished
|
||||
polycount
|
||||
pop art
|
||||
post processing
|
||||
poster art
|
||||
pre-raphaelite
|
||||
prerendered graphics
|
||||
pretty
|
||||
provia
|
||||
ps1 graphics
|
||||
psychedelic
|
||||
quantum wavetracing
|
||||
ray tracing
|
||||
realism
|
||||
redshift
|
||||
reimagined by industrial light and magic
|
||||
renaissance painting
|
||||
rendered in cinema4d
|
||||
rendered in maya
|
||||
rendered in unreal engine
|
||||
repeating pattern
|
||||
retrowave
|
||||
rich color palette
|
||||
rim light
|
||||
rococo
|
||||
rough
|
||||
rtx
|
||||
rtx on
|
||||
sabattier effect
|
||||
sabattier filter
|
||||
sanctuary
|
||||
sci-fi
|
||||
seapunk
|
||||
sense of awe
|
||||
sensual
|
||||
shallow depth of field
|
||||
sharp focus
|
||||
shiny
|
||||
shiny eyes
|
||||
shot on 70mm
|
||||
sketchfab
|
||||
skeuomorphic
|
||||
smokey background
|
||||
smooth
|
||||
soft light
|
||||
soft mist
|
||||
soviet propaganda
|
||||
speedpainting
|
||||
stained glass
|
||||
steampunk
|
||||
stipple
|
||||
stock photo
|
||||
stockphoto
|
||||
storybook illustration
|
||||
strange
|
||||
streetscape
|
||||
studio light
|
||||
studio lighting
|
||||
studio photography
|
||||
studio portrait
|
||||
stylish
|
||||
sunrays shine upon it
|
||||
surrealist
|
||||
symmetrical
|
||||
synthwave
|
||||
tarot card
|
||||
tattoo
|
||||
telephoto lens
|
||||
terragen
|
||||
tesseract
|
||||
thx sound
|
||||
tilt shift
|
||||
tintype photograph
|
||||
toonami
|
||||
trance compilation cd
|
||||
trypophobia
|
||||
ue5
|
||||
uhd image
|
||||
ukiyo-e
|
||||
ultra detailed
|
||||
ultra hd
|
||||
ultra realistic
|
||||
ultrafine detail
|
||||
unreal engine
|
||||
unreal engine 5
|
||||
vaporwave
|
||||
velvia
|
||||
vibrant colors
|
||||
vivid colors
|
||||
volumetric lighting
|
||||
voxel art
|
||||
vray
|
||||
vray tracing
|
||||
wallpaper
|
||||
watercolor
|
||||
wavy
|
||||
whimsical
|
||||
white background
|
||||
wiccan
|
||||
wide lens
|
||||
wimmelbilder
|
||||
windows vista
|
||||
windows xp
|
||||
woodcut
|
||||
xbox 360 graphics
|
||||
y2k aesthetic
|
||||
zbrush
|
95
data/img2txt/mediums.txt
Normal file
@ -0,0 +1,95 @@
|
||||
a 3D render
|
||||
a black and white photo
|
||||
a bronze sculpture
|
||||
a cartoon
|
||||
a cave painting
|
||||
a character portrait
|
||||
a charcoal drawing
|
||||
a child's drawing
|
||||
a color pencil sketch
|
||||
a colorized photo
|
||||
a comic book panel
|
||||
a computer rendering
|
||||
a cross stitch
|
||||
a cubist painting
|
||||
a detailed drawing
|
||||
a detailed matte painting
|
||||
a detailed painting
|
||||
a diagram
|
||||
a digital painting
|
||||
a digital rendering
|
||||
a drawing
|
||||
a fine art painting
|
||||
a flemish Baroque
|
||||
a gouache
|
||||
a hologram
|
||||
a hyperrealistic painting
|
||||
a jigsaw puzzle
|
||||
a low poly render
|
||||
a macro photograph
|
||||
a manga drawing
|
||||
a marble sculpture
|
||||
a matte painting
|
||||
a microscopic photo
|
||||
a mid-nineteenth century engraving
|
||||
a minimalist painting
|
||||
a mosaic
|
||||
a painting
|
||||
a pastel
|
||||
a pencil sketch
|
||||
a photo
|
||||
a photocopy
|
||||
a photorealistic painting
|
||||
a picture
|
||||
a pointillism painting
|
||||
a polaroid photo
|
||||
a pop art painting
|
||||
a portrait
|
||||
a poster
|
||||
a raytraced image
|
||||
a renaissance painting
|
||||
a screenprint
|
||||
a screenshot
|
||||
a silk screen
|
||||
a sketch
|
||||
a statue
|
||||
a still life
|
||||
a stipple
|
||||
a stock photo
|
||||
a storybook illustration
|
||||
a surrealist painting
|
||||
a surrealist sculpture
|
||||
a tattoo
|
||||
a tilt shift photo
|
||||
a watercolor painting
|
||||
a wireframe diagram
|
||||
a woodcut
|
||||
an abstract drawing
|
||||
an abstract painting
|
||||
an abstract sculpture
|
||||
an acrylic painting
|
||||
an airbrush painting
|
||||
an album cover
|
||||
an ambient occlusion render
|
||||
an anime drawing
|
||||
an art deco painting
|
||||
an art deco sculpture
|
||||
an engraving
|
||||
an etching
|
||||
an illustration of
|
||||
an impressionist painting
|
||||
an ink drawing
|
||||
an oil on canvas painting
|
||||
an oil painting
|
||||
an ultrafine detailed painting
|
||||
chalk art
|
||||
computer graphics
|
||||
concept art
|
||||
cyberpunk art
|
||||
digital art
|
||||
egyptian art
|
||||
graffiti art
|
||||
lineart
|
||||
pixel art
|
||||
poster art
|
||||
vector art
|
200
data/img2txt/movements.txt
Normal file
@ -0,0 +1,200 @@
|
||||
abstract art
|
||||
abstract expressionism
|
||||
abstract illusionism
|
||||
academic art
|
||||
action painting
|
||||
aestheticism
|
||||
afrofuturism
|
||||
altermodern
|
||||
american barbizon school
|
||||
american impressionism
|
||||
american realism
|
||||
american romanticism
|
||||
american scene painting
|
||||
analytical art
|
||||
antipodeans
|
||||
arabesque
|
||||
arbeitsrat für kunst
|
||||
art & language
|
||||
art brut
|
||||
art deco
|
||||
art informel
|
||||
art nouveau
|
||||
art photography
|
||||
arte povera
|
||||
arts and crafts movement
|
||||
ascii art
|
||||
ashcan school
|
||||
assemblage
|
||||
australian tonalism
|
||||
auto-destructive art
|
||||
barbizon school
|
||||
baroque
|
||||
bauhaus
|
||||
bengal school of art
|
||||
berlin secession
|
||||
black arts movement
|
||||
brutalism
|
||||
classical realism
|
||||
cloisonnism
|
||||
cobra
|
||||
color field
|
||||
computer art
|
||||
conceptual art
|
||||
concrete art
|
||||
constructivism
|
||||
context art
|
||||
crayon art
|
||||
crystal cubism
|
||||
cubism
|
||||
cubo-futurism
|
||||
cynical realism
|
||||
dada
|
||||
danube school
|
||||
dau-al-set
|
||||
de stijl
|
||||
deconstructivism
|
||||
digital art
|
||||
ecological art
|
||||
environmental art
|
||||
excessivism
|
||||
expressionism
|
||||
fantastic realism
|
||||
fantasy art
|
||||
fauvism
|
||||
feminist art
|
||||
figuration libre
|
||||
figurative art
|
||||
figurativism
|
||||
fine art
|
||||
fluxus
|
||||
folk art
|
||||
funk art
|
||||
furry art
|
||||
futurism
|
||||
generative art
|
||||
geometric abstract art
|
||||
german romanticism
|
||||
gothic art
|
||||
graffiti
|
||||
gutai group
|
||||
happening
|
||||
harlem renaissance
|
||||
heidelberg school
|
||||
holography
|
||||
hudson river school
|
||||
hurufiyya
|
||||
hypermodernism
|
||||
hyperrealism
|
||||
impressionism
|
||||
incoherents
|
||||
institutional critique
|
||||
interactive art
|
||||
international gothic
|
||||
international typographic style
|
||||
kinetic art
|
||||
kinetic pointillism
|
||||
kitsch movement
|
||||
land art
|
||||
les automatistes
|
||||
les nabis
|
||||
letterism
|
||||
light and space
|
||||
lowbrow
|
||||
lyco art
|
||||
lyrical abstraction
|
||||
magic realism
|
||||
magical realism
|
||||
mail art
|
||||
mannerism
|
||||
massurrealism
|
||||
maximalism
|
||||
metaphysical painting
|
||||
mingei
|
||||
minimalism
|
||||
modern european ink painting
|
||||
modernism
|
||||
modular constructivism
|
||||
naive art
|
||||
naturalism
|
||||
neo-dada
|
||||
neo-expressionism
|
||||
neo-fauvism
|
||||
neo-figurative
|
||||
neo-primitivism
|
||||
neo-romanticism
|
||||
neoclassicism
|
||||
neogeo
|
||||
neoism
|
||||
neoplasticism
|
||||
net art
|
||||
new objectivity
|
||||
new sculpture
|
||||
northwest school
|
||||
nuclear art
|
||||
objective abstraction
|
||||
op art
|
||||
optical illusion
|
||||
orphism
|
||||
panfuturism
|
||||
paris school
|
||||
photorealism
|
||||
pixel art
|
||||
plasticien
|
||||
plein air
|
||||
pointillism
|
||||
pop art
|
||||
pop surrealism
|
||||
post-impressionism
|
||||
postminimalism
|
||||
pre-raphaelitism
|
||||
precisionism
|
||||
primitivism
|
||||
private press
|
||||
process art
|
||||
psychedelic art
|
||||
purism
|
||||
qajar art
|
||||
quito school
|
||||
rasquache
|
||||
rayonism
|
||||
realism
|
||||
regionalism
|
||||
remodernism
|
||||
renaissance
|
||||
retrofuturism
|
||||
rococo
|
||||
romanesque
|
||||
romanticism
|
||||
samikshavad
|
||||
serial art
|
||||
shin hanga
|
||||
shock art
|
||||
socialist realism
|
||||
sots art
|
||||
space art
|
||||
street art
|
||||
stuckism
|
||||
sumatraism
|
||||
superflat
|
||||
suprematism
|
||||
surrealism
|
||||
symbolism
|
||||
synchromism
|
||||
synthetism
|
||||
sōsaku hanga
|
||||
tachisme
|
||||
temporary art
|
||||
tonalism
|
||||
toyism
|
||||
transgressive art
|
||||
ukiyo-e
|
||||
underground comix
|
||||
unilalianism
|
||||
vancouver school
|
||||
vanitas
|
||||
verdadism
|
||||
video art
|
||||
viennese actionism
|
||||
visual art
|
||||
vorticism
|
18
data/img2txt/sites.txt
Normal file
@ -0,0 +1,18 @@
|
||||
Artstation
|
||||
behance
|
||||
cg society
|
||||
cgsociety
|
||||
deviantart
|
||||
dribble
|
||||
flickr
|
||||
instagram
|
||||
pexels
|
||||
pinterest
|
||||
pixabay
|
||||
pixiv
|
||||
polycount
|
||||
reddit
|
||||
shutterstock
|
||||
tumblr
|
||||
unsplash
|
||||
zbrush central
|
40
data/scn2img_examples/cat_at_beach.scn2img.md
Normal file
@ -0,0 +1,40 @@
|
||||
// blend it together and finish it with details
|
||||
prompt: cute happy orange cat sitting at beach, beach in background, trending on artstation:1 cute happy cat:1
|
||||
sampler_name:k_euler_a
|
||||
ddim_steps: 35
|
||||
denoising_strength: 0.55
|
||||
variation: 3
|
||||
initial_seed: 1
|
||||
|
||||
# put foreground onto background
|
||||
size: 512, 512
|
||||
color: 0,0,0
|
||||
|
||||
## create foreground
|
||||
size:512,512
|
||||
color:0,0,0,0
|
||||
resize: 300, 300
|
||||
pos: 256, 350
|
||||
|
||||
// select mask by probing some pixels from the image
|
||||
mask_by_color_at: 15, 15, 15, 256, 85, 465, 100, 480
|
||||
mask_by_color_threshold:80
|
||||
mask_by_color_space: HLS
|
||||
|
||||
// some pixels inside the cat may be selected, remove them with mask_open
|
||||
mask_open: 15
|
||||
|
||||
// there is still some background pixels left at the edge between cat and background
|
||||
// grow the mask to get them as well
|
||||
mask_grow: 15
|
||||
|
||||
// we want to remove whatever is masked:
|
||||
mask_invert: True
|
||||
|
||||
####
|
||||
prompt: cute happy orange cat, white background
|
||||
ddim_steps: 25
|
||||
variation: 1
|
||||
|
||||
## create background
|
||||
prompt:beach landscape, beach with ocean in background, photographic, beautiful:1 red:-0.4
|
50
data/scn2img_examples/corgi_3d_transformation.scn2img.md
Normal file
@ -0,0 +1,50 @@
|
||||
initial_seed: 2
|
||||
|
||||
// select background and img2img over it
|
||||
mask_by_color_at: 64, 64
|
||||
mask_invert: True
|
||||
|
||||
prompt: corgi
|
||||
ddim_steps: 50
|
||||
seed: 242886303
|
||||
|
||||
mask_mode: 0
|
||||
denoising_strength: 0.8
|
||||
//cfg_scale: 15
|
||||
mask_restore: True
|
||||
image_editor_mode:Mask
|
||||
|
||||
# estimate depth and transform the corgi in 3d
|
||||
transform3d: True
|
||||
transform3d_depth_near: 0.5
|
||||
transform3d_depth_scale: 10
|
||||
transform3d_from_hfov: 45
|
||||
transform3d_to_hfov: 45
|
||||
transform3d_from_pose: 0,0,0, 0,0,0
|
||||
transform3d_to_pose: 0.5,0,0, 0,-5,0
|
||||
transform3d_min_mask: 0
|
||||
transform3d_max_mask: 255
|
||||
transform3d_inpaint_radius: 1
|
||||
transform3d_inpaint_method: 0
|
||||
|
||||
## put foreground onto background
|
||||
size: 512, 512
|
||||
|
||||
|
||||
### create foreground
|
||||
size: 512, 512
|
||||
|
||||
mask_depth: True
|
||||
mask_depth_model: 1
|
||||
mask_depth_min: -0.05
|
||||
mask_depth_max: 0.5
|
||||
mask_depth_invert:False
|
||||
|
||||
####
|
||||
prompt: corgi
|
||||
ddim_steps: 25
|
||||
seed: 242886303
|
||||
|
||||
### background
|
||||
size: 512,512
|
||||
color: #9F978D
|
25
data/scn2img_examples/corgi_at_beach.scn2img.md
Normal file
@ -0,0 +1,25 @@
|
||||
// blend it together and finish it with some details
|
||||
prompt: cute corgi at beach, trending on artstation
|
||||
ddim_steps: 50
|
||||
denoising_strength: 0.5
|
||||
initial_seed: 2
|
||||
|
||||
# put foreground onto background
|
||||
size: 512, 512
|
||||
|
||||
## create foreground
|
||||
size: 512, 512
|
||||
|
||||
// estimate depth from image and select mask by depth
|
||||
// https://huggingface.co/spaces/atsantiago/Monocular_Depth_Filter
|
||||
mask_depth: True
|
||||
mask_depth_min: -0.05
|
||||
mask_depth_max: 0.4
|
||||
mask_depth_invert:False
|
||||
|
||||
###
|
||||
prompt: corgi
|
||||
ddim_steps: 25
|
||||
|
||||
## create background
|
||||
prompt:beach landscape, beach with ocean in background, photographic, beautiful:1 red:-0.4
|
34
data/scn2img_examples/corgi_at_beach_2.scn2img.md
Normal file
@ -0,0 +1,34 @@
|
||||
// give it some polish and details
|
||||
size: 512, 512
|
||||
prompt: cute corgi at beach, intricate details, photorealistic, trending on artstation
|
||||
variation: 0
|
||||
seed: 1360051694
|
||||
initial_seed: 5
|
||||
|
||||
# blend it together
|
||||
prompt: beautiful corgi:1.5 cute corgi at beach, trending on artstation:1 photorealistic:1.5
|
||||
ddim_steps: 50
|
||||
denoising_strength: 0.5
|
||||
variation: 0
|
||||
|
||||
## put foreground in front of background
|
||||
size: 512, 512
|
||||
|
||||
### select foreground
|
||||
size: 512, 512
|
||||
|
||||
// estimate depth from image and select mask by depth
|
||||
// https://huggingface.co/spaces/atsantiago/Monocular_Depth_Filter
|
||||
mask_depth: True
|
||||
mask_depth_min: -0.05
|
||||
mask_depth_max: 0.4
|
||||
mask_depth_invert:False
|
||||
|
||||
#### create foreground
|
||||
prompt: corgi
|
||||
ddim_steps: 25
|
||||
seed: 242886303
|
||||
|
||||
### create background
|
||||
prompt:beach landscape, beach with ocean in background, photographic, beautiful:1 red:-0.4
|
||||
variation: 3
|
37
data/scn2img_examples/landscape_3d.scn2img.md
Normal file
@ -0,0 +1,37 @@
|
||||
size: 512,512
|
||||
mask_blur: 6
|
||||
|
||||
prompt: fantasy landscape with castle and forest and waterfalls, trending on artstation
|
||||
denoising_strength: 0.6
|
||||
seed: 1
|
||||
image_editor_mode: Mask
|
||||
mask_mode: 0
|
||||
mask_restore: True
|
||||
|
||||
# mask the left which contains artifacts
|
||||
color: 255,255,255,0
|
||||
blend:multiply
|
||||
size: 100,512
|
||||
pos: 50,256
|
||||
|
||||
# mask the top-left which contains lots of artifacts
|
||||
color: 255,255,255,0
|
||||
blend:multiply
|
||||
size: 280,128
|
||||
pos: 128,64
|
||||
|
||||
# go forward and turn head left to look at the left waterfalls
|
||||
transform3d: True
|
||||
transform3d_depth_scale: 10000
|
||||
transform3d_from_hfov: 60
|
||||
transform3d_to_hfov: 60
|
||||
transform3d_from_pose: 0,0,0, 0,0,0
|
||||
transform3d_to_pose: 4000,0,2000, 0,-50,0
|
||||
transform3d_min_mask: 0
|
||||
transform3d_max_mask: 255
|
||||
transform3d_inpaint_radius: 5
|
||||
transform3d_inpaint_method: 1
|
||||
|
||||
##
|
||||
prompt: fantasy landscape with castle and forest and waterfalls, trending on artstation
|
||||
seed: 1
|
8
docker-compose.amd.yml
Normal file
@ -0,0 +1,8 @@
|
||||
services:
|
||||
stable-diffusion:
|
||||
build:
|
||||
args:
|
||||
PYTORCH_IMAGE: rocm/pytorch:rocm5.2.3_ubuntu20.04_py3.7_pytorch_1.12.1
|
||||
devices:
|
||||
- /dev/dri
|
||||
- /dev/kfd
|
10
docker-compose.override.yml
Normal file
@ -0,0 +1,10 @@
|
||||
# Nvidia specific config
|
||||
version: '3.3'
|
||||
|
||||
services:
|
||||
stable-diffusion:
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- capabilities: [ gpu ]
|
@ -1,3 +1,19 @@
|
||||
# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
# Copyright 2022 sd-webui team.
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
version: '3.3'
|
||||
|
||||
services:
|
||||
@ -12,6 +28,7 @@ services:
|
||||
- .:/sd
|
||||
- ./outputs:/sd/outputs
|
||||
- ./model_cache:/sd/model_cache
|
||||
- ~/.huggingface/token:/root/.huggingface/token
|
||||
- root_profile:/root
|
||||
ports:
|
||||
- '7860:7860'
|
||||
@ -21,11 +38,6 @@ services:
|
||||
interval: 30s
|
||||
timeout: 1s
|
||||
retries: 10
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- capabilities: [ gpu ]
|
||||
|
||||
volumes:
|
||||
root_profile:
|
||||
|
@ -1,4 +1,19 @@
|
||||
#!/bin/bash
|
||||
# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
# Copyright 2022 sd-webui team.
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
# Use this script to reset your Docker-based Stable Diffusion environment
|
||||
# This script will remove all cached files/models that are downloaded during your first startup
|
||||
|
||||
|
@ -19,7 +19,6 @@ You should have received a copy of the GNU Affero General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
-->
|
||||
|
||||
|
||||
# Initial Setup
|
||||
> This is a windows guide. [To install on Linux, see this page.](2.linux-installation.md)
|
||||
|
||||
@ -126,5 +125,4 @@ into the `/stable-diffusion-webui/src/gfpgan/experiments/pretrained_models` dire
|
||||
|
||||
|
||||
# Credits
|
||||
> Big thanks to Arkitecc#0339 from the Stable Diffusion discord for the original guide (support them [here](https://ko-fi.com/arkitecc)).
|
||||
> Modified by [Hafiidz](https://github.com/Hafiidz) with helps from sd-webui discord and team.
|
||||
|
@ -43,6 +43,19 @@ Other Notes:
|
||||
* "Optional" packages commonly used with Stable Diffusion WebUI workflows such as, RealESRGAN, GFPGAN, will be installed by default.
|
||||
* An older version of running Stable Diffusion WebUI using Docker exists here: https://github.com/sd-webui/stable-diffusion-webui/discussions/922
|
||||
|
||||
### But what about AMD?
|
||||
There is tentative support for AMD GPUs through docker which can be enabled via `docker-compose.amd.yml`,
|
||||
although this is still in the early stages. Right now, this _only_ works on native linux (not WSL2) due
|
||||
to issues with AMDs support of GPU passthrough. You also _must_ have ROCm drivers installed on the host.
|
||||
```
|
||||
docker compose -f docker-compose.yml -f docker-compose.amd.yml ...
|
||||
```
|
||||
or, by setting
|
||||
```
|
||||
export COMPOSE_FILE=docker-compose.yml:docker-compose.amd.yml
|
||||
```
|
||||
in your `.profile` or through a tool like `direnv`
|
||||
|
||||
|
||||
---
|
||||
|
20
docs/7.concepts-library.md
Normal file
@ -0,0 +1,20 @@
|
||||
<!--
|
||||
This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
Copyright 2022 sd-webui team.
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Affero General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Affero General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Affero General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
-->
|
||||
|
||||
|
||||
TBD
|
@ -1,4 +1,19 @@
|
||||
#!/bin/bash
|
||||
# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
# Copyright 2022 sd-webui team.
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Starts the webserver inside the docker container
|
||||
#
|
||||
@ -9,7 +24,21 @@ SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
|
||||
cd $SCRIPT_DIR
|
||||
export PYTHONPATH=$SCRIPT_DIR
|
||||
|
||||
MODEL_DIR="${SCRIPT_DIR}/model_cache"
|
||||
if [[ $PUBLIC_KEY ]]
|
||||
then
|
||||
mkdir -p ~/.ssh
|
||||
chmod 700 ~/.ssh
|
||||
cd ~/.ssh
|
||||
echo $PUBLIC_KEY >> authorized_keys
|
||||
chmod 700 -R ~/.ssh
|
||||
cd /
|
||||
service ssh start
|
||||
echo "SSH Service Started"
|
||||
fi
|
||||
|
||||
|
||||
MODEL_DIR="${SCRIPT_DIR}/user_data/model_cache"
|
||||
mkdir -p $MODEL_DIR
|
||||
# Array of model files to pre-download
|
||||
# local filename
|
||||
# local path in container (no trailing slash)
|
||||
@ -22,6 +51,17 @@ MODEL_FILES=(
|
||||
'RealESRGAN_x4plus_anime_6B.pth src/realesrgan/experiments/pretrained_models https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth f872d837d3c90ed2e05227bed711af5671a6fd1c9f7d7e91c911a61f155e99da'
|
||||
'project.yaml src/latent-diffusion/experiments/pretrained_models https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1 9d6ad53c5dafeb07200fb712db14b813b527edd262bc80ea136777bdb41be2ba'
|
||||
'model.ckpt src/latent-diffusion/experiments/pretrained_models https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1 c209caecac2f97b4bb8f4d726b70ac2ac9b35904b7fc99801e1f5e61f9210c13'
|
||||
'waifu-diffusion.ckpt models/custom https://huggingface.co/crumb/pruned-waifu-diffusion/resolve/main/model-pruned.ckpt 9b31355f90fea9933847175d4731a033f49f861395addc7e153f480551a24c25'
|
||||
'trinart.ckpt models/custom https://huggingface.co/naclbit/trinart_stable_diffusion_v2/resolve/main/trinart2_step95000.ckpt c1799d22a355ba25c9ceeb6e3c91fc61788c8e274b73508ae8a15877c5dbcf63'
|
||||
'model__base_caption.pth models/blip https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth 96ac8749bd0a568c274ebe302b3a3748ab9be614c737f3d8c529697139174086'
|
||||
'pytorch_model.bin models/clip-vit-large-patch14 https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/pytorch_model.bin f1a17cdbe0f36fec524f5cafb1c261ea3bbbc13e346e0f74fc9eb0460dedd0d3'
|
||||
'config.json models/clip-vit-large-patch14 https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/config.json 8a09b467700c58138c29d53c605b34ebc69beaadd13274a8a2af8ad2c2f4032a'
|
||||
'merges.txt models/clip-vit-large-patch14 https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/merges.txt 9fd691f7c8039210e0fced15865466c65820d09b63988b0174bfe25de299051a'
|
||||
'preprocessor_config.json models/clip-vit-large-patch14 https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/preprocessor_config.json 910e70b3956ac9879ebc90b22fb3bc8a75b6a0677814500101a4c072bd7857bd'
|
||||
'special_tokens_map.json models/clip-vit-large-patch14 https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/special_tokens_map.json f8c0d6c39aee3f8431078ef6646567b0aba7f2246e9c54b8b99d55c22b707cbf'
|
||||
'tokenizer.json models/clip-vit-large-patch14 https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/tokenizer.json a83e0809aa4c3af7208b2df632a7a69668c6d48775b3c3fe4e1b1199d1f8b8f4'
|
||||
'tokenizer_config.json models/clip-vit-large-patch14 https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/tokenizer_config.json deef455e52fa5e8151e339add0582e4235f066009601360999d3a9cda83b1129'
|
||||
'vocab.json models/clip-vit-large-patch14 https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/vocab.json 3f0c4f7d2086b61b38487075278ea9ed04edb53a03cbb045b86c27190fa8fb69'
|
||||
)
|
||||
|
||||
|
||||
@ -68,33 +108,30 @@ else
|
||||
validateDownloadModel ${model[0]} ${model[1]} ${model[2]} ${model[3]}
|
||||
fi
|
||||
done
|
||||
mkdir -p ${MODEL_DIR}/stable-diffusion-v1-4
|
||||
mkdir -p ${MODEL_DIR}/waifu-diffusion
|
||||
|
||||
ln -fs ${SCRIPT_DIR}/models/clip-vit-large-patch14/ ${MODEL_DIR}/stable-diffusion-v1-4/tokenizer
|
||||
ln -fs ${SCRIPT_DIR}/models/clip-vit-large-patch14/ ${MODEL_DIR}/waifu-diffusion/tokenizer
|
||||
fi
|
||||
|
||||
# Determine which webserver interface to launch (Streamlit vs Default: Gradio)
|
||||
if [[ ! -z $WEBUI_SCRIPT && $WEBUI_SCRIPT == "webui_streamlit.py" ]]; then
|
||||
launch_command="streamlit run scripts/${WEBUI_SCRIPT:-webui.py} $WEBUI_ARGS"
|
||||
if [[ -e "${MODEL_DIR}/sd-concepts-library" ]]; then
|
||||
cd ${MODEL_DIR}/sd-concepts-library
|
||||
git pull
|
||||
else
|
||||
launch_command="python scripts/${WEBUI_SCRIPT:-webui.py} $WEBUI_ARGS"
|
||||
cd ${MODEL_DIR}
|
||||
git clone https://github.com/sd-webui/sd-concepts-library
|
||||
fi
|
||||
mkdir -p ${SCRIPT_DIR}/models/custom
|
||||
ln -fs ${MODEL_DIR}/sd-concepts-library/sd-concepts-library ${SCRIPT_DIR}/models/custom
|
||||
|
||||
# Start webserver interface
|
||||
launch_message="Starting Stable Diffusion WebUI... ${launch_command}..."
|
||||
if [[ -z $WEBUI_RELAUNCH || $WEBUI_RELAUNCH == "true" ]]; then
|
||||
n=0
|
||||
while true; do
|
||||
echo $launch_message
|
||||
echo "export HF_HOME=${MODEL_DIR}" >> ~/.bashrc
|
||||
echo "export XDG_CACHE_HOME=${MODEL_DIR}" >> ~/.bashrc
|
||||
echo "export TRANSFORMERS_CACHE=${MODEL_DIR}" >> ~/.bashrc
|
||||
source ~/.bashrc
|
||||
cd $SCRIPT_DIR
|
||||
launch_command="streamlit run ${SCRIPT_DIR}/scripts/webui_streamlit.py"
|
||||
|
||||
if (( $n > 0 )); then
|
||||
echo "Relaunch count: ${n}"
|
||||
fi
|
||||
$launch_command
|
||||
|
||||
$launch_command
|
||||
|
||||
echo "entrypoint.sh: Process is ending. Relaunching in 0.5s..."
|
||||
((n++))
|
||||
sleep 0.5
|
||||
done
|
||||
else
|
||||
echo $launch_message
|
||||
$launch_command
|
||||
fi
|
||||
sleep infinity
|
||||
|
@ -1,7 +1,24 @@
|
||||
name: ldm
|
||||
# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
# Copyright 2022 sd-webui team.
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
channels:
|
||||
- pytorch
|
||||
- defaults
|
||||
# Psst. If you change a dependency, make sure it's mirrored in the docker requirement
|
||||
# files as well.
|
||||
dependencies:
|
||||
- cudatoolkit=11.3
|
||||
- git
|
||||
@ -11,39 +28,54 @@ dependencies:
|
||||
- pytorch=1.11.0
|
||||
- scikit-image=0.19.2
|
||||
- torchvision=0.12.0
|
||||
- loguru
|
||||
- pip:
|
||||
- -e .
|
||||
- -e git+https://github.com/CompVis/taming-transformers#egg=taming-transformers
|
||||
- -e git+https://github.com/openai/CLIP#egg=clip
|
||||
- -e git+https://github.com/TencentARC/GFPGAN#egg=GFPGAN
|
||||
- -e git+https://github.com/xinntao/Real-ESRGAN#egg=realesrgan
|
||||
- -e git+https://github.com/hlky/k-diffusion-sd#egg=k_diffusion
|
||||
- -e git+https://github.com/devilismyfriend/latent-diffusion#egg=latent-diffusion
|
||||
- accelerate==0.12.0
|
||||
- albumentations==0.4.3
|
||||
- basicsr>=1.3.4.0
|
||||
- diffusers==0.3.0
|
||||
- einops==0.3.0
|
||||
- einops==0.3.1
|
||||
- facexlib>=0.2.3
|
||||
- ftfy==6.1.1
|
||||
- fairscale==0.4.4
|
||||
- gradio==3.1.6
|
||||
- hydralit==1.0.14
|
||||
- hydralit_components==1.0.10
|
||||
- imageio-ffmpeg==0.4.2
|
||||
- imageio==2.9.0
|
||||
- kornia==0.6
|
||||
- omegaconf==2.1.1
|
||||
- opencv-python-headless==4.6.0.66
|
||||
- open-clip-torch==2.0.2
|
||||
- pandas==1.4.3
|
||||
- piexif==1.1.3
|
||||
- pycocotools==2.0.5
|
||||
- pycocoevalcap==1.2
|
||||
- pudb==2019.2
|
||||
- pynvml==11.4.1
|
||||
- python-slugify>=6.1.2
|
||||
- pytorch-lightning==1.4.2
|
||||
- retry>=0.9.2
|
||||
- streamlit==1.12.2
|
||||
- regex
|
||||
- realesrgan==0.3.0
|
||||
- streamlit==1.13.0
|
||||
- streamlit-on-Hover-tabs==1.0.1
|
||||
- streamlit-option-menu==0.3.2
|
||||
- streamlit_nested_layout
|
||||
- streamlit-server-state==0.14.2
|
||||
- streamlit-tensorboard==0.0.2
|
||||
- test-tube>=0.7.5
|
||||
- tensorboard
|
||||
- tensorboard==2.10.1
|
||||
- timm==0.6.7
|
||||
- torch-fidelity==0.3.0
|
||||
- torchmetrics==0.6.0
|
||||
- transformers==4.19.2
|
||||
- tensorflow==2.10.0
|
||||
- tqdm==4.64.0
|
||||
|
||||
|
@ -1,15 +0,0 @@
|
||||
# Optional packages commonly used with Stable Diffusion workflow
|
||||
|
||||
# Upscalers
|
||||
basicsr==1.4.2 # required by RealESRGAN
|
||||
gfpgan==1.3.8 # GFPGAN
|
||||
realesrgan==0.2.8 # RealESRGAN brings in GFPGAN as a requirement
|
||||
-e git+https://github.com/devilismyfriend/latent-diffusion#egg=latent-diffusion #ldsr
|
||||
|
||||
|
||||
# Orphaned Packages: No usage found
|
||||
#albumentations
|
||||
#imageio-ffmpeg
|
||||
#pudb
|
||||
#test-tube
|
||||
#torch-fidelity
|
@ -1,2 +0,0 @@
|
||||
# fix for #386
|
||||
* @altryne
|
@ -163,7 +163,7 @@ div[id*="111"]{
|
||||
align-self: center !important;
|
||||
}
|
||||
/* Selected tabs color */
|
||||
button, input, optgroup, select, textarea {color: #9c85fb;!important}
|
||||
button, input, optgroup, select, textarea {color: #9c85fb!important}
|
||||
|
||||
/* -or- text color wtf */
|
||||
.text-gray-300{
|
||||
|
@ -1,3 +1,20 @@
|
||||
/*
|
||||
This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
Copyright 2022 sd-webui team.
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Affero General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Affero General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Affero General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
.wrap .m-12 svg { display:none!important; }
|
||||
.wrap .m-12::before { content:"Loading..." }
|
||||
.progress-bar { display:none!important; }
|
||||
|
@ -1,15 +1,33 @@
|
||||
/*
|
||||
This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
Copyright 2022 sd-webui team.
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Affero General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Affero General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Affero General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/***********************************************************
|
||||
* Additional CSS for streamlit builtin components *
|
||||
************************************************************/
|
||||
|
||||
/* Tab name (e.g. Text-to-Image) */
|
||||
/* Tab name (e.g. Text-to-Image) //improve legibility*/
|
||||
button[data-baseweb="tab"] {
|
||||
font-size: 25px; //improve legibility
|
||||
font-size: 25px;
|
||||
}
|
||||
|
||||
/* Image Container (only appear after run finished) */
|
||||
/* Image Container (only appear after run finished)//center the image, especially better looks in wide screen */
|
||||
.css-du1fp8 {
|
||||
justify-content: center; //center the image, especially better looks in wide screen
|
||||
justify-content: center;
|
||||
}
|
||||
|
||||
/* Streamlit header */
|
||||
@ -17,18 +35,12 @@ button[data-baseweb="tab"] {
|
||||
background-color: transparent;
|
||||
}
|
||||
|
||||
/* Main streamlit container (below header) */
|
||||
/* Main streamlit container (below header) //reduce the empty spaces*/
|
||||
.css-18e3th9 {
|
||||
padding-top: 2rem; //reduce the empty spaces
|
||||
padding-top: 1rem;
|
||||
}
|
||||
|
||||
/* @media only for widescreen, to ensure enough space to see all */
|
||||
@media (min-width: 1024px) {
|
||||
/* Main streamlit container (below header) */
|
||||
.css-18e3th9 {
|
||||
padding-top: 0px; //reduce the empty spaces, can go fully to the top on widescreen devices
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/***********************************************************
|
||||
* Additional CSS for streamlit custom/3rd party components *
|
||||
@ -55,7 +67,7 @@ button[kind="header"] {
|
||||
/* display: none;*/ /*suggested behavior by streamlit hover components*/
|
||||
pointer-events: auto; /* enable interaction of the button even if parents intereaction disabled */
|
||||
}
|
||||
|
||||
|
||||
/* added to avoid main sectors (all element to the right of sidebar from) moving */
|
||||
section[data-testid="stSidebar"] {
|
||||
width: 3.5% !important;
|
||||
@ -91,7 +103,7 @@ button[kind="header"] {
|
||||
}
|
||||
|
||||
/***********************************************************
|
||||
* Additional CSS for other elements
|
||||
* Additional CSS for other elements
|
||||
************************************************************/
|
||||
button[data-baseweb="tab"] {
|
||||
font-size: 20px;
|
||||
@ -114,4 +126,21 @@ div.gallery:hover {
|
||||
text-align: center;
|
||||
position: relative;
|
||||
top: 6px;
|
||||
}
|
||||
}
|
||||
|
||||
.row-widget.stButton {
|
||||
text-align: center;
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
Hide anchor links on titles
|
||||
*********************************************************************/
|
||||
.css-15zrgzn {
|
||||
display: none
|
||||
}
|
||||
.css-eczf16 {
|
||||
display: none
|
||||
}
|
||||
.css-jn99sy {
|
||||
display: none
|
||||
}
|
@ -1,3 +1,20 @@
|
||||
/*
|
||||
This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
Copyright 2022 sd-webui team.
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Affero General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Affero General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Affero General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
[data-testid="image"] {min-height: 512px !important}
|
||||
* #body>.col:nth-child(2){
|
||||
width:250%;
|
||||
@ -36,14 +53,14 @@ input[type=number]:disabled { -moz-appearance: textfield; }
|
||||
height: auto;
|
||||
}
|
||||
|
||||
#highlight{
|
||||
[id$="highlight"]{
|
||||
font-size: 1.2rem
|
||||
}
|
||||
#highlight .uppercase{
|
||||
[id$="highlight"] .uppercase{
|
||||
text-transform: initial;
|
||||
|
||||
}
|
||||
#highlight .textfield .textspan:nth-child(1){
|
||||
[id$="highlight"] .textfield .textspan:nth-child(1){
|
||||
font-size: 1.2rem
|
||||
}
|
||||
|
||||
@ -70,4 +87,4 @@ input[type=number]:disabled { -moz-appearance: textfield; }
|
||||
}
|
||||
/* fix buttons layouts */
|
||||
|
||||
}
|
||||
}
|
||||
|
@ -1,3 +1,18 @@
|
||||
# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
# Copyright 2022 sd-webui team.
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
from os import path
|
||||
import json
|
||||
|
||||
@ -12,7 +27,6 @@ def readTextFile(*args):
|
||||
|
||||
def css(opt):
|
||||
styling = readTextFile("css", "styles.css")
|
||||
# TODO: @altryne restore this before merge
|
||||
if not opt.no_progressbar_hiding:
|
||||
styling += readTextFile("css", "no_progress_bar.css")
|
||||
return styling
|
||||
@ -24,62 +38,6 @@ def js(opt):
|
||||
return data
|
||||
|
||||
|
||||
# TODO : @altryne fix this to the new JS format
|
||||
js_copy_txt2img_output = "(x) => {navigator.clipboard.writeText(document.querySelector('gradio-app').shadowRoot.querySelector('#highlight .textfield').textContent.replace(/\s+/g,' ').replace(/: /g,':'))}"
|
||||
|
||||
|
||||
|
||||
js_parse_prompt ="""
|
||||
(txt2img_prompt, txt2img_width, txt2img_height, txt2img_steps, txt2img_seed, txt2img_batch_count, txt2img_cfg) => {
|
||||
|
||||
const prompt_input = document.querySelector('gradio-app').shadowRoot.querySelector('#prompt_input [data-testid="textbox"]');
|
||||
const multiline = document.querySelector('gradio-app').shadowRoot.querySelector('#submit_on_enter label:nth-child(2)')
|
||||
if (prompt_input.scrollWidth > prompt_input.clientWidth + 10 ) {
|
||||
multiline.click();
|
||||
}
|
||||
|
||||
|
||||
let height_match = /(?:-h|-H|--height|height)[ :]?(?<height>\d+) /.exec(txt2img_prompt);
|
||||
if (height_match) {
|
||||
txt2img_height = Math.round(height_match.groups.height / 64) * 64;
|
||||
txt2img_prompt = txt2img_prompt.replace(height_match[0], '');
|
||||
}
|
||||
let width_match = /(?:-w|-W|--width|width)[ :]?(?<width>\d+) /.exec(txt2img_prompt);
|
||||
if (width_match) {
|
||||
txt2img_width = Math.round(width_match.groups.width / 64) * 64;
|
||||
txt2img_prompt = txt2img_prompt.replace(width_match[0], '');
|
||||
}
|
||||
let steps_match = /(?:-s|--steps|steps)[ :]?(?<steps>\d+) /.exec(txt2img_prompt);
|
||||
if (steps_match) {
|
||||
txt2img_steps = steps_match.groups.steps.trim();
|
||||
txt2img_prompt = txt2img_prompt.replace(steps_match[0], '');
|
||||
}
|
||||
let seed_match = /(?:-S|--seed|seed)[ :]?(?<seed>\d+) /.exec(txt2img_prompt);
|
||||
if (seed_match) {
|
||||
txt2img_seed = seed_match.groups.seed;
|
||||
txt2img_prompt = txt2img_prompt.replace(seed_match[0], '');
|
||||
}
|
||||
let batch_count_match = /(?:-n|-N|--number|number)[ :]?(?<batch_count>\d+) /.exec(txt2img_prompt);
|
||||
if (batch_count_match) {
|
||||
txt2img_batch_count = batch_count_match.groups.batch_count;
|
||||
txt2img_prompt = txt2img_prompt.replace(batch_count_match[0], '');
|
||||
}
|
||||
let cfg_scale_match = /(?:-c|-C|--cfg-scale|cfg_scale|cfg)[ :]?(?<cfgscale>\d\.?\d+?) /.exec(txt2img_prompt);
|
||||
if (cfg_scale_match) {
|
||||
txt2img_cfg = parseFloat(cfg_scale_match.groups.cfgscale).toFixed(1);
|
||||
txt2img_prompt = txt2img_prompt.replace(cfg_scale_match[0], '');
|
||||
}
|
||||
let sampler_match = /(?:-A|--sampler|sampler)[ :]?(?<sampler>\w+) /.exec(txt2img_prompt);
|
||||
if (sampler_match) {
|
||||
|
||||
txt2img_prompt = txt2img_prompt.replace(sampler_match[0], '');
|
||||
}
|
||||
|
||||
return [txt2img_prompt, parseInt(txt2img_width), parseInt(txt2img_height), parseInt(txt2img_steps), txt2img_seed, parseInt(txt2img_batch_count), parseFloat(txt2img_cfg)];
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
# Wrap the typical SD method call into async closure for ease of use
|
||||
# Supplies the js function with a params object
|
||||
# That includes all the passed arguments and input from Gradio: x
|
||||
|
1
frontend/dists/sd-gallery/dist/assets/index.4194368f.css
vendored
Normal file
216
frontend/dists/sd-gallery/dist/assets/index.aeaed602.js
vendored
Normal file
BIN
frontend/dists/sd-gallery/dist/assets/lg.22b72ba5.ttf
vendored
Normal file
54
frontend/dists/sd-gallery/dist/assets/lg.f2fe1c00.svg
vendored
Normal file
@ -0,0 +1,54 @@
|
||||
<?xml version="1.0" standalone="no"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd" >
|
||||
<svg xmlns="http://www.w3.org/2000/svg">
|
||||
<metadata>
|
||||
<json>
|
||||
<![CDATA[
|
||||
{
|
||||
"fontFamily": "lg",
|
||||
"majorVersion": 2,
|
||||
"minorVersion": 0,
|
||||
"fontURL": "",
|
||||
"copyright": "",
|
||||
"license": "",
|
||||
"licenseURL": "",
|
||||
"description": "Font generated by IcoMoon.",
|
||||
"version": "Version 2.0",
|
||||
"fontId": "lg",
|
||||
"psName": "lg",
|
||||
"subFamily": "Regular",
|
||||
"fullName": "lg"
|
||||
}
|
||||
]]>
|
||||
</json>
|
||||
</metadata>
|
||||
<defs>
|
||||
<font id="lg" horiz-adv-x="1024">
|
||||
<font-face units-per-em="1024" ascent="960" descent="-64" />
|
||||
<missing-glyph horiz-adv-x="1024" />
|
||||
<glyph unicode=" " horiz-adv-x="512" d="" />
|
||||
<glyph unicode="" glyph-name="pause_circle_outline" data-tags="pause_circle_outline" d="M554 256.667v340h86v-340h-86zM512 84.667q140 0 241 101t101 241-101 241-241 101-241-101-101-241 101-241 241-101zM512 852.667q176 0 301-125t125-301-125-301-301-125-301 125-125 301 125 301 301 125zM384 256.667v340h86v-340h-86z" />
|
||||
<glyph unicode="" glyph-name="play_circle_outline" data-tags="play_circle_outline" d="M512 84.667q140 0 241 101t101 241-101 241-241 101-241-101-101-241 101-241 241-101zM512 852.667q176 0 301-125t125-301-125-301-301-125-301 125-125 301 125 301 301 125zM426 234.667v384l256-192z" />
|
||||
<glyph unicode="" glyph-name="stack-2" data-tags="stack-2" d="M384 853.334h426.667q53 0 90.5-37.5t37.5-90.5v-426.667q0-53-37.5-90.5t-90.5-37.5h-426.667q-53 0-90.5 37.5t-37.5 90.5v426.667q0 53 37.5 90.5t90.5 37.5zM170.667 675.334v-547.333q0-17.667 12.5-30.167t30.167-12.5h547.333q-13.333-37.667-46.333-61.5t-74.333-23.833h-426.667q-53 0-90.5 37.5t-37.5 90.5v426.667q0 41.333 23.833 74.333t61.5 46.333zM810.667 768h-426.667q-17.667 0-30.167-12.5t-12.5-30.167v-426.667q0-17.667 12.5-30.167t30.167-12.5h426.667q17.667 0 30.167 12.5t12.5 30.167v426.667q0 17.667-12.5 30.167t-30.167 12.5z" />
|
||||
<glyph unicode="" glyph-name="clear" data-tags="clear" d="M810 664.667l-238-238 238-238-60-60-238 238-238-238-60 60 238 238-238 238 60 60 238-238 238 238z" />
|
||||
<glyph unicode="" glyph-name="arrow-left" data-tags="arrow-left" d="M426.667 768q17.667 0 30.167-12.5t12.5-30.167q0-18-12.667-30.333l-225.667-225.667h665q17.667 0 30.167-12.5t12.5-30.167-12.5-30.167-30.167-12.5h-665l225.667-225.667q12.667-12.333 12.667-30.333 0-17.667-12.5-30.167t-30.167-12.5q-18 0-30.333 12.333l-298.667 298.667q-12.333 13-12.333 30.333t12.333 30.333l298.667 298.667q12.667 12.333 30.333 12.333z" />
|
||||
<glyph unicode="" glyph-name="arrow-right" data-tags="arrow-right" d="M597.333 768q18 0 30.333-12.333l298.667-298.667q12.333-12.333 12.333-30.333t-12.333-30.333l-298.667-298.667q-12.333-12.333-30.333-12.333-18.333 0-30.5 12.167t-12.167 30.5q0 18 12.333 30.333l226 225.667h-665q-17.667 0-30.167 12.5t-12.5 30.167 12.5 30.167 30.167 12.5h665l-226 225.667q-12.333 12.333-12.333 30.333 0 18.333 12.167 30.5t30.5 12.167z" />
|
||||
<glyph unicode="" glyph-name="vertical_align_bottom" data-tags="vertical_align_bottom" d="M170 128.667h684v-86h-684v86zM682 384.667l-170-172-170 172h128v426h84v-426h128z" />
|
||||
<glyph unicode="" glyph-name="apps" data-tags="apps" d="M682 84.667v172h172v-172h-172zM682 340.667v172h172v-172h-172zM426 596.667v172h172v-172h-172zM682 768.667h172v-172h-172v172zM426 340.667v172h172v-172h-172zM170 340.667v172h172v-172h-172zM170 84.667v172h172v-172h-172zM426 84.667v172h172v-172h-172zM170 596.667v172h172v-172h-172z" />
|
||||
<glyph unicode="" glyph-name="fullscreen" data-tags="fullscreen" d="M598 724.667h212v-212h-84v128h-128v84zM726 212.667v128h84v-212h-212v84h128zM214 512.667v212h212v-84h-128v-128h-84zM298 340.667v-128h128v-84h-212v212h84z" />
|
||||
<glyph unicode="" glyph-name="fullscreen_exit" data-tags="fullscreen_exit" d="M682 596.667h128v-84h-212v212h84v-128zM598 128.667v212h212v-84h-128v-128h-84zM342 596.667v128h84v-212h-212v84h128zM214 256.667v84h212v-212h-84v128h-128z" />
|
||||
<glyph unicode="" glyph-name="zoom_in" data-tags="zoom_in" d="M512 512.667h-86v-86h-42v86h-86v42h86v86h42v-86h86v-42zM406 340.667q80 0 136 56t56 136-56 136-136 56-136-56-56-136 56-136 136-56zM662 340.667l212-212-64-64-212 212v34l-12 12q-76-66-180-66-116 0-197 80t-81 196 81 197 197 81 196-81 80-197q0-104-66-180l12-12h34z" />
|
||||
<glyph unicode="" glyph-name="zoom_out" data-tags="zoom_out" d="M298 554.667h214v-42h-214v42zM406 340.667q80 0 136 56t56 136-56 136-136 56-136-56-56-136 56-136 136-56zM662 340.667l212-212-64-64-212 212v34l-12 12q-76-66-180-66-116 0-197 80t-81 196 81 197 197 81 196-81 80-197q0-104-66-180l12-12h34z" />
|
||||
<glyph unicode="" glyph-name="share" data-tags="share" d="M768 252.667c68 0 124-56 124-124s-56-126-124-126-124 58-124 126c0 10 0 20 2 28l-302 176c-24-22-54-34-88-34-70 0-128 58-128 128s58 128 128 128c34 0 64-12 88-34l300 174c-2 10-4 20-4 30 0 70 58 128 128 128s128-58 128-128-58-128-128-128c-34 0-64 14-88 36l-300-176c2-10 4-20 4-30s-2-20-4-30l304-176c22 20 52 32 84 32z" />
|
||||
<glyph unicode="" glyph-name="rotate_left" data-tags="rotate_left" d="M554 764.667q126-16 213-112t87-226-87-226-213-112v86q92 16 153 87t61 165-61 165-153 87v-166l-194 190 194 194v-132zM302 156.667l62 62q46-34 106-44v-86q-96 12-168 68zM260 384.667q10-58 42-106l-60-60q-56 74-68 166h86zM304 574.667q-36-52-44-106h-86q12 90 70 166z" />
|
||||
<glyph unicode="" glyph-name="rotate_right" data-tags="rotate_right" d="M720 278.667q34 46 44 106h86q-12-92-68-166zM554 174.667q60 10 106 44l62-62q-72-56-168-68v86zM850 468.667h-86q-10 60-44 106l62 60q58-72 68-166zM664 702.667l-194-190v166q-92-16-153-87t-61-165 61-165 153-87v-86q-126 16-213 112t-87 226 87 226 213 112v132z" />
|
||||
<glyph unicode="" glyph-name="swap_horiz" data-tags="swap_horiz" d="M896 554.667l-170-170v128h-300v84h300v128zM298 468.667v-128h300v-84h-300v-128l-170 170z" />
|
||||
<glyph unicode="" glyph-name="swap_vert" data-tags="swap_vert" d="M384 810.667l170-170h-128v-300h-84v300h-128zM682 212.667h128l-170-170-170 170h128v300h84v-300z" />
|
||||
<glyph unicode="" glyph-name="facebook-with-circle" data-tags="facebook-with-circle" d="M512 952.32c-271.462 0-491.52-220.058-491.52-491.52s220.058-491.52 491.52-491.52 491.52 220.058 491.52 491.52-220.058 491.52-491.52 491.52zM628.429 612.659h-73.882c-8.755 0-18.483-11.52-18.483-26.829v-53.35h92.416l-13.978-76.083h-78.438v-228.403h-87.194v228.403h-79.104v76.083h79.104v44.749c0 64.205 44.544 116.378 105.677 116.378h73.882v-80.947z" />
|
||||
<glyph unicode="" glyph-name="google-with-circle" data-tags="google+-with-circle" d="M512 952.32c-271.462 0-491.52-220.058-491.52-491.52s220.058-491.52 491.52-491.52 491.52 220.058 491.52 491.52-220.058 491.52-491.52 491.52zM483.686 249.805c-30.874-15.002-64.102-16.589-76.954-16.589-2.458 0-3.84 0-3.84 0s-1.178 0-2.765 0c-20.070 0-119.962 4.608-119.962 95.59 0 89.395 108.8 96.41 142.131 96.41h0.87c-19.251 25.702-15.258 51.61-15.258 51.61-1.69-0.102-4.147-0.205-7.168-0.205-12.544 0-36.762 1.997-57.549 15.411-25.498 16.384-38.4 44.288-38.4 82.893 0 109.107 119.142 113.51 120.32 113.613h118.989v-2.611c0-13.312-23.91-15.923-40.192-18.125-5.53-0.819-16.64-1.894-19.763-3.482 30.157-16.128 35.021-41.421 35.021-79.104 0-42.906-16.794-65.587-34.611-81.51-11.059-9.882-19.712-17.613-19.712-28.006 0-10.189 11.878-20.582 25.702-32.717 22.579-19.917 53.555-47.002 53.555-92.723 0-47.258-20.326-81.050-60.416-100.454zM742.4 460.8h-76.8v-76.8h-51.2v76.8h-76.8v51.2h76.8v76.8h51.2v-76.8h76.8v-51.2zM421.018 401.92c-2.662 0-5.325-0.102-8.038-0.307-22.733-1.69-43.725-10.189-58.88-24.013-15.053-13.619-22.733-30.822-21.658-48.179 2.304-36.403 41.37-57.702 88.832-54.323 46.694 3.379 77.824 30.31 75.571 66.714-2.15 34.202-31.898 60.109-75.827 60.109zM465.766 599.808c-12.39 43.52-32.358 56.422-63.386 56.422-3.328 0-6.707-0.512-9.933-1.382-13.466-3.84-24.166-15.053-30.106-31.744-6.093-16.896-6.451-34.509-1.229-54.579 9.472-35.891 34.97-61.901 60.672-61.901 3.379 0 6.758 0.41 9.933 1.382 28.109 7.885 45.722 50.79 34.048 91.802z" />
|
||||
<glyph unicode="" glyph-name="pinterest-with-circle" data-tags="pinterest-with-circle" d="M512 952.32c-271.462 0-491.52-220.058-491.52-491.52s220.058-491.52 491.52-491.52 491.52 220.058 491.52 491.52-220.058 491.52-491.52 491.52zM545.638 344.32c-31.539 2.406-44.749 18.022-69.427 32.973-13.568-71.219-30.157-139.52-79.309-175.206-15.206 107.725 22.221 188.518 39.629 274.381-29.645 49.92 3.533 150.323 66.099 125.645 76.954-30.515-66.662-185.6 29.747-205.005 100.659-20.173 141.773 174.694 79.36 237.978-90.214 91.494-262.502 2.099-241.306-128.87 5.12-32 38.246-41.728 13.21-85.914-57.702 12.8-74.957 58.317-72.704 118.989 3.533 99.328 89.242 168.909 175.155 178.483 108.698 12.083 210.688-39.885 224.819-142.182 15.821-115.405-49.101-240.282-165.274-231.27z" />
|
||||
<glyph unicode="" glyph-name="twitter-with-circle" data-tags="twitter-with-circle" d="M512 952.32c-271.462 0-491.52-220.058-491.52-491.52s220.058-491.52 491.52-491.52 491.52 220.058 491.52 491.52-220.058 491.52-491.52 491.52zM711.936 549.683c0.205-4.198 0.256-8.397 0.256-12.493 0-128-97.331-275.507-275.405-275.507-54.682 0-105.574 15.974-148.378 43.52 7.526-0.922 15.258-1.28 23.091-1.28 45.363 0 87.091 15.411 120.218 41.421-42.342 0.819-78.080 28.774-90.419 67.174 5.888-1.075 11.93-1.69 18.176-1.69 8.806 0 17.408 1.178 25.498 3.379-44.288 8.909-77.67 48.026-77.67 94.925v1.178c13.056-7.219 28.006-11.622 43.878-12.134-26.010 17.408-43.059 47.002-43.059 80.64 0 17.715 4.762 34.406 13.107 48.691 47.77-58.573 119.040-97.075 199.526-101.222-1.69 7.117-2.509 14.49-2.509 22.118 0 53.402 43.315 96.819 96.819 96.819 27.802 0 52.992-11.776 70.656-30.618 22.067 4.403 42.752 12.39 61.44 23.501-7.219-22.579-22.528-41.574-42.547-53.606 19.61 2.406 38.246 7.578 55.603 15.309-12.954-19.405-29.389-36.506-48.282-50.125z" />
|
||||
<glyph unicode="" glyph-name="message-circle" data-tags="message-circle" d="M938.667 448.128v21.205c0 0.725-0.043 1.621-0.085 2.475-5.803 99.755-47.488 190.336-112.725 258.176-68.352 71.125-162.731 117.419-268.843 123.264-0.683 0.043-1.536 0.085-2.347 0.085h-20.864c-59.947 0.683-122.965-13.227-181.931-43.008-52.181-26.496-97.749-63.488-133.931-108.16-56.405-69.717-89.899-158.080-89.941-253.696-0.597-54.4 10.795-111.36 35.157-165.419l-75.605-226.859c-2.816-8.363-3.072-17.835 0-26.965 7.467-22.357 31.616-34.432 53.973-26.965l226.731 75.563c49.493-22.485 105.984-35.243 165.376-35.115 58.539 0.384 115.797 13.141 168.149 36.949 81.579 37.163 151.040 101.248 193.749 186.667 27.477 53.291 43.307 115.84 43.136 181.803zM853.333 447.872c0.128-52.267-12.459-101.333-33.664-142.464-34.176-68.352-88.832-118.827-153.259-148.139-41.387-18.859-86.827-28.971-133.376-29.269-52.096-0.128-101.163 12.459-142.293 33.664-10.624 5.504-22.528 6.059-33.067 2.56l-162.261-54.101 54.101 162.261c3.755 11.221 2.56 22.912-2.389 32.725-23.552 46.677-34.304 96.171-33.792 142.421 0.043 76.331 26.411 145.92 70.955 200.917 28.629 35.371 64.768 64.725 106.24 85.76 46.592 23.552 96.085 34.304 142.336 33.792h19.456c83.712-4.565 158.037-41.003 212.011-97.152 51.285-53.376 84.139-124.416 89.003-202.795z" />
|
||||
<glyph unicode="" glyph-name="maximize-2" data-tags="maximize-2" d="M793.003 768l-225.835-225.835c-16.683-16.683-16.683-43.691 0-60.331s43.691-16.683 60.331 0l225.835 225.835v-153.003c0-23.552 19.115-42.667 42.667-42.667s42.667 19.115 42.667 42.667v256c0 5.803-1.152 11.307-3.243 16.341s-5.163 9.728-9.216 13.781c-0.043 0.043-0.043 0.043-0.085 0.085-3.925 3.925-8.619 7.083-13.781 9.216-5.035 2.091-10.539 3.243-16.341 3.243h-256c-23.552 0-42.667-19.115-42.667-42.667s19.115-42.667 42.667-42.667zM230.997 85.334l225.835 225.835c16.683 16.683 16.683 43.691 0 60.331s-43.691 16.683-60.331 0l-225.835-225.835v153.003c0 23.552-19.115 42.667-42.667 42.667s-42.667-19.115-42.667-42.667v-256c0-23.552 19.115-42.667 42.667-42.667h256c23.552 0 42.667 19.115 42.667 42.667s-19.115 42.667-42.667 42.667z" />
|
||||
<glyph unicode="" glyph-name="minimize-2" data-tags="minimize-2" d="M700.331 554.667l225.835 225.835c16.683 16.683 16.683 43.691 0 60.331s-43.691 16.683-60.331 0l-225.835-225.835v153.003c0 23.552-19.115 42.667-42.667 42.667s-42.667-19.115-42.667-42.667v-256c0-5.803 1.152-11.307 3.243-16.341s5.163-9.728 9.216-13.781c0.043-0.043 0.043-0.043 0.085-0.085 3.925-3.925 8.619-7.083 13.781-9.216 5.035-2.091 10.539-3.243 16.341-3.243h256c23.552 0 42.667 19.115 42.667 42.667s-19.115 42.667-42.667 42.667zM158.165 12.502l225.835 225.835v-153.003c0-23.552 19.115-42.667 42.667-42.667s42.667 19.115 42.667 42.667v256c0 5.803-1.152 11.307-3.243 16.341s-5.163 9.728-9.216 13.781c-0.043 0.043-0.043 0.043-0.085 0.085-4.096 4.053-8.789 7.125-13.781 9.216-5.035 2.091-10.539 3.243-16.341 3.243h-256c-23.552 0-42.667-19.115-42.667-42.667s19.115-42.667 42.667-42.667h153.003l-225.835-225.835c-16.683-16.683-16.683-43.691 0-60.331s43.691-16.683 60.331 0z" />
|
||||
</font></defs></svg>
|
After Width: | Height: | Size: 12 KiB |
BIN
frontend/dists/sd-gallery/dist/assets/lg.fefc5c0d.woff
vendored
Normal file
BIN
frontend/dists/sd-gallery/dist/assets/loading.298ad3ff.gif
vendored
Normal file
After Width: | Height: | Size: 4.1 KiB |
13
frontend/dists/sd-gallery/dist/index.html
vendored
Normal file
@ -0,0 +1,13 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<title>Component Template</title>
|
||||
<script type="module" crossorigin src="assets/index.aeaed602.js"></script>
|
||||
<link rel="stylesheet" href="assets/index.4194368f.css">
|
||||
</head>
|
||||
<body>
|
||||
<div id="app"></div>
|
||||
|
||||
</body>
|
||||
</html>
|
@ -1,18 +1,34 @@
|
||||
# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
# Copyright 2022 sd-webui team.
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
import gradio as gr
|
||||
from frontend.css_and_js import css, js, call_JS, js_parse_prompt, js_copy_txt2img_output
|
||||
from frontend.css_and_js import css, js, call_JS
|
||||
from frontend.job_manager import JobManager
|
||||
import frontend.ui_functions as uifn
|
||||
import uuid
|
||||
import torch
|
||||
import os
|
||||
|
||||
|
||||
|
||||
def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x, imgproc=lambda x: x, txt2img_defaults={},
|
||||
RealESRGAN=True, GFPGAN=True, LDSR=True,
|
||||
def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x, imgproc=lambda x: x, scn2img=lambda x: x,
|
||||
txt2img_defaults={}, RealESRGAN=True, GFPGAN=True, LDSR=True,
|
||||
txt2img_toggles={}, txt2img_toggle_defaults='k_euler', show_embeddings=False, img2img_defaults={},
|
||||
img2img_toggles={}, img2img_toggle_defaults={}, sample_img2img=None, img2img_mask_modes=None,
|
||||
img2img_resize_modes=None, imgproc_defaults={}, imgproc_mode_toggles={}, user_defaults={},
|
||||
run_GFPGAN=lambda x: x, run_RealESRGAN=lambda x: x,
|
||||
img2img_resize_modes=None, imgproc_defaults={}, imgproc_mode_toggles={},
|
||||
scn2img_defaults={}, scn2img_toggles={}, scn2img_toggle_defaults={}, scn2img_define_args=lambda: ({},{},{}),
|
||||
user_defaults={}, run_GFPGAN=lambda x: x, run_RealESRGAN=lambda x: x,
|
||||
job_manager: JobManager = None) -> gr.Blocks:
|
||||
with gr.Blocks(css=css(opt), analytics_enabled=False, title="Stable Diffusion WebUI") as demo:
|
||||
with gr.Tabs(elem_id='tabss') as tabs:
|
||||
@ -69,17 +85,26 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x, imgproc=lambda
|
||||
output_txt2img_to_imglab = gr.Button("Send to Lab", visible=True)
|
||||
|
||||
output_txt2img_params = gr.Highlightedtext(label="Generation parameters", interactive=False,
|
||||
elem_id='highlight')
|
||||
elem_id='txt2img_highlight')
|
||||
with gr.Group():
|
||||
with gr.Row(elem_id='txt2img_output_row'):
|
||||
output_txt2img_copy_params = gr.Button("Copy full parameters").click(
|
||||
inputs=[output_txt2img_params], outputs=[],
|
||||
_js=js_copy_txt2img_output,
|
||||
fn=None, show_progress=False)
|
||||
inputs=[output_txt2img_params],
|
||||
outputs=[],
|
||||
_js=call_JS(
|
||||
'copyFullOutput',
|
||||
fromId='txt2img_highlight'
|
||||
),
|
||||
fn=None, show_progress=False
|
||||
)
|
||||
output_txt2img_seed = gr.Number(label='Seed', interactive=False, visible=False)
|
||||
output_txt2img_copy_seed = gr.Button("Copy only seed").click(
|
||||
inputs=[output_txt2img_seed], outputs=[],
|
||||
_js='(x) => navigator.clipboard.writeText(x)', fn=None, show_progress=False)
|
||||
inputs=[output_txt2img_seed],
|
||||
outputs=[],
|
||||
_js=call_JS('gradioInputToClipboard'),
|
||||
fn=None,
|
||||
show_progress=False
|
||||
)
|
||||
output_txt2img_stats = gr.HTML(label='Stats')
|
||||
with gr.Column():
|
||||
txt2img_steps = gr.Slider(minimum=1, maximum=250, step=1, label="Sampling Steps",
|
||||
@ -103,7 +128,7 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x, imgproc=lambda
|
||||
txt2img_realesrgan_model_name = gr.Dropdown(label='RealESRGAN model',
|
||||
choices=['RealESRGAN_x4plus',
|
||||
'RealESRGAN_x4plus_anime_6B'],
|
||||
value='RealESRGAN_x4plus',
|
||||
value=txt2img_defaults['realesrgan_model_name'],
|
||||
visible=False) # RealESRGAN is not None # invisible until removed) # TODO: Feels like I shouldnt slot it in here.
|
||||
|
||||
txt2img_ddim_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA",
|
||||
@ -219,7 +244,7 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x, imgproc=lambda
|
||||
|
||||
img2img_mask_blur_strength = gr.Slider(minimum=1, maximum=100, step=1,
|
||||
label="How much blurry should the mask be? (to avoid hard edges)",
|
||||
value=3, visible=True)
|
||||
value=img2img_defaults['mask_blur_strength'], visible=True)
|
||||
|
||||
img2img_resize = gr.Radio(label="Resize mode",
|
||||
choices=["Just resize", "Crop and resize",
|
||||
@ -247,16 +272,27 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x, imgproc=lambda
|
||||
|
||||
gr.Markdown("Warning: This will clear your current image and mask settings!")
|
||||
with gr.TabItem("Output info", id="img2img_output_info_tab"):
|
||||
output_img2img_params = gr.Textbox(label="Generation parameters")
|
||||
output_img2img_params = gr.Highlightedtext(
|
||||
label="Generation parameters", interactive=False,
|
||||
elem_id='img2img_highlight')
|
||||
with gr.Row():
|
||||
output_img2img_copy_params = gr.Button("Copy full parameters").click(
|
||||
inputs=output_img2img_params, outputs=[],
|
||||
_js='(x) => {navigator.clipboard.writeText(x.replace(": ",":"))}', fn=None,
|
||||
inputs=output_img2img_params,
|
||||
outputs=[],
|
||||
_js=call_JS(
|
||||
'copyFullOutput',
|
||||
fromId='img2img_highlight'
|
||||
),
|
||||
fn=None,
|
||||
show_progress=False)
|
||||
output_img2img_seed = gr.Number(label='Seed', interactive=False, visible=False)
|
||||
output_img2img_copy_seed = gr.Button("Copy only seed").click(
|
||||
inputs=output_img2img_seed, outputs=[],
|
||||
_js=call_JS("gradioInputToClipboard"), fn=None, show_progress=False)
|
||||
inputs=output_img2img_seed,
|
||||
outputs=[],
|
||||
_js=call_JS("gradioInputToClipboard"),
|
||||
fn=None,
|
||||
show_progress=False
|
||||
)
|
||||
output_img2img_stats = gr.HTML(label='Stats')
|
||||
|
||||
gr.Markdown('# img2img settings')
|
||||
@ -295,7 +331,7 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x, imgproc=lambda
|
||||
img2img_realesrgan_model_name = gr.Dropdown(label='RealESRGAN model',
|
||||
choices=['RealESRGAN_x4plus',
|
||||
'RealESRGAN_x4plus_anime_6B'],
|
||||
value='RealESRGAN_x4plus',
|
||||
value=img2img_defaults['realesrgan_model_name'],
|
||||
visible=RealESRGAN is not None) # TODO: Feels like I shouldnt slot it in here.
|
||||
|
||||
img2img_embeddings = gr.File(label="Embeddings file for textual inversion",
|
||||
@ -605,6 +641,176 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x, imgproc=lambda
|
||||
imgproc_upscale_toggles.change(fn=uifn.toggle_options_gobig, inputs=[imgproc_upscale_toggles],
|
||||
outputs=[gobig_group])
|
||||
|
||||
with gr.TabItem("Scene-to-Image", id='scn2img_tab'):
|
||||
example_path = os.path.join("data","scn2img_examples")
|
||||
files = os.listdir(example_path)
|
||||
examples = {}
|
||||
for fn in files:
|
||||
filepath = os.path.join(example_path, str(fn))
|
||||
with open(filepath, "r") as file:
|
||||
examples[fn] = file.read()
|
||||
with gr.Row(elem_id="tools_row"):
|
||||
scn2img_btn = gr.Button("Generate", elem_id="generate", variant="primary")
|
||||
|
||||
with gr.Row().style(equal_height=False):
|
||||
with gr.Column():
|
||||
scn2img_seed = gr.Textbox(
|
||||
label="Seed (blank to randomize, specify to use cache)", lines=1, max_lines=1,
|
||||
value=scn2img_defaults["seed"]
|
||||
)
|
||||
scn2img_prompt = gr.Textbox(
|
||||
label="Prompt Scene",
|
||||
elem_id='scn2_img_input',
|
||||
placeholder=examples[list(examples.keys())[0]],
|
||||
lines=50,
|
||||
max_lines=50,
|
||||
value=scn2img_defaults['prompt'],
|
||||
show_label=False
|
||||
)
|
||||
|
||||
with gr.Column():
|
||||
with gr.Tabs():
|
||||
with gr.TabItem("Results", id="scn2img_results_tab"):
|
||||
# gr.Markdown('#### Scn2Img Results')
|
||||
output_scn2img_gallery = gr.Gallery(
|
||||
label="Images",
|
||||
elem_id="scn2img_gallery_output"
|
||||
).style(grid=[3, 3, 3], height=80)
|
||||
scn2img_job_ui = job_manager.draw_gradio_ui() if job_manager else None
|
||||
|
||||
with gr.Tabs():
|
||||
with gr.TabItem("Generated image actions", id="scn2img_actions_tab"):
|
||||
gr.Markdown("Select an image, then press one of the buttons below")
|
||||
with gr.Row():
|
||||
output_scn2img_copy_to_clipboard_btn = gr.Button("Copy to clipboard")
|
||||
output_scn2img_copy_to_img2img_input_btn = gr.Button("Push to img2img input")
|
||||
output_scn2img_copy_to_img2img_mask_btn = gr.Button("Push to img2img input mask")
|
||||
|
||||
gr.Markdown("Warning: This will clear your current img2img image and mask settings!")
|
||||
|
||||
with gr.TabItem("Output info", id="scn2img_output_info_tab"):
|
||||
output_scn2img_params = gr.Highlightedtext(label="Generation parameters", interactive=False,
|
||||
elem_id='scn2img_highlight')
|
||||
with gr.Row():
|
||||
output_scn2img_copy_params = gr.Button("Copy full parameters").click(
|
||||
inputs=[output_scn2img_params],
|
||||
outputs=[],
|
||||
_js=call_JS(
|
||||
'copyFullOutput',
|
||||
fromId='scn2img_highlight'
|
||||
),
|
||||
fn=None, show_progress=False
|
||||
)
|
||||
output_scn2img_seed = gr.Number(label='Seed', interactive=False, visible=False)
|
||||
output_scn2img_copy_seed = gr.Button("Copy only initial seed").click(
|
||||
inputs=output_scn2img_seed, outputs=[],
|
||||
_js=call_JS("gradioInputToClipboard"), fn=None, show_progress=False)
|
||||
output_scn2img_stats = gr.HTML(label='Stats')
|
||||
with gr.TabItem("SceneCode", id="scn2img_scncode_tab"):
|
||||
output_scn2img_scncode = gr.HTML(label="SceneCode")
|
||||
scn2img_toggles = gr.CheckboxGroup(label='', choices=scn2img_toggles,
|
||||
value=scn2img_toggle_defaults, type="index")
|
||||
|
||||
scn2img_embeddings = gr.File(label="Embeddings file for textual inversion",
|
||||
visible=show_embeddings)
|
||||
with gr.TabItem("Docs", id="scn2img_docs_tab"):
|
||||
parse_arg, function_args, function_args_ext = scn2img_define_args()
|
||||
with gr.Tabs():
|
||||
with gr.TabItem("syntax", id=f"scn2img_docs_syntax_tab"):
|
||||
lines = [
|
||||
"Scene-to-Image defines layers of images in markdown-like syntax.",
|
||||
"",
|
||||
"Markdown headings, e.g. '# layer0', define layers.",
|
||||
"Layers are hierarchical, i.e. each layer can contain more layers.",
|
||||
"Child layers are blended together by their image masks, like layers in image editors.",
|
||||
"",
|
||||
"The content of sections define the arguments for image generation.",
|
||||
"Arguments are defined by lines of the form 'arg:value' or 'arg=value'.",
|
||||
"",
|
||||
"To invoke txt2img or img2img, they layer must contain the 'prompt' argument.",
|
||||
"For img2img the layer must have child layers, the result of blending them will be the input image for img2img.",
|
||||
"When no prompt is specified the layer can still be used for image composition and mask selection.",
|
||||
]
|
||||
gr.Markdown("\n".join(lines))
|
||||
|
||||
for func, ext in function_args_ext.items():
|
||||
with gr.TabItem(func, id=f"scn2img_docs_{func}_tab"):
|
||||
lines = []
|
||||
for e in ext:
|
||||
lines.append(f"#### Arguments for {e}")
|
||||
if e not in function_args: continue
|
||||
for argname,argtype in function_args[e].items():
|
||||
lines.append(f" - {argname}: {argtype}")
|
||||
gr.Markdown("\n".join(lines))
|
||||
|
||||
with gr.TabItem("Examples", id="scn2img_examples_tab"):
|
||||
scn2img_examples = {}
|
||||
with gr.Tabs():
|
||||
for k, (example, content) in enumerate(examples.items()):
|
||||
with gr.TabItem(example, id=f"scn2img_example_{k}_tab"):
|
||||
scn2img_examples[example] = gr.Textbox(
|
||||
label="Prompt Scene",
|
||||
elem_id=f"scn2img_example_{k}",
|
||||
value=content,
|
||||
lines=50,
|
||||
max_lines=50,
|
||||
show_label=False,
|
||||
interactive=True
|
||||
)
|
||||
output_scn2img_copy_to_img2img_input_btn.click(
|
||||
uifn.copy_img_to_edit,
|
||||
[output_scn2img_gallery],
|
||||
[img2img_image_editor, tabs, img2img_image_editor_mode],
|
||||
_js=call_JS("moveImageFromGallery",
|
||||
fromId="scn2img_gallery_output",
|
||||
toId="img2img_editor")
|
||||
)
|
||||
output_scn2img_copy_to_img2img_mask_btn.click(
|
||||
uifn.copy_img_to_mask,
|
||||
[output_scn2img_gallery],
|
||||
[img2img_image_mask, tabs, img2img_image_editor_mode],
|
||||
_js=call_JS("moveImageFromGallery",
|
||||
fromId="scn2img_gallery_output",
|
||||
toId="img2img_editor")
|
||||
)
|
||||
|
||||
output_scn2img_copy_to_clipboard_btn.click(
|
||||
fn=None,
|
||||
inputs=output_scn2img_gallery,
|
||||
outputs=[],
|
||||
_js=call_JS("copyImageFromGalleryToClipboard",
|
||||
fromId="scn2img_gallery_output")
|
||||
)
|
||||
|
||||
scn2img_func = scn2img
|
||||
scn2img_inputs = [
|
||||
scn2img_prompt,
|
||||
scn2img_toggles,
|
||||
scn2img_seed,
|
||||
scn2img_embeddings
|
||||
]
|
||||
scn2img_outputs = [
|
||||
output_scn2img_gallery,
|
||||
output_scn2img_seed,
|
||||
output_scn2img_params,
|
||||
output_scn2img_stats,
|
||||
output_scn2img_scncode
|
||||
]
|
||||
# If a JobManager was passed in then wrap the Generate functions
|
||||
if scn2img_job_ui:
|
||||
scn2img_func, scn2img_inputs, scn2img_outputs = scn2img_job_ui.wrap_func(
|
||||
func=scn2img_func,
|
||||
inputs=scn2img_inputs,
|
||||
outputs=scn2img_outputs,
|
||||
)
|
||||
|
||||
scn2img_btn.click(
|
||||
scn2img_func,
|
||||
scn2img_inputs,
|
||||
scn2img_outputs
|
||||
)
|
||||
|
||||
|
||||
"""
|
||||
if GFPGAN is not None:
|
||||
gfpgan_defaults = {
|
||||
|
@ -1,3 +1,18 @@
|
||||
# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
# Copyright 2022 sd-webui team.
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
''' Class to store image generation parameters to be stored as metadata in the image'''
|
||||
from __future__ import annotations
|
||||
from dataclasses import dataclass, asdict
|
||||
|
@ -1,3 +1,18 @@
|
||||
# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
# Copyright 2022 sd-webui team.
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
''' Provides simple job management for gradio, allowing viewing and stopping in-progress multi-batch generations '''
|
||||
from __future__ import annotations
|
||||
import gradio as gr
|
||||
|
@ -134,6 +134,16 @@ window.SD = (() => {
|
||||
|
||||
await this.copyToClipboard([item]);
|
||||
}
|
||||
async copyFullOutput ({ fromId }) {
|
||||
const textField = this.el.get(`#${fromId} .textfield`);
|
||||
if (!textField) {
|
||||
SDclass.error(new Error(`Can't find textfield with the output!`));
|
||||
}
|
||||
|
||||
const value = textField.textContent.replace(/\s+/g,' ').replace(/: /g,':');
|
||||
|
||||
await this.copyToClipboard(value)
|
||||
}
|
||||
clickFirstVisibleButton({ rowId }) {
|
||||
const generateButtons = this.el.get(`#${rowId}`).querySelectorAll('.gr-button-primary');
|
||||
|
||||
|
@ -1,3 +1,18 @@
|
||||
# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
||||
|
||||
# Copyright 2022 sd-webui team.
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
import re
|
||||
import gradio as gr
|
||||
from PIL import Image, ImageFont, ImageDraw, ImageFilter, ImageOps
|
||||
|
BIN
images/gradio/gradio-i2i.png
Normal file
After Width: | Height: | Size: 1.3 MiB |
BIN
images/gradio/gradio-t2i.png
Normal file
After Width: | Height: | Size: 840 KiB |
BIN
images/gradio/gradio-upscale.png
Normal file
After Width: | Height: | Size: 2.4 MiB |
BIN
images/sd-wui_logo.png
Normal file
After Width: | Height: | Size: 454 KiB |
BIN
images/streamlit/img2txt_placeholder.png
Normal file
After Width: | Height: | Size: 141 KiB |
BIN
images/streamlit/streamlit-concepts.png
Normal file
After Width: | Height: | Size: 2.4 MiB |
BIN
images/streamlit/streamlit-i2i.png
Normal file
After Width: | Height: | Size: 1.8 MiB |
BIN
images/streamlit/streamlit-t2i.png
Normal file
After Width: | Height: | Size: 962 KiB |
BIN
images/streamlit/streamlit-t2v.png
Normal file
After Width: | Height: | Size: 83 KiB |
@ -0,0 +1,101 @@
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import transforms
|
||||
from torchvision.transforms.functional import InterpolationMode
|
||||
|
||||
from data.coco_karpathy_dataset import coco_karpathy_train, coco_karpathy_caption_eval, coco_karpathy_retrieval_eval
|
||||
from data.nocaps_dataset import nocaps_eval
|
||||
from data.flickr30k_dataset import flickr30k_train, flickr30k_retrieval_eval
|
||||
from data.vqa_dataset import vqa_dataset
|
||||
from data.nlvr_dataset import nlvr_dataset
|
||||
from data.pretrain_dataset import pretrain_dataset
|
||||
from transform.randaugment import RandomAugment
|
||||
|
||||
def create_dataset(dataset, config, min_scale=0.5):
|
||||
|
||||
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
||||
|
||||
transform_train = transforms.Compose([
|
||||
transforms.RandomResizedCrop(config['image_size'],scale=(min_scale, 1.0),interpolation=InterpolationMode.BICUBIC),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
RandomAugment(2,5,isPIL=True,augs=['Identity','AutoContrast','Brightness','Sharpness','Equalize',
|
||||
'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']),
|
||||
transforms.ToTensor(),
|
||||
normalize,
|
||||
])
|
||||
transform_test = transforms.Compose([
|
||||
transforms.Resize((config['image_size'],config['image_size']),interpolation=InterpolationMode.BICUBIC),
|
||||
transforms.ToTensor(),
|
||||
normalize,
|
||||
])
|
||||
|
||||
if dataset=='pretrain':
|
||||
dataset = pretrain_dataset(config['train_file'], config['laion_path'], transform_train)
|
||||
return dataset
|
||||
|
||||
elif dataset=='caption_coco':
|
||||
train_dataset = coco_karpathy_train(transform_train, config['image_root'], config['ann_root'], prompt=config['prompt'])
|
||||
val_dataset = coco_karpathy_caption_eval(transform_test, config['image_root'], config['ann_root'], 'val')
|
||||
test_dataset = coco_karpathy_caption_eval(transform_test, config['image_root'], config['ann_root'], 'test')
|
||||
return train_dataset, val_dataset, test_dataset
|
||||
|
||||
elif dataset=='nocaps':
|
||||
val_dataset = nocaps_eval(transform_test, config['image_root'], config['ann_root'], 'val')
|
||||
test_dataset = nocaps_eval(transform_test, config['image_root'], config['ann_root'], 'test')
|
||||
return val_dataset, test_dataset
|
||||
|
||||
elif dataset=='retrieval_coco':
|
||||
train_dataset = coco_karpathy_train(transform_train, config['image_root'], config['ann_root'])
|
||||
val_dataset = coco_karpathy_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'val')
|
||||
test_dataset = coco_karpathy_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'test')
|
||||
return train_dataset, val_dataset, test_dataset
|
||||
|
||||
elif dataset=='retrieval_flickr':
|
||||
train_dataset = flickr30k_train(transform_train, config['image_root'], config['ann_root'])
|
||||
val_dataset = flickr30k_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'val')
|
||||
test_dataset = flickr30k_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'test')
|
||||
return train_dataset, val_dataset, test_dataset
|
||||
|
||||
elif dataset=='vqa':
|
||||
train_dataset = vqa_dataset(transform_train, config['ann_root'], config['vqa_root'], config['vg_root'],
|
||||
train_files = config['train_files'], split='train')
|
||||
test_dataset = vqa_dataset(transform_test, config['ann_root'], config['vqa_root'], config['vg_root'], split='test')
|
||||
return train_dataset, test_dataset
|
||||
|
||||
elif dataset=='nlvr':
|
||||
train_dataset = nlvr_dataset(transform_train, config['image_root'], config['ann_root'],'train')
|
||||
val_dataset = nlvr_dataset(transform_test, config['image_root'], config['ann_root'],'val')
|
||||
test_dataset = nlvr_dataset(transform_test, config['image_root'], config['ann_root'],'test')
|
||||
return train_dataset, val_dataset, test_dataset
|
||||
|
||||
|
||||
def create_sampler(datasets, shuffles, num_tasks, global_rank):
|
||||
samplers = []
|
||||
for dataset,shuffle in zip(datasets,shuffles):
|
||||
sampler = torch.utils.data.DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank, shuffle=shuffle)
|
||||
samplers.append(sampler)
|
||||
return samplers
|
||||
|
||||
|
||||
def create_loader(datasets, samplers, batch_size, num_workers, is_trains, collate_fns):
|
||||
loaders = []
|
||||
for dataset,sampler,bs,n_worker,is_train,collate_fn in zip(datasets,samplers,batch_size,num_workers,is_trains,collate_fns):
|
||||
if is_train:
|
||||
shuffle = (sampler is None)
|
||||
drop_last = True
|
||||
else:
|
||||
shuffle = False
|
||||
drop_last = False
|
||||
loader = DataLoader(
|
||||
dataset,
|
||||
batch_size=bs,
|
||||
num_workers=n_worker,
|
||||
pin_memory=True,
|
||||
sampler=sampler,
|
||||
shuffle=shuffle,
|
||||
collate_fn=collate_fn,
|
||||
drop_last=drop_last,
|
||||
)
|
||||
loaders.append(loader)
|
||||
return loaders
|
||||
|
126
ldm/data/coco_karpathy_dataset.py
Normal file
@ -0,0 +1,126 @@
|
||||
import os
|
||||
import json
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.datasets.utils import download_url
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from data.utils import pre_caption
|
||||
|
||||
class coco_karpathy_train(Dataset):
|
||||
def __init__(self, transform, image_root, ann_root, max_words=30, prompt=''):
|
||||
'''
|
||||
image_root (string): Root directory of images (e.g. coco/images/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
'''
|
||||
url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_train.json'
|
||||
filename = 'coco_karpathy_train.json'
|
||||
|
||||
download_url(url,ann_root)
|
||||
|
||||
self.annotation = json.load(open(os.path.join(ann_root,filename),'r'))
|
||||
self.transform = transform
|
||||
self.image_root = image_root
|
||||
self.max_words = max_words
|
||||
self.prompt = prompt
|
||||
|
||||
self.img_ids = {}
|
||||
n = 0
|
||||
for ann in self.annotation:
|
||||
img_id = ann['image_id']
|
||||
if img_id not in self.img_ids.keys():
|
||||
self.img_ids[img_id] = n
|
||||
n += 1
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
image_path = os.path.join(self.image_root,ann['image'])
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
image = self.transform(image)
|
||||
|
||||
caption = self.prompt+pre_caption(ann['caption'], self.max_words)
|
||||
|
||||
return image, caption, self.img_ids[ann['image_id']]
|
||||
|
||||
|
||||
class coco_karpathy_caption_eval(Dataset):
|
||||
def __init__(self, transform, image_root, ann_root, split):
|
||||
'''
|
||||
image_root (string): Root directory of images (e.g. coco/images/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
split (string): val or test
|
||||
'''
|
||||
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json',
|
||||
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'}
|
||||
filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'}
|
||||
|
||||
download_url(urls[split],ann_root)
|
||||
|
||||
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
||||
self.transform = transform
|
||||
self.image_root = image_root
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
image_path = os.path.join(self.image_root,ann['image'])
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
image = self.transform(image)
|
||||
|
||||
img_id = ann['image'].split('/')[-1].strip('.jpg').split('_')[-1]
|
||||
|
||||
return image, int(img_id)
|
||||
|
||||
|
||||
class coco_karpathy_retrieval_eval(Dataset):
|
||||
def __init__(self, transform, image_root, ann_root, split, max_words=30):
|
||||
'''
|
||||
image_root (string): Root directory of images (e.g. coco/images/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
split (string): val or test
|
||||
'''
|
||||
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json',
|
||||
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'}
|
||||
filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'}
|
||||
|
||||
download_url(urls[split],ann_root)
|
||||
|
||||
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
||||
self.transform = transform
|
||||
self.image_root = image_root
|
||||
|
||||
self.text = []
|
||||
self.image = []
|
||||
self.txt2img = {}
|
||||
self.img2txt = {}
|
||||
|
||||
txt_id = 0
|
||||
for img_id, ann in enumerate(self.annotation):
|
||||
self.image.append(ann['image'])
|
||||
self.img2txt[img_id] = []
|
||||
for i, caption in enumerate(ann['caption']):
|
||||
self.text.append(pre_caption(caption,max_words))
|
||||
self.img2txt[img_id].append(txt_id)
|
||||
self.txt2img[txt_id] = img_id
|
||||
txt_id += 1
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
image_path = os.path.join(self.image_root, self.annotation[index]['image'])
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
image = self.transform(image)
|
||||
|
||||
return image, index
|
93
ldm/data/flickr30k_dataset.py
Normal file
@ -0,0 +1,93 @@
|
||||
import os
|
||||
import json
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.datasets.utils import download_url
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from data.utils import pre_caption
|
||||
|
||||
class flickr30k_train(Dataset):
|
||||
def __init__(self, transform, image_root, ann_root, max_words=30, prompt=''):
|
||||
'''
|
||||
image_root (string): Root directory of images (e.g. flickr30k/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
'''
|
||||
url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_train.json'
|
||||
filename = 'flickr30k_train.json'
|
||||
|
||||
download_url(url,ann_root)
|
||||
|
||||
self.annotation = json.load(open(os.path.join(ann_root,filename),'r'))
|
||||
self.transform = transform
|
||||
self.image_root = image_root
|
||||
self.max_words = max_words
|
||||
self.prompt = prompt
|
||||
|
||||
self.img_ids = {}
|
||||
n = 0
|
||||
for ann in self.annotation:
|
||||
img_id = ann['image_id']
|
||||
if img_id not in self.img_ids.keys():
|
||||
self.img_ids[img_id] = n
|
||||
n += 1
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
image_path = os.path.join(self.image_root,ann['image'])
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
image = self.transform(image)
|
||||
|
||||
caption = self.prompt+pre_caption(ann['caption'], self.max_words)
|
||||
|
||||
return image, caption, self.img_ids[ann['image_id']]
|
||||
|
||||
|
||||
class flickr30k_retrieval_eval(Dataset):
|
||||
def __init__(self, transform, image_root, ann_root, split, max_words=30):
|
||||
'''
|
||||
image_root (string): Root directory of images (e.g. flickr30k/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
split (string): val or test
|
||||
'''
|
||||
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_val.json',
|
||||
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_test.json'}
|
||||
filenames = {'val':'flickr30k_val.json','test':'flickr30k_test.json'}
|
||||
|
||||
download_url(urls[split],ann_root)
|
||||
|
||||
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
||||
self.transform = transform
|
||||
self.image_root = image_root
|
||||
|
||||
self.text = []
|
||||
self.image = []
|
||||
self.txt2img = {}
|
||||
self.img2txt = {}
|
||||
|
||||
txt_id = 0
|
||||
for img_id, ann in enumerate(self.annotation):
|
||||
self.image.append(ann['image'])
|
||||
self.img2txt[img_id] = []
|
||||
for i, caption in enumerate(ann['caption']):
|
||||
self.text.append(pre_caption(caption,max_words))
|
||||
self.img2txt[img_id].append(txt_id)
|
||||
self.txt2img[txt_id] = img_id
|
||||
txt_id += 1
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
image_path = os.path.join(self.image_root, self.annotation[index]['image'])
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
image = self.transform(image)
|
||||
|
||||
return image, index
|
78
ldm/data/nlvr_dataset.py
Normal file
@ -0,0 +1,78 @@
|
||||
import os
|
||||
import json
|
||||
import random
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.datasets.utils import download_url
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from data.utils import pre_caption
|
||||
|
||||
class nlvr_dataset(Dataset):
|
||||
def __init__(self, transform, image_root, ann_root, split):
|
||||
'''
|
||||
image_root (string): Root directory of images
|
||||
ann_root (string): directory to store the annotation file
|
||||
split (string): train, val or test
|
||||
'''
|
||||
urls = {'train':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_train.json',
|
||||
'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_dev.json',
|
||||
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_test.json'}
|
||||
filenames = {'train':'nlvr_train.json','val':'nlvr_dev.json','test':'nlvr_test.json'}
|
||||
|
||||
download_url(urls[split],ann_root)
|
||||
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
||||
|
||||
self.transform = transform
|
||||
self.image_root = image_root
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
image0_path = os.path.join(self.image_root,ann['images'][0])
|
||||
image0 = Image.open(image0_path).convert('RGB')
|
||||
image0 = self.transform(image0)
|
||||
|
||||
image1_path = os.path.join(self.image_root,ann['images'][1])
|
||||
image1 = Image.open(image1_path).convert('RGB')
|
||||
image1 = self.transform(image1)
|
||||
|
||||
sentence = pre_caption(ann['sentence'], 40)
|
||||
|
||||
if ann['label']=='True':
|
||||
label = 1
|
||||
else:
|
||||
label = 0
|
||||
|
||||
words = sentence.split(' ')
|
||||
|
||||
if 'left' not in words and 'right' not in words:
|
||||
if random.random()<0.5:
|
||||
return image0, image1, sentence, label
|
||||
else:
|
||||
return image1, image0, sentence, label
|
||||
else:
|
||||
if random.random()<0.5:
|
||||
return image0, image1, sentence, label
|
||||
else:
|
||||
new_words = []
|
||||
for word in words:
|
||||
if word=='left':
|
||||
new_words.append('right')
|
||||
elif word=='right':
|
||||
new_words.append('left')
|
||||
else:
|
||||
new_words.append(word)
|
||||
|
||||
sentence = ' '.join(new_words)
|
||||
return image1, image0, sentence, label
|
||||
|
||||
|
||||
|
32
ldm/data/nocaps_dataset.py
Normal file
@ -0,0 +1,32 @@
|
||||
import os
|
||||
import json
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.datasets.utils import download_url
|
||||
|
||||
from PIL import Image
|
||||
|
||||
class nocaps_eval(Dataset):
|
||||
def __init__(self, transform, image_root, ann_root, split):
|
||||
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nocaps_val.json',
|
||||
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nocaps_test.json'}
|
||||
filenames = {'val':'nocaps_val.json','test':'nocaps_test.json'}
|
||||
|
||||
download_url(urls[split],ann_root)
|
||||
|
||||
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
||||
self.transform = transform
|
||||
self.image_root = image_root
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
image_path = os.path.join(self.image_root,ann['image'])
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
image = self.transform(image)
|
||||
|
||||
return image, int(ann['img_id'])
|
59
ldm/data/pretrain_dataset.py
Normal file
@ -0,0 +1,59 @@
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from PIL import Image
|
||||
from PIL import ImageFile
|
||||
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
||||
Image.MAX_IMAGE_PIXELS = None
|
||||
|
||||
from data.utils import pre_caption
|
||||
import os,glob
|
||||
|
||||
class pretrain_dataset(Dataset):
|
||||
def __init__(self, ann_file, laion_path, transform):
|
||||
|
||||
self.ann_pretrain = []
|
||||
for f in ann_file:
|
||||
print('loading '+f)
|
||||
ann = json.load(open(f,'r'))
|
||||
self.ann_pretrain += ann
|
||||
|
||||
self.laion_path = laion_path
|
||||
if self.laion_path:
|
||||
self.laion_files = glob.glob(os.path.join(laion_path,'*.json'))
|
||||
|
||||
print('loading '+self.laion_files[0])
|
||||
with open(self.laion_files[0],'r') as f:
|
||||
self.ann_laion = json.load(f)
|
||||
|
||||
self.annotation = self.ann_pretrain + self.ann_laion
|
||||
else:
|
||||
self.annotation = self.ann_pretrain
|
||||
|
||||
self.transform = transform
|
||||
|
||||
|
||||
def reload_laion(self, epoch):
|
||||
n = epoch%len(self.laion_files)
|
||||
print('loading '+self.laion_files[n])
|
||||
with open(self.laion_files[n],'r') as f:
|
||||
self.ann_laion = json.load(f)
|
||||
|
||||
self.annotation = self.ann_pretrain + self.ann_laion
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
image = Image.open(ann['image']).convert('RGB')
|
||||
image = self.transform(image)
|
||||
caption = pre_caption(ann['caption'],30)
|
||||
|
||||
return image, caption
|
112
ldm/data/utils.py
Normal file
@ -0,0 +1,112 @@
|
||||
import re
|
||||
import json
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
import utils
|
||||
|
||||
def pre_caption(caption,max_words=50):
|
||||
caption = re.sub(
|
||||
r"([.!\"()*#:;~])",
|
||||
' ',
|
||||
caption.lower(),
|
||||
)
|
||||
caption = re.sub(
|
||||
r"\s{2,}",
|
||||
' ',
|
||||
caption,
|
||||
)
|
||||
caption = caption.rstrip('\n')
|
||||
caption = caption.strip(' ')
|
||||
|
||||
#truncate caption
|
||||
caption_words = caption.split(' ')
|
||||
if len(caption_words)>max_words:
|
||||
caption = ' '.join(caption_words[:max_words])
|
||||
|
||||
return caption
|
||||
|
||||
def pre_question(question,max_ques_words=50):
|
||||
question = re.sub(
|
||||
r"([.!\"()*#:;~])",
|
||||
'',
|
||||
question.lower(),
|
||||
)
|
||||
question = question.rstrip(' ')
|
||||
|
||||
#truncate question
|
||||
question_words = question.split(' ')
|
||||
if len(question_words)>max_ques_words:
|
||||
question = ' '.join(question_words[:max_ques_words])
|
||||
|
||||
return question
|
||||
|
||||
|
||||
def save_result(result, result_dir, filename, remove_duplicate=''):
|
||||
result_file = os.path.join(result_dir, '%s_rank%d.json'%(filename,utils.get_rank()))
|
||||
final_result_file = os.path.join(result_dir, '%s.json'%filename)
|
||||
|
||||
json.dump(result,open(result_file,'w'))
|
||||
|
||||
dist.barrier()
|
||||
|
||||
if utils.is_main_process():
|
||||
# combine results from all processes
|
||||
result = []
|
||||
|
||||
for rank in range(utils.get_world_size()):
|
||||
result_file = os.path.join(result_dir, '%s_rank%d.json'%(filename,rank))
|
||||
res = json.load(open(result_file,'r'))
|
||||
result += res
|
||||
|
||||
if remove_duplicate:
|
||||
result_new = []
|
||||
id_list = []
|
||||
for res in result:
|
||||
if res[remove_duplicate] not in id_list:
|
||||
id_list.append(res[remove_duplicate])
|
||||
result_new.append(res)
|
||||
result = result_new
|
||||
|
||||
json.dump(result,open(final_result_file,'w'))
|
||||
print('result file saved to %s'%final_result_file)
|
||||
|
||||
return final_result_file
|
||||
|
||||
|
||||
|
||||
from pycocotools.coco import COCO
|
||||
from pycocoevalcap.eval import COCOEvalCap
|
||||
from torchvision.datasets.utils import download_url
|
||||
|
||||
def coco_caption_eval(coco_gt_root, results_file, split):
|
||||
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json',
|
||||
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json'}
|
||||
filenames = {'val':'coco_karpathy_val_gt.json','test':'coco_karpathy_test_gt.json'}
|
||||
|
||||
download_url(urls[split],coco_gt_root)
|
||||
annotation_file = os.path.join(coco_gt_root,filenames[split])
|
||||
|
||||
# create coco object and coco_result object
|
||||
coco = COCO(annotation_file)
|
||||
coco_result = coco.loadRes(results_file)
|
||||
|
||||
# create coco_eval object by taking coco and coco_result
|
||||
coco_eval = COCOEvalCap(coco, coco_result)
|
||||
|
||||
# evaluate on a subset of images by setting
|
||||
# coco_eval.params['image_id'] = coco_result.getImgIds()
|
||||
# please remove this line when evaluating the full validation set
|
||||
# coco_eval.params['image_id'] = coco_result.getImgIds()
|
||||
|
||||
# evaluate results
|
||||
# SPICE will take a few minutes the first time, but speeds up due to caching
|
||||
coco_eval.evaluate()
|
||||
|
||||
# print output evaluation scores
|
||||
for metric, score in coco_eval.eval.items():
|
||||
print(f'{metric}: {score:.3f}')
|
||||
|
||||
return coco_eval
|
110
ldm/data/video_dataset.py
Normal file
@ -0,0 +1,110 @@
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.datasets.utils import download_url
|
||||
|
||||
from PIL import Image
|
||||
import torch
|
||||
import numpy as np
|
||||
import random
|
||||
import decord
|
||||
from decord import VideoReader
|
||||
import json
|
||||
import os
|
||||
from data.utils import pre_caption
|
||||
|
||||
decord.bridge.set_bridge("torch")
|
||||
|
||||
class ImageNorm(object):
|
||||
"""Apply Normalization to Image Pixels on GPU
|
||||
"""
|
||||
def __init__(self, mean, std):
|
||||
self.mean = torch.tensor(mean).view(1, 3, 1, 1)
|
||||
self.std = torch.tensor(std).view(1, 3, 1, 1)
|
||||
|
||||
def __call__(self, img):
|
||||
|
||||
if torch.max(img) > 1 and self.mean.max() <= 1:
|
||||
img.div_(255.)
|
||||
return img.sub_(self.mean).div_(self.std)
|
||||
|
||||
def load_jsonl(filename):
|
||||
with open(filename, "r") as f:
|
||||
return [json.loads(l.strip("\n")) for l in f.readlines()]
|
||||
|
||||
|
||||
class VideoDataset(Dataset):
|
||||
|
||||
def __init__(self, video_root, ann_root, num_frm=4, frm_sampling_strategy="rand", max_img_size=384, video_fmt='.mp4'):
|
||||
'''
|
||||
image_root (string): Root directory of video
|
||||
ann_root (string): directory to store the annotation file
|
||||
'''
|
||||
url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/msrvtt_test.jsonl'
|
||||
filename = 'msrvtt_test.jsonl'
|
||||
|
||||
download_url(url,ann_root)
|
||||
self.annotation = load_jsonl(os.path.join(ann_root,filename))
|
||||
|
||||
self.num_frm = num_frm
|
||||
self.frm_sampling_strategy = frm_sampling_strategy
|
||||
self.max_img_size = max_img_size
|
||||
self.video_root = video_root
|
||||
self.video_fmt = video_fmt
|
||||
self.img_norm = ImageNorm(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
|
||||
|
||||
self.text = [pre_caption(ann['caption'],40) for ann in self.annotation]
|
||||
self.txt2video = [i for i in range(len(self.annotation))]
|
||||
self.video2txt = self.txt2video
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
video_path = os.path.join(self.video_root, ann['clip_name'] + self.video_fmt)
|
||||
|
||||
vid_frm_array = self._load_video_from_path_decord(video_path, height=self.max_img_size, width=self.max_img_size)
|
||||
|
||||
video = self.img_norm(vid_frm_array.float())
|
||||
|
||||
return video, ann['clip_name']
|
||||
|
||||
|
||||
|
||||
def _load_video_from_path_decord(self, video_path, height=None, width=None, start_time=None, end_time=None, fps=-1):
|
||||
try:
|
||||
if not height or not width:
|
||||
vr = VideoReader(video_path)
|
||||
else:
|
||||
vr = VideoReader(video_path, width=width, height=height)
|
||||
|
||||
vlen = len(vr)
|
||||
|
||||
if start_time or end_time:
|
||||
assert fps > 0, 'must provide video fps if specifying start and end time.'
|
||||
|
||||
start_idx = min(int(start_time * fps), vlen)
|
||||
end_idx = min(int(end_time * fps), vlen)
|
||||
else:
|
||||
start_idx, end_idx = 0, vlen
|
||||
|
||||
if self.frm_sampling_strategy == 'uniform':
|
||||
frame_indices = np.arange(start_idx, end_idx, vlen / self.num_frm, dtype=int)
|
||||
elif self.frm_sampling_strategy == 'rand':
|
||||
frame_indices = sorted(random.sample(range(vlen), self.num_frm))
|
||||
elif self.frm_sampling_strategy == 'headtail':
|
||||
frame_indices_head = sorted(random.sample(range(vlen // 2), self.num_frm // 2))
|
||||
frame_indices_tail = sorted(random.sample(range(vlen // 2, vlen), self.num_frm // 2))
|
||||
frame_indices = frame_indices_head + frame_indices_tail
|
||||
else:
|
||||
raise NotImplementedError('Invalid sampling strategy {} '.format(self.frm_sampling_strategy))
|
||||
|
||||
raw_sample_frms = vr.get_batch(frame_indices)
|
||||
except Exception as e:
|
||||
return None
|
||||
|
||||
raw_sample_frms = raw_sample_frms.permute(0, 3, 1, 2)
|
||||
|
||||
return raw_sample_frms
|
88
ldm/data/vqa_dataset.py
Normal file
@ -0,0 +1,88 @@
|
||||
import os
|
||||
import json
|
||||
import random
|
||||
from PIL import Image
|
||||
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
from data.utils import pre_question
|
||||
|
||||
from torchvision.datasets.utils import download_url
|
||||
|
||||
class vqa_dataset(Dataset):
|
||||
def __init__(self, transform, ann_root, vqa_root, vg_root, train_files=[], split="train"):
|
||||
self.split = split
|
||||
|
||||
self.transform = transform
|
||||
self.vqa_root = vqa_root
|
||||
self.vg_root = vg_root
|
||||
|
||||
if split=='train':
|
||||
urls = {'vqa_train':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_train.json',
|
||||
'vqa_val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_val.json',
|
||||
'vg_qa':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vg_qa.json'}
|
||||
|
||||
self.annotation = []
|
||||
for f in train_files:
|
||||
download_url(urls[f],ann_root)
|
||||
self.annotation += json.load(open(os.path.join(ann_root,'%s.json'%f),'r'))
|
||||
else:
|
||||
download_url('https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_test.json',ann_root)
|
||||
self.annotation = json.load(open(os.path.join(ann_root,'vqa_test.json'),'r'))
|
||||
|
||||
download_url('https://storage.googleapis.com/sfr-vision-language-research/datasets/answer_list.json',ann_root)
|
||||
self.answer_list = json.load(open(os.path.join(ann_root,'answer_list.json'),'r'))
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
if ann['dataset']=='vqa':
|
||||
image_path = os.path.join(self.vqa_root,ann['image'])
|
||||
elif ann['dataset']=='vg':
|
||||
image_path = os.path.join(self.vg_root,ann['image'])
|
||||
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
image = self.transform(image)
|
||||
|
||||
if self.split == 'test':
|
||||
question = pre_question(ann['question'])
|
||||
question_id = ann['question_id']
|
||||
return image, question, question_id
|
||||
|
||||
|
||||
elif self.split=='train':
|
||||
|
||||
question = pre_question(ann['question'])
|
||||
|
||||
if ann['dataset']=='vqa':
|
||||
answer_weight = {}
|
||||
for answer in ann['answer']:
|
||||
if answer in answer_weight.keys():
|
||||
answer_weight[answer] += 1/len(ann['answer'])
|
||||
else:
|
||||
answer_weight[answer] = 1/len(ann['answer'])
|
||||
|
||||
answers = list(answer_weight.keys())
|
||||
weights = list(answer_weight.values())
|
||||
|
||||
elif ann['dataset']=='vg':
|
||||
answers = [ann['answer']]
|
||||
weights = [0.2]
|
||||
|
||||
return image, question, answers, weights
|
||||
|
||||
|
||||
def vqa_collate_fn(batch):
|
||||
image_list, question_list, answer_list, weight_list, n = [], [], [], [], []
|
||||
for image, question, answer, weights in batch:
|
||||
image_list.append(image)
|
||||
question_list.append(question)
|
||||
weight_list += weights
|
||||
answer_list += answer
|
||||
n.append(len(answer))
|
||||
return torch.stack(image_list,dim=0), question_list, answer_list, torch.Tensor(weight_list), n
|
0
ldm/models/__init__.py
Normal file
238
ldm/models/blip.py
Normal file
@ -0,0 +1,238 @@
|
||||
'''
|
||||
* Copyright (c) 2022, salesforce.com, inc.
|
||||
* All rights reserved.
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
* By Junnan Li
|
||||
'''
|
||||
import warnings
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
from .vit import VisionTransformer, interpolate_pos_embed
|
||||
from .med import BertConfig, BertModel, BertLMHeadModel
|
||||
from transformers import BertTokenizer
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
#import torch.nn.functional as F
|
||||
|
||||
import os
|
||||
from urllib.parse import urlparse
|
||||
from timm.models.hub import download_cached_file
|
||||
|
||||
class BLIP_Base(nn.Module):
|
||||
def __init__(self,
|
||||
med_config = 'configs/blip/med_config.json',
|
||||
image_size = 224,
|
||||
vit = 'base',
|
||||
vit_grad_ckpt = False,
|
||||
vit_ckpt_layer = 0,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
||||
image_size (int): input image size
|
||||
vit (str): model size of vision transformer
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
|
||||
self.tokenizer = init_tokenizer()
|
||||
med_config = BertConfig.from_json_file(med_config)
|
||||
med_config.encoder_width = vision_width
|
||||
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
||||
|
||||
|
||||
def forward(self, image, caption, mode):
|
||||
|
||||
assert mode in ['image', 'text', 'multimodal'], "mode parameter must be image, text, or multimodal"
|
||||
text = self.tokenizer(caption, return_tensors="pt").to(image.device)
|
||||
|
||||
if mode=='image':
|
||||
# return image features
|
||||
image_embeds = self.visual_encoder(image)
|
||||
return image_embeds
|
||||
|
||||
elif mode=='text':
|
||||
# return text features
|
||||
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
|
||||
return_dict = True, mode = 'text')
|
||||
return text_output.last_hidden_state
|
||||
|
||||
elif mode=='multimodal':
|
||||
# return multimodel features
|
||||
image_embeds = self.visual_encoder(image)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
|
||||
text.input_ids[:,0] = self.tokenizer.enc_token_id
|
||||
output = self.text_encoder(text.input_ids,
|
||||
attention_mask = text.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
return_dict = True,
|
||||
)
|
||||
return output.last_hidden_state
|
||||
|
||||
|
||||
|
||||
class BLIP_Decoder(nn.Module):
|
||||
def __init__(self,
|
||||
med_config = 'configs/blip/med_config.json',
|
||||
image_size = 384,
|
||||
vit = 'base',
|
||||
vit_grad_ckpt = False,
|
||||
vit_ckpt_layer = 0,
|
||||
prompt = 'a picture of ',
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
||||
image_size (int): input image size
|
||||
vit (str): model size of vision transformer
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
|
||||
self.tokenizer = init_tokenizer()
|
||||
med_config = BertConfig.from_json_file(med_config)
|
||||
med_config.encoder_width = vision_width
|
||||
self.text_decoder = BertLMHeadModel(config=med_config)
|
||||
|
||||
self.prompt = prompt
|
||||
self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1
|
||||
|
||||
|
||||
def forward(self, image, caption):
|
||||
|
||||
image_embeds = self.visual_encoder(image)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
|
||||
text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device)
|
||||
|
||||
text.input_ids[:,0] = self.tokenizer.bos_token_id
|
||||
|
||||
decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100)
|
||||
decoder_targets[:,:self.prompt_length] = -100
|
||||
|
||||
decoder_output = self.text_decoder(text.input_ids,
|
||||
attention_mask = text.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
labels = decoder_targets,
|
||||
return_dict = True,
|
||||
)
|
||||
loss_lm = decoder_output.loss
|
||||
|
||||
return loss_lm
|
||||
|
||||
def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0):
|
||||
image_embeds = self.visual_encoder(image)
|
||||
|
||||
if not sample:
|
||||
image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
|
||||
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts}
|
||||
|
||||
prompt = [self.prompt] * image.size(0)
|
||||
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device)
|
||||
input_ids[:,0] = self.tokenizer.bos_token_id
|
||||
input_ids = input_ids[:, :-1]
|
||||
|
||||
if sample:
|
||||
#nucleus sampling
|
||||
outputs = self.text_decoder.generate(input_ids=input_ids,
|
||||
max_length=max_length,
|
||||
min_length=min_length,
|
||||
do_sample=True,
|
||||
top_p=top_p,
|
||||
num_return_sequences=1,
|
||||
eos_token_id=self.tokenizer.sep_token_id,
|
||||
pad_token_id=self.tokenizer.pad_token_id,
|
||||
repetition_penalty=1.1,
|
||||
**model_kwargs)
|
||||
else:
|
||||
#beam search
|
||||
outputs = self.text_decoder.generate(input_ids=input_ids,
|
||||
max_length=max_length,
|
||||
min_length=min_length,
|
||||
num_beams=num_beams,
|
||||
eos_token_id=self.tokenizer.sep_token_id,
|
||||
pad_token_id=self.tokenizer.pad_token_id,
|
||||
repetition_penalty=repetition_penalty,
|
||||
**model_kwargs)
|
||||
|
||||
captions = []
|
||||
for output in outputs:
|
||||
caption = self.tokenizer.decode(output, skip_special_tokens=True)
|
||||
captions.append(caption[len(self.prompt):])
|
||||
return captions
|
||||
|
||||
|
||||
def blip_decoder(pretrained='',**kwargs):
|
||||
model = BLIP_Decoder(**kwargs)
|
||||
if pretrained:
|
||||
model,msg = load_checkpoint(model,pretrained)
|
||||
assert(len(msg.missing_keys)==0)
|
||||
return model
|
||||
|
||||
def blip_feature_extractor(pretrained='',**kwargs):
|
||||
model = BLIP_Base(**kwargs)
|
||||
if pretrained:
|
||||
model,msg = load_checkpoint(model,pretrained)
|
||||
assert(len(msg.missing_keys)==0)
|
||||
return model
|
||||
|
||||
def init_tokenizer():
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
tokenizer.add_special_tokens({'bos_token':'[DEC]'})
|
||||
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})
|
||||
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
|
||||
return tokenizer
|
||||
|
||||
|
||||
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
|
||||
|
||||
assert vit in ['base', 'large'], "vit parameter must be base or large"
|
||||
if vit=='base':
|
||||
vision_width = 768
|
||||
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12,
|
||||
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
|
||||
drop_path_rate=0 or drop_path_rate
|
||||
)
|
||||
elif vit=='large':
|
||||
vision_width = 1024
|
||||
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24,
|
||||
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
|
||||
drop_path_rate=0.1 or drop_path_rate
|
||||
)
|
||||
return visual_encoder, vision_width
|
||||
|
||||
def is_url(url_or_filename):
|
||||
parsed = urlparse(url_or_filename)
|
||||
return parsed.scheme in ("http", "https")
|
||||
|
||||
def load_checkpoint(model,url_or_filename):
|
||||
if is_url(url_or_filename):
|
||||
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
||||
checkpoint = torch.load(cached_file, map_location='cpu')
|
||||
elif os.path.isfile(url_or_filename):
|
||||
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
||||
else:
|
||||
raise RuntimeError('checkpoint url or path is invalid')
|
||||
|
||||
state_dict = checkpoint['model']
|
||||
|
||||
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
|
||||
if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
|
||||
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
|
||||
model.visual_encoder_m)
|
||||
for key in model.state_dict().keys():
|
||||
if key in state_dict.keys():
|
||||
if state_dict[key].shape!=model.state_dict()[key].shape:
|
||||
del state_dict[key]
|
||||
|
||||
msg = model.load_state_dict(state_dict,strict=False)
|
||||
print('load checkpoint from %s'%url_or_filename)
|
||||
return model,msg
|
||||
|
76
ldm/models/blip_itm.py
Normal file
@ -0,0 +1,76 @@
|
||||
from models.med import BertConfig, BertModel
|
||||
from transformers import BertTokenizer
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from models.blip import create_vit, init_tokenizer, load_checkpoint
|
||||
|
||||
class BLIP_ITM(nn.Module):
|
||||
def __init__(self,
|
||||
med_config = 'configs/med_config.json',
|
||||
image_size = 384,
|
||||
vit = 'base',
|
||||
vit_grad_ckpt = False,
|
||||
vit_ckpt_layer = 0,
|
||||
embed_dim = 256,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
||||
image_size (int): input image size
|
||||
vit (str): model size of vision transformer
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
|
||||
self.tokenizer = init_tokenizer()
|
||||
med_config = BertConfig.from_json_file(med_config)
|
||||
med_config.encoder_width = vision_width
|
||||
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
||||
|
||||
text_width = self.text_encoder.config.hidden_size
|
||||
|
||||
self.vision_proj = nn.Linear(vision_width, embed_dim)
|
||||
self.text_proj = nn.Linear(text_width, embed_dim)
|
||||
|
||||
self.itm_head = nn.Linear(text_width, 2)
|
||||
|
||||
|
||||
def forward(self, image, caption, match_head='itm'):
|
||||
|
||||
image_embeds = self.visual_encoder(image)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
|
||||
text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
|
||||
return_tensors="pt").to(image.device)
|
||||
|
||||
|
||||
if match_head=='itm':
|
||||
output = self.text_encoder(text.input_ids,
|
||||
attention_mask = text.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
return_dict = True,
|
||||
)
|
||||
itm_output = self.itm_head(output.last_hidden_state[:,0,:])
|
||||
return itm_output
|
||||
|
||||
elif match_head=='itc':
|
||||
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
|
||||
return_dict = True, mode = 'text')
|
||||
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
|
||||
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
|
||||
|
||||
sim = image_feat @ text_feat.t()
|
||||
return sim
|
||||
|
||||
|
||||
def blip_itm(pretrained='',**kwargs):
|
||||
model = BLIP_ITM(**kwargs)
|
||||
if pretrained:
|
||||
model,msg = load_checkpoint(model,pretrained)
|
||||
assert(len(msg.missing_keys)==0)
|
||||
return model
|
||||
|
103
ldm/models/blip_nlvr.py
Normal file
@ -0,0 +1,103 @@
|
||||
from models.med import BertConfig
|
||||
from models.nlvr_encoder import BertModel
|
||||
from models.vit import interpolate_pos_embed
|
||||
from models.blip import create_vit, init_tokenizer, is_url
|
||||
|
||||
from timm.models.hub import download_cached_file
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from transformers import BertTokenizer
|
||||
import numpy as np
|
||||
|
||||
class BLIP_NLVR(nn.Module):
|
||||
def __init__(self,
|
||||
med_config = 'configs/med_config.json',
|
||||
image_size = 480,
|
||||
vit = 'base',
|
||||
vit_grad_ckpt = False,
|
||||
vit_ckpt_layer = 0,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
||||
image_size (int): input image size
|
||||
vit (str): model size of vision transformer
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
|
||||
self.tokenizer = init_tokenizer()
|
||||
med_config = BertConfig.from_json_file(med_config)
|
||||
med_config.encoder_width = vision_width
|
||||
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
||||
|
||||
self.cls_head = nn.Sequential(
|
||||
nn.Linear(self.text_encoder.config.hidden_size, self.text_encoder.config.hidden_size),
|
||||
nn.ReLU(),
|
||||
nn.Linear(self.text_encoder.config.hidden_size, 2)
|
||||
)
|
||||
|
||||
def forward(self, image, text, targets, train=True):
|
||||
|
||||
image_embeds = self.visual_encoder(image)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
image0_embeds, image1_embeds = torch.split(image_embeds,targets.size(0))
|
||||
|
||||
text = self.tokenizer(text, padding='longest', return_tensors="pt").to(image.device)
|
||||
text.input_ids[:,0] = self.tokenizer.enc_token_id
|
||||
|
||||
output = self.text_encoder(text.input_ids,
|
||||
attention_mask = text.attention_mask,
|
||||
encoder_hidden_states = [image0_embeds,image1_embeds],
|
||||
encoder_attention_mask = [image_atts[:image0_embeds.size(0)],
|
||||
image_atts[image0_embeds.size(0):]],
|
||||
return_dict = True,
|
||||
)
|
||||
hidden_state = output.last_hidden_state[:,0,:]
|
||||
prediction = self.cls_head(hidden_state)
|
||||
|
||||
if train:
|
||||
loss = F.cross_entropy(prediction, targets)
|
||||
return loss
|
||||
else:
|
||||
return prediction
|
||||
|
||||
def blip_nlvr(pretrained='',**kwargs):
|
||||
model = BLIP_NLVR(**kwargs)
|
||||
if pretrained:
|
||||
model,msg = load_checkpoint(model,pretrained)
|
||||
print("missing keys:")
|
||||
print(msg.missing_keys)
|
||||
return model
|
||||
|
||||
|
||||
def load_checkpoint(model,url_or_filename):
|
||||
if is_url(url_or_filename):
|
||||
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
||||
checkpoint = torch.load(cached_file, map_location='cpu')
|
||||
elif os.path.isfile(url_or_filename):
|
||||
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
||||
else:
|
||||
raise RuntimeError('checkpoint url or path is invalid')
|
||||
state_dict = checkpoint['model']
|
||||
|
||||
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
|
||||
|
||||
for key in list(state_dict.keys()):
|
||||
if 'crossattention.self.' in key:
|
||||
new_key0 = key.replace('self','self0')
|
||||
new_key1 = key.replace('self','self1')
|
||||
state_dict[new_key0] = state_dict[key]
|
||||
state_dict[new_key1] = state_dict[key]
|
||||
elif 'crossattention.output.dense.' in key:
|
||||
new_key0 = key.replace('dense','dense0')
|
||||
new_key1 = key.replace('dense','dense1')
|
||||
state_dict[new_key0] = state_dict[key]
|
||||
state_dict[new_key1] = state_dict[key]
|
||||
|
||||
msg = model.load_state_dict(state_dict,strict=False)
|
||||
print('load checkpoint from %s'%url_or_filename)
|
||||
return model,msg
|
||||
|
339
ldm/models/blip_pretrain.py
Normal file
@ -0,0 +1,339 @@
|
||||
'''
|
||||
* Copyright (c) 2022, salesforce.com, inc.
|
||||
* All rights reserved.
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
* By Junnan Li
|
||||
'''
|
||||
from models.med import BertConfig, BertModel, BertLMHeadModel
|
||||
from transformers import BertTokenizer
|
||||
import transformers
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from models.blip import create_vit, init_tokenizer, load_checkpoint
|
||||
|
||||
class BLIP_Pretrain(nn.Module):
|
||||
def __init__(self,
|
||||
med_config = 'configs/bert_config.json',
|
||||
image_size = 224,
|
||||
vit = 'base',
|
||||
vit_grad_ckpt = False,
|
||||
vit_ckpt_layer = 0,
|
||||
embed_dim = 256,
|
||||
queue_size = 57600,
|
||||
momentum = 0.995,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
||||
image_size (int): input image size
|
||||
vit (str): model size of vision transformer
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, 0)
|
||||
|
||||
if vit=='base':
|
||||
checkpoint = torch.hub.load_state_dict_from_url(
|
||||
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
|
||||
map_location="cpu", check_hash=True)
|
||||
state_dict = checkpoint["model"]
|
||||
msg = self.visual_encoder.load_state_dict(state_dict,strict=False)
|
||||
elif vit=='large':
|
||||
from timm.models.helpers import load_custom_pretrained
|
||||
from timm.models.vision_transformer import default_cfgs
|
||||
load_custom_pretrained(self.visual_encoder,default_cfgs['vit_large_patch16_224_in21k'])
|
||||
|
||||
self.tokenizer = init_tokenizer()
|
||||
encoder_config = BertConfig.from_json_file(med_config)
|
||||
encoder_config.encoder_width = vision_width
|
||||
self.text_encoder = BertModel.from_pretrained('bert-base-uncased',config=encoder_config, add_pooling_layer=False)
|
||||
self.text_encoder.resize_token_embeddings(len(self.tokenizer))
|
||||
|
||||
text_width = self.text_encoder.config.hidden_size
|
||||
|
||||
self.vision_proj = nn.Linear(vision_width, embed_dim)
|
||||
self.text_proj = nn.Linear(text_width, embed_dim)
|
||||
|
||||
self.itm_head = nn.Linear(text_width, 2)
|
||||
|
||||
# create momentum encoders
|
||||
self.visual_encoder_m, vision_width = create_vit(vit,image_size)
|
||||
self.vision_proj_m = nn.Linear(vision_width, embed_dim)
|
||||
self.text_encoder_m = BertModel(config=encoder_config, add_pooling_layer=False)
|
||||
self.text_proj_m = nn.Linear(text_width, embed_dim)
|
||||
|
||||
self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
|
||||
[self.vision_proj,self.vision_proj_m],
|
||||
[self.text_encoder,self.text_encoder_m],
|
||||
[self.text_proj,self.text_proj_m],
|
||||
]
|
||||
self.copy_params()
|
||||
|
||||
# create the queue
|
||||
self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
|
||||
self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
|
||||
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
|
||||
|
||||
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
|
||||
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
|
||||
|
||||
self.queue_size = queue_size
|
||||
self.momentum = momentum
|
||||
self.temp = nn.Parameter(0.07*torch.ones([]))
|
||||
|
||||
# create the decoder
|
||||
decoder_config = BertConfig.from_json_file(med_config)
|
||||
decoder_config.encoder_width = vision_width
|
||||
self.text_decoder = BertLMHeadModel.from_pretrained('bert-base-uncased',config=decoder_config)
|
||||
self.text_decoder.resize_token_embeddings(len(self.tokenizer))
|
||||
tie_encoder_decoder_weights(self.text_encoder,self.text_decoder.bert,'','/attention')
|
||||
|
||||
|
||||
def forward(self, image, caption, alpha):
|
||||
with torch.no_grad():
|
||||
self.temp.clamp_(0.001,0.5)
|
||||
|
||||
image_embeds = self.visual_encoder(image)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
|
||||
|
||||
text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=30,
|
||||
return_tensors="pt").to(image.device)
|
||||
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
|
||||
return_dict = True, mode = 'text')
|
||||
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
|
||||
|
||||
# get momentum features
|
||||
with torch.no_grad():
|
||||
self._momentum_update()
|
||||
image_embeds_m = self.visual_encoder_m(image)
|
||||
image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
|
||||
image_feat_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
|
||||
|
||||
text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,
|
||||
return_dict = True, mode = 'text')
|
||||
text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
|
||||
text_feat_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
|
||||
|
||||
sim_i2t_m = image_feat_m @ text_feat_all / self.temp
|
||||
sim_t2i_m = text_feat_m @ image_feat_all / self.temp
|
||||
|
||||
sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
|
||||
sim_targets.fill_diagonal_(1)
|
||||
|
||||
sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
|
||||
sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
|
||||
|
||||
sim_i2t = image_feat @ text_feat_all / self.temp
|
||||
sim_t2i = text_feat @ image_feat_all / self.temp
|
||||
|
||||
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
|
||||
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
|
||||
|
||||
loss_ita = (loss_i2t+loss_t2i)/2
|
||||
|
||||
self._dequeue_and_enqueue(image_feat_m, text_feat_m)
|
||||
|
||||
###============== Image-text Matching ===================###
|
||||
encoder_input_ids = text.input_ids.clone()
|
||||
encoder_input_ids[:,0] = self.tokenizer.enc_token_id
|
||||
|
||||
# forward the positve image-text pair
|
||||
bs = image.size(0)
|
||||
output_pos = self.text_encoder(encoder_input_ids,
|
||||
attention_mask = text.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
return_dict = True,
|
||||
)
|
||||
with torch.no_grad():
|
||||
weights_t2i = F.softmax(sim_t2i[:,:bs],dim=1)+1e-4
|
||||
weights_t2i.fill_diagonal_(0)
|
||||
weights_i2t = F.softmax(sim_i2t[:,:bs],dim=1)+1e-4
|
||||
weights_i2t.fill_diagonal_(0)
|
||||
|
||||
# select a negative image for each text
|
||||
image_embeds_neg = []
|
||||
for b in range(bs):
|
||||
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
|
||||
image_embeds_neg.append(image_embeds[neg_idx])
|
||||
image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
|
||||
|
||||
# select a negative text for each image
|
||||
text_ids_neg = []
|
||||
text_atts_neg = []
|
||||
for b in range(bs):
|
||||
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
|
||||
text_ids_neg.append(encoder_input_ids[neg_idx])
|
||||
text_atts_neg.append(text.attention_mask[neg_idx])
|
||||
|
||||
text_ids_neg = torch.stack(text_ids_neg,dim=0)
|
||||
text_atts_neg = torch.stack(text_atts_neg,dim=0)
|
||||
|
||||
text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)
|
||||
text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
|
||||
|
||||
image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
|
||||
image_atts_all = torch.cat([image_atts,image_atts],dim=0)
|
||||
|
||||
output_neg = self.text_encoder(text_ids_all,
|
||||
attention_mask = text_atts_all,
|
||||
encoder_hidden_states = image_embeds_all,
|
||||
encoder_attention_mask = image_atts_all,
|
||||
return_dict = True,
|
||||
)
|
||||
|
||||
vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
|
||||
vl_output = self.itm_head(vl_embeddings)
|
||||
|
||||
itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
|
||||
dim=0).to(image.device)
|
||||
loss_itm = F.cross_entropy(vl_output, itm_labels)
|
||||
|
||||
##================= LM ========================##
|
||||
decoder_input_ids = text.input_ids.clone()
|
||||
decoder_input_ids[:,0] = self.tokenizer.bos_token_id
|
||||
decoder_targets = decoder_input_ids.masked_fill(decoder_input_ids == self.tokenizer.pad_token_id, -100)
|
||||
|
||||
decoder_output = self.text_decoder(decoder_input_ids,
|
||||
attention_mask = text.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
labels = decoder_targets,
|
||||
return_dict = True,
|
||||
)
|
||||
|
||||
loss_lm = decoder_output.loss
|
||||
return loss_ita, loss_itm, loss_lm
|
||||
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def copy_params(self):
|
||||
for model_pair in self.model_pairs:
|
||||
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
|
||||
param_m.data.copy_(param.data) # initialize
|
||||
param_m.requires_grad = False # not update by gradient
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def _momentum_update(self):
|
||||
for model_pair in self.model_pairs:
|
||||
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
|
||||
param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def _dequeue_and_enqueue(self, image_feat, text_feat):
|
||||
# gather keys before updating queue
|
||||
image_feats = concat_all_gather(image_feat)
|
||||
text_feats = concat_all_gather(text_feat)
|
||||
|
||||
batch_size = image_feats.shape[0]
|
||||
|
||||
ptr = int(self.queue_ptr)
|
||||
assert self.queue_size % batch_size == 0 # for simplicity
|
||||
|
||||
# replace the keys at ptr (dequeue and enqueue)
|
||||
self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
|
||||
self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
|
||||
ptr = (ptr + batch_size) % self.queue_size # move pointer
|
||||
|
||||
self.queue_ptr[0] = ptr
|
||||
|
||||
|
||||
def blip_pretrain(**kwargs):
|
||||
model = BLIP_Pretrain(**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def concat_all_gather(tensor):
|
||||
"""
|
||||
Performs all_gather operation on the provided tensors.
|
||||
*** Warning ***: torch.distributed.all_gather has no gradient.
|
||||
"""
|
||||
tensors_gather = [torch.ones_like(tensor)
|
||||
for _ in range(torch.distributed.get_world_size())]
|
||||
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
|
||||
|
||||
output = torch.cat(tensors_gather, dim=0)
|
||||
return output
|
||||
|
||||
|
||||
from typing import List
|
||||
def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str):
|
||||
uninitialized_encoder_weights: List[str] = []
|
||||
if decoder.__class__ != encoder.__class__:
|
||||
logger.info(
|
||||
f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
|
||||
)
|
||||
|
||||
def tie_encoder_to_decoder_recursively(
|
||||
decoder_pointer: nn.Module,
|
||||
encoder_pointer: nn.Module,
|
||||
module_name: str,
|
||||
uninitialized_encoder_weights: List[str],
|
||||
skip_key: str,
|
||||
depth=0,
|
||||
):
|
||||
assert isinstance(decoder_pointer, nn.Module) and isinstance(
|
||||
encoder_pointer, nn.Module
|
||||
), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
|
||||
if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
|
||||
assert hasattr(encoder_pointer, "weight")
|
||||
encoder_pointer.weight = decoder_pointer.weight
|
||||
if hasattr(decoder_pointer, "bias"):
|
||||
assert hasattr(encoder_pointer, "bias")
|
||||
encoder_pointer.bias = decoder_pointer.bias
|
||||
print(module_name+' is tied')
|
||||
return
|
||||
|
||||
encoder_modules = encoder_pointer._modules
|
||||
decoder_modules = decoder_pointer._modules
|
||||
if len(decoder_modules) > 0:
|
||||
assert (
|
||||
len(encoder_modules) > 0
|
||||
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
|
||||
|
||||
all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
|
||||
encoder_layer_pos = 0
|
||||
for name, module in decoder_modules.items():
|
||||
if name.isdigit():
|
||||
encoder_name = str(int(name) + encoder_layer_pos)
|
||||
decoder_name = name
|
||||
if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
|
||||
encoder_modules
|
||||
) != len(decoder_modules):
|
||||
# this can happen if the name corresponds to the position in a list module list of layers
|
||||
# in this case the decoder has added a cross-attention that the encoder does not have
|
||||
# thus skip this step and subtract one layer pos from encoder
|
||||
encoder_layer_pos -= 1
|
||||
continue
|
||||
elif name not in encoder_modules:
|
||||
continue
|
||||
elif depth > 500:
|
||||
raise ValueError(
|
||||
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
|
||||
)
|
||||
else:
|
||||
decoder_name = encoder_name = name
|
||||
tie_encoder_to_decoder_recursively(
|
||||
decoder_modules[decoder_name],
|
||||
encoder_modules[encoder_name],
|
||||
module_name + "/" + name,
|
||||
uninitialized_encoder_weights,
|
||||
skip_key,
|
||||
depth=depth + 1,
|
||||
)
|
||||
all_encoder_weights.remove(module_name + "/" + encoder_name)
|
||||
|
||||
uninitialized_encoder_weights += list(all_encoder_weights)
|
||||
|
||||
# tie weights recursively
|
||||
tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key)
|
319
ldm/models/blip_retrieval.py
Normal file
@ -0,0 +1,319 @@
|
||||
from models.med import BertConfig, BertModel
|
||||
from transformers import BertTokenizer
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from models.blip import create_vit, init_tokenizer, load_checkpoint
|
||||
|
||||
class BLIP_Retrieval(nn.Module):
|
||||
def __init__(self,
|
||||
med_config = 'configs/med_config.json',
|
||||
image_size = 384,
|
||||
vit = 'base',
|
||||
vit_grad_ckpt = False,
|
||||
vit_ckpt_layer = 0,
|
||||
embed_dim = 256,
|
||||
queue_size = 57600,
|
||||
momentum = 0.995,
|
||||
negative_all_rank = False,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
||||
image_size (int): input image size
|
||||
vit (str): model size of vision transformer
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
|
||||
self.tokenizer = init_tokenizer()
|
||||
med_config = BertConfig.from_json_file(med_config)
|
||||
med_config.encoder_width = vision_width
|
||||
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
||||
|
||||
text_width = self.text_encoder.config.hidden_size
|
||||
|
||||
self.vision_proj = nn.Linear(vision_width, embed_dim)
|
||||
self.text_proj = nn.Linear(text_width, embed_dim)
|
||||
|
||||
self.itm_head = nn.Linear(text_width, 2)
|
||||
|
||||
# create momentum encoders
|
||||
self.visual_encoder_m, vision_width = create_vit(vit,image_size)
|
||||
self.vision_proj_m = nn.Linear(vision_width, embed_dim)
|
||||
self.text_encoder_m = BertModel(config=med_config, add_pooling_layer=False)
|
||||
self.text_proj_m = nn.Linear(text_width, embed_dim)
|
||||
|
||||
self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
|
||||
[self.vision_proj,self.vision_proj_m],
|
||||
[self.text_encoder,self.text_encoder_m],
|
||||
[self.text_proj,self.text_proj_m],
|
||||
]
|
||||
self.copy_params()
|
||||
|
||||
# create the queue
|
||||
self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
|
||||
self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
|
||||
self.register_buffer("idx_queue", torch.full((1,queue_size),-100))
|
||||
self.register_buffer("ptr_queue", torch.zeros(1, dtype=torch.long))
|
||||
|
||||
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
|
||||
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
|
||||
|
||||
self.queue_size = queue_size
|
||||
self.momentum = momentum
|
||||
self.temp = nn.Parameter(0.07*torch.ones([]))
|
||||
|
||||
self.negative_all_rank = negative_all_rank
|
||||
|
||||
|
||||
def forward(self, image, caption, alpha, idx):
|
||||
with torch.no_grad():
|
||||
self.temp.clamp_(0.001,0.5)
|
||||
|
||||
image_embeds = self.visual_encoder(image)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
|
||||
|
||||
text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
|
||||
return_tensors="pt").to(image.device)
|
||||
|
||||
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
|
||||
return_dict = True, mode = 'text')
|
||||
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
|
||||
|
||||
###============== Image-text Contrastive Learning ===================###
|
||||
idx = idx.view(-1,1)
|
||||
idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()],dim=1)
|
||||
pos_idx = torch.eq(idx, idx_all).float()
|
||||
sim_targets = pos_idx / pos_idx.sum(1,keepdim=True)
|
||||
|
||||
# get momentum features
|
||||
with torch.no_grad():
|
||||
self._momentum_update()
|
||||
image_embeds_m = self.visual_encoder_m(image)
|
||||
image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
|
||||
image_feat_m_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
|
||||
|
||||
text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,
|
||||
return_dict = True, mode = 'text')
|
||||
text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
|
||||
text_feat_m_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
|
||||
|
||||
sim_i2t_m = image_feat_m @ text_feat_m_all / self.temp
|
||||
sim_t2i_m = text_feat_m @ image_feat_m_all / self.temp
|
||||
|
||||
sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
|
||||
sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
|
||||
|
||||
sim_i2t = image_feat @ text_feat_m_all / self.temp
|
||||
sim_t2i = text_feat @ image_feat_m_all / self.temp
|
||||
|
||||
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
|
||||
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
|
||||
|
||||
loss_ita = (loss_i2t+loss_t2i)/2
|
||||
|
||||
idxs = concat_all_gather(idx)
|
||||
self._dequeue_and_enqueue(image_feat_m, text_feat_m, idxs)
|
||||
|
||||
###============== Image-text Matching ===================###
|
||||
encoder_input_ids = text.input_ids.clone()
|
||||
encoder_input_ids[:,0] = self.tokenizer.enc_token_id
|
||||
|
||||
# forward the positve image-text pair
|
||||
bs = image.size(0)
|
||||
output_pos = self.text_encoder(encoder_input_ids,
|
||||
attention_mask = text.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
return_dict = True,
|
||||
)
|
||||
|
||||
|
||||
if self.negative_all_rank:
|
||||
# compute sample similarity
|
||||
with torch.no_grad():
|
||||
mask = torch.eq(idx, idxs.t())
|
||||
|
||||
image_feat_world = concat_all_gather(image_feat)
|
||||
text_feat_world = concat_all_gather(text_feat)
|
||||
|
||||
sim_i2t = image_feat @ text_feat_world.t() / self.temp
|
||||
sim_t2i = text_feat @ image_feat_world.t() / self.temp
|
||||
|
||||
weights_i2t = F.softmax(sim_i2t,dim=1)
|
||||
weights_i2t.masked_fill_(mask, 0)
|
||||
|
||||
weights_t2i = F.softmax(sim_t2i,dim=1)
|
||||
weights_t2i.masked_fill_(mask, 0)
|
||||
|
||||
image_embeds_world = all_gather_with_grad(image_embeds)
|
||||
|
||||
# select a negative image (from all ranks) for each text
|
||||
image_embeds_neg = []
|
||||
for b in range(bs):
|
||||
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
|
||||
image_embeds_neg.append(image_embeds_world[neg_idx])
|
||||
image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
|
||||
|
||||
# select a negative text (from all ranks) for each image
|
||||
input_ids_world = concat_all_gather(encoder_input_ids)
|
||||
att_mask_world = concat_all_gather(text.attention_mask)
|
||||
|
||||
text_ids_neg = []
|
||||
text_atts_neg = []
|
||||
for b in range(bs):
|
||||
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
|
||||
text_ids_neg.append(input_ids_world[neg_idx])
|
||||
text_atts_neg.append(att_mask_world[neg_idx])
|
||||
|
||||
else:
|
||||
with torch.no_grad():
|
||||
mask = torch.eq(idx, idx.t())
|
||||
|
||||
sim_i2t = image_feat @ text_feat.t() / self.temp
|
||||
sim_t2i = text_feat @ image_feat.t() / self.temp
|
||||
|
||||
weights_i2t = F.softmax(sim_i2t,dim=1)
|
||||
weights_i2t.masked_fill_(mask, 0)
|
||||
|
||||
weights_t2i = F.softmax(sim_t2i,dim=1)
|
||||
weights_t2i.masked_fill_(mask, 0)
|
||||
|
||||
# select a negative image (from same rank) for each text
|
||||
image_embeds_neg = []
|
||||
for b in range(bs):
|
||||
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
|
||||
image_embeds_neg.append(image_embeds[neg_idx])
|
||||
image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
|
||||
|
||||
# select a negative text (from same rank) for each image
|
||||
text_ids_neg = []
|
||||
text_atts_neg = []
|
||||
for b in range(bs):
|
||||
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
|
||||
text_ids_neg.append(encoder_input_ids[neg_idx])
|
||||
text_atts_neg.append(text.attention_mask[neg_idx])
|
||||
|
||||
text_ids_neg = torch.stack(text_ids_neg,dim=0)
|
||||
text_atts_neg = torch.stack(text_atts_neg,dim=0)
|
||||
|
||||
text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)
|
||||
text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
|
||||
|
||||
image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
|
||||
image_atts_all = torch.cat([image_atts,image_atts],dim=0)
|
||||
|
||||
output_neg = self.text_encoder(text_ids_all,
|
||||
attention_mask = text_atts_all,
|
||||
encoder_hidden_states = image_embeds_all,
|
||||
encoder_attention_mask = image_atts_all,
|
||||
return_dict = True,
|
||||
)
|
||||
|
||||
|
||||
vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
|
||||
vl_output = self.itm_head(vl_embeddings)
|
||||
|
||||
itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
|
||||
dim=0).to(image.device)
|
||||
loss_itm = F.cross_entropy(vl_output, itm_labels)
|
||||
|
||||
return loss_ita, loss_itm
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def copy_params(self):
|
||||
for model_pair in self.model_pairs:
|
||||
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
|
||||
param_m.data.copy_(param.data) # initialize
|
||||
param_m.requires_grad = False # not update by gradient
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def _momentum_update(self):
|
||||
for model_pair in self.model_pairs:
|
||||
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
|
||||
param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def _dequeue_and_enqueue(self, image_feat, text_feat, idxs):
|
||||
# gather keys before updating queue
|
||||
image_feats = concat_all_gather(image_feat)
|
||||
text_feats = concat_all_gather(text_feat)
|
||||
|
||||
|
||||
batch_size = image_feats.shape[0]
|
||||
|
||||
ptr = int(self.ptr_queue)
|
||||
assert self.queue_size % batch_size == 0 # for simplicity
|
||||
|
||||
# replace the keys at ptr (dequeue and enqueue)
|
||||
self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
|
||||
self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
|
||||
self.idx_queue[:, ptr:ptr + batch_size] = idxs.T
|
||||
ptr = (ptr + batch_size) % self.queue_size # move pointer
|
||||
|
||||
self.ptr_queue[0] = ptr
|
||||
|
||||
|
||||
def blip_retrieval(pretrained='',**kwargs):
|
||||
model = BLIP_Retrieval(**kwargs)
|
||||
if pretrained:
|
||||
model,msg = load_checkpoint(model,pretrained)
|
||||
print("missing keys:")
|
||||
print(msg.missing_keys)
|
||||
return model
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def concat_all_gather(tensor):
|
||||
"""
|
||||
Performs all_gather operation on the provided tensors.
|
||||
*** Warning ***: torch.distributed.all_gather has no gradient.
|
||||
"""
|
||||
tensors_gather = [torch.ones_like(tensor)
|
||||
for _ in range(torch.distributed.get_world_size())]
|
||||
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
|
||||
|
||||
output = torch.cat(tensors_gather, dim=0)
|
||||
return output
|
||||
|
||||
|
||||
class GatherLayer(torch.autograd.Function):
|
||||
"""
|
||||
Gather tensors from all workers with support for backward propagation:
|
||||
This implementation does not cut the gradients as torch.distributed.all_gather does.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x):
|
||||
output = [torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())]
|
||||
torch.distributed.all_gather(output, x)
|
||||
return tuple(output)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, *grads):
|
||||
all_gradients = torch.stack(grads)
|
||||
torch.distributed.all_reduce(all_gradients)
|
||||
return all_gradients[torch.distributed.get_rank()]
|
||||
|
||||
|
||||
def all_gather_with_grad(tensors):
|
||||
"""
|
||||
Performs all_gather operation on the provided tensors.
|
||||
Graph remains connected for backward grad computation.
|
||||
"""
|
||||
# Queue the gathered tensors
|
||||
world_size = torch.distributed.get_world_size()
|
||||
# There is no need for reduction in the single-proc case
|
||||
if world_size == 1:
|
||||
return tensors
|
||||
|
||||
tensor_all = GatherLayer.apply(tensors)
|
||||
|
||||
return torch.cat(tensor_all, dim=0)
|
186
ldm/models/blip_vqa.py
Normal file
@ -0,0 +1,186 @@
|
||||
from models.med import BertConfig, BertModel, BertLMHeadModel
|
||||
from models.blip import create_vit, init_tokenizer, load_checkpoint
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from transformers import BertTokenizer
|
||||
import numpy as np
|
||||
|
||||
class BLIP_VQA(nn.Module):
|
||||
def __init__(self,
|
||||
med_config = 'configs/med_config.json',
|
||||
image_size = 480,
|
||||
vit = 'base',
|
||||
vit_grad_ckpt = False,
|
||||
vit_ckpt_layer = 0,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
||||
image_size (int): input image size
|
||||
vit (str): model size of vision transformer
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.visual_encoder, vision_width = create_vit(vit, image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
|
||||
self.tokenizer = init_tokenizer()
|
||||
|
||||
encoder_config = BertConfig.from_json_file(med_config)
|
||||
encoder_config.encoder_width = vision_width
|
||||
self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False)
|
||||
|
||||
decoder_config = BertConfig.from_json_file(med_config)
|
||||
self.text_decoder = BertLMHeadModel(config=decoder_config)
|
||||
|
||||
|
||||
def forward(self, image, question, answer=None, n=None, weights=None, train=True, inference='rank', k_test=128):
|
||||
|
||||
image_embeds = self.visual_encoder(image)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
|
||||
question = self.tokenizer(question, padding='longest', truncation=True, max_length=35,
|
||||
return_tensors="pt").to(image.device)
|
||||
question.input_ids[:,0] = self.tokenizer.enc_token_id
|
||||
|
||||
if train:
|
||||
'''
|
||||
n: number of answers for each question
|
||||
weights: weight for each answer
|
||||
'''
|
||||
answer = self.tokenizer(answer, padding='longest', return_tensors="pt").to(image.device)
|
||||
answer.input_ids[:,0] = self.tokenizer.bos_token_id
|
||||
answer_targets = answer.input_ids.masked_fill(answer.input_ids == self.tokenizer.pad_token_id, -100)
|
||||
|
||||
question_output = self.text_encoder(question.input_ids,
|
||||
attention_mask = question.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
return_dict = True)
|
||||
|
||||
question_states = []
|
||||
question_atts = []
|
||||
for b, n in enumerate(n):
|
||||
question_states += [question_output.last_hidden_state[b]]*n
|
||||
question_atts += [question.attention_mask[b]]*n
|
||||
question_states = torch.stack(question_states,0)
|
||||
question_atts = torch.stack(question_atts,0)
|
||||
|
||||
answer_output = self.text_decoder(answer.input_ids,
|
||||
attention_mask = answer.attention_mask,
|
||||
encoder_hidden_states = question_states,
|
||||
encoder_attention_mask = question_atts,
|
||||
labels = answer_targets,
|
||||
return_dict = True,
|
||||
reduction = 'none',
|
||||
)
|
||||
|
||||
loss = weights * answer_output.loss
|
||||
loss = loss.sum()/image.size(0)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
else:
|
||||
question_output = self.text_encoder(question.input_ids,
|
||||
attention_mask = question.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
return_dict = True)
|
||||
|
||||
if inference=='generate':
|
||||
num_beams = 3
|
||||
question_states = question_output.last_hidden_state.repeat_interleave(num_beams,dim=0)
|
||||
question_atts = torch.ones(question_states.size()[:-1],dtype=torch.long).to(question_states.device)
|
||||
model_kwargs = {"encoder_hidden_states": question_states, "encoder_attention_mask":question_atts}
|
||||
|
||||
bos_ids = torch.full((image.size(0),1),fill_value=self.tokenizer.bos_token_id,device=image.device)
|
||||
|
||||
outputs = self.text_decoder.generate(input_ids=bos_ids,
|
||||
max_length=10,
|
||||
min_length=1,
|
||||
num_beams=num_beams,
|
||||
eos_token_id=self.tokenizer.sep_token_id,
|
||||
pad_token_id=self.tokenizer.pad_token_id,
|
||||
**model_kwargs)
|
||||
|
||||
answers = []
|
||||
for output in outputs:
|
||||
answer = self.tokenizer.decode(output, skip_special_tokens=True)
|
||||
answers.append(answer)
|
||||
return answers
|
||||
|
||||
elif inference=='rank':
|
||||
max_ids = self.rank_answer(question_output.last_hidden_state, question.attention_mask,
|
||||
answer.input_ids, answer.attention_mask, k_test)
|
||||
return max_ids
|
||||
|
||||
|
||||
|
||||
def rank_answer(self, question_states, question_atts, answer_ids, answer_atts, k):
|
||||
|
||||
num_ques = question_states.size(0)
|
||||
start_ids = answer_ids[0,0].repeat(num_ques,1) # bos token
|
||||
|
||||
start_output = self.text_decoder(start_ids,
|
||||
encoder_hidden_states = question_states,
|
||||
encoder_attention_mask = question_atts,
|
||||
return_dict = True,
|
||||
reduction = 'none')
|
||||
logits = start_output.logits[:,0,:] # first token's logit
|
||||
|
||||
# topk_probs: top-k probability
|
||||
# topk_ids: [num_question, k]
|
||||
answer_first_token = answer_ids[:,1]
|
||||
prob_first_token = F.softmax(logits,dim=1).index_select(dim=1, index=answer_first_token)
|
||||
topk_probs, topk_ids = prob_first_token.topk(k,dim=1)
|
||||
|
||||
# answer input: [num_question*k, answer_len]
|
||||
input_ids = []
|
||||
input_atts = []
|
||||
for b, topk_id in enumerate(topk_ids):
|
||||
input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
|
||||
input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
|
||||
input_ids = torch.cat(input_ids,dim=0)
|
||||
input_atts = torch.cat(input_atts,dim=0)
|
||||
|
||||
targets_ids = input_ids.masked_fill(input_ids == self.tokenizer.pad_token_id, -100)
|
||||
|
||||
# repeat encoder's output for top-k answers
|
||||
question_states = tile(question_states, 0, k)
|
||||
question_atts = tile(question_atts, 0, k)
|
||||
|
||||
output = self.text_decoder(input_ids,
|
||||
attention_mask = input_atts,
|
||||
encoder_hidden_states = question_states,
|
||||
encoder_attention_mask = question_atts,
|
||||
labels = targets_ids,
|
||||
return_dict = True,
|
||||
reduction = 'none')
|
||||
|
||||
log_probs_sum = -output.loss
|
||||
log_probs_sum = log_probs_sum.view(num_ques,k)
|
||||
|
||||
max_topk_ids = log_probs_sum.argmax(dim=1)
|
||||
max_ids = topk_ids[max_topk_ids>=0,max_topk_ids]
|
||||
|
||||
return max_ids
|
||||
|
||||
|
||||
def blip_vqa(pretrained='',**kwargs):
|
||||
model = BLIP_VQA(**kwargs)
|
||||
if pretrained:
|
||||
model,msg = load_checkpoint(model,pretrained)
|
||||
# assert(len(msg.missing_keys)==0)
|
||||
return model
|
||||
|
||||
|
||||
def tile(x, dim, n_tile):
|
||||
init_dim = x.size(dim)
|
||||
repeat_idx = [1] * x.dim()
|
||||
repeat_idx[dim] = n_tile
|
||||
x = x.repeat(*(repeat_idx))
|
||||
order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]))
|
||||
return torch.index_select(x, dim, order_index.to(x.device))
|
||||
|
||||
|
955
ldm/models/med.py
Normal file
@ -0,0 +1,955 @@
|
||||
'''
|
||||
* Copyright (c) 2022, salesforce.com, inc.
|
||||
* All rights reserved.
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
* By Junnan Li
|
||||
* Based on huggingface code base
|
||||
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
|
||||
'''
|
||||
|
||||
import math
|
||||
import os
|
||||
import warnings
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor, device, dtype, nn
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
import torch.nn.functional as F
|
||||
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.file_utils import (
|
||||
ModelOutput,
|
||||
)
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPastAndCrossAttentions,
|
||||
BaseModelOutputWithPoolingAndCrossAttentions,
|
||||
CausalLMOutputWithCrossAttentions,
|
||||
MaskedLMOutput,
|
||||
MultipleChoiceModelOutput,
|
||||
NextSentencePredictorOutput,
|
||||
QuestionAnsweringModelOutput,
|
||||
SequenceClassifierOutput,
|
||||
TokenClassifierOutput,
|
||||
)
|
||||
from transformers.modeling_utils import (
|
||||
PreTrainedModel,
|
||||
apply_chunking_to_forward,
|
||||
find_pruneable_heads_and_indices,
|
||||
prune_linear_layer,
|
||||
)
|
||||
from transformers.utils import logging
|
||||
from transformers.models.bert.configuration_bert import BertConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class BertEmbeddings(nn.Module):
|
||||
"""Construct the embeddings from word and position embeddings."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
||||
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
||||
|
||||
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
||||
# any TensorFlow checkpoint file
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
||||
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
||||
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
||||
|
||||
self.config = config
|
||||
|
||||
def forward(
|
||||
self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
||||
):
|
||||
if input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
else:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
|
||||
seq_length = input_shape[1]
|
||||
|
||||
if position_ids is None:
|
||||
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.word_embeddings(input_ids)
|
||||
|
||||
embeddings = inputs_embeds
|
||||
|
||||
if self.position_embedding_type == "absolute":
|
||||
position_embeddings = self.position_embeddings(position_ids)
|
||||
embeddings += position_embeddings
|
||||
embeddings = self.LayerNorm(embeddings)
|
||||
embeddings = self.dropout(embeddings)
|
||||
return embeddings
|
||||
|
||||
|
||||
class BertSelfAttention(nn.Module):
|
||||
def __init__(self, config, is_cross_attention):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
||||
raise ValueError(
|
||||
"The hidden size (%d) is not a multiple of the number of attention "
|
||||
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
||||
)
|
||||
|
||||
self.num_attention_heads = config.num_attention_heads
|
||||
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
||||
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||||
|
||||
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
||||
if is_cross_attention:
|
||||
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
||||
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
||||
else:
|
||||
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
||||
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
||||
|
||||
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
||||
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
||||
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
||||
self.max_position_embeddings = config.max_position_embeddings
|
||||
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
||||
self.save_attention = False
|
||||
|
||||
def save_attn_gradients(self, attn_gradients):
|
||||
self.attn_gradients = attn_gradients
|
||||
|
||||
def get_attn_gradients(self):
|
||||
return self.attn_gradients
|
||||
|
||||
def save_attention_map(self, attention_map):
|
||||
self.attention_map = attention_map
|
||||
|
||||
def get_attention_map(self):
|
||||
return self.attention_map
|
||||
|
||||
def transpose_for_scores(self, x):
|
||||
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
||||
x = x.view(*new_x_shape)
|
||||
return x.permute(0, 2, 1, 3)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_value=None,
|
||||
output_attentions=False,
|
||||
):
|
||||
mixed_query_layer = self.query(hidden_states)
|
||||
|
||||
# If this is instantiated as a cross-attention module, the keys
|
||||
# and values come from an encoder; the attention mask needs to be
|
||||
# such that the encoder's padding tokens are not attended to.
|
||||
is_cross_attention = encoder_hidden_states is not None
|
||||
|
||||
if is_cross_attention:
|
||||
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
||||
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
||||
attention_mask = encoder_attention_mask
|
||||
elif past_key_value is not None:
|
||||
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||||
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||||
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
||||
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
||||
else:
|
||||
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||||
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||||
|
||||
query_layer = self.transpose_for_scores(mixed_query_layer)
|
||||
|
||||
past_key_value = (key_layer, value_layer)
|
||||
|
||||
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||||
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
||||
|
||||
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
||||
seq_length = hidden_states.size()[1]
|
||||
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
||||
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
||||
distance = position_ids_l - position_ids_r
|
||||
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
||||
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
||||
|
||||
if self.position_embedding_type == "relative_key":
|
||||
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
||||
attention_scores = attention_scores + relative_position_scores
|
||||
elif self.position_embedding_type == "relative_key_query":
|
||||
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
||||
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
||||
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
||||
|
||||
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
||||
if attention_mask is not None:
|
||||
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
||||
attention_scores = attention_scores + attention_mask
|
||||
|
||||
# Normalize the attention scores to probabilities.
|
||||
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
||||
|
||||
if is_cross_attention and self.save_attention:
|
||||
self.save_attention_map(attention_probs)
|
||||
attention_probs.register_hook(self.save_attn_gradients)
|
||||
|
||||
# This is actually dropping out entire tokens to attend to, which might
|
||||
# seem a bit unusual, but is taken from the original Transformer paper.
|
||||
attention_probs_dropped = self.dropout(attention_probs)
|
||||
|
||||
# Mask heads if we want to
|
||||
if head_mask is not None:
|
||||
attention_probs_dropped = attention_probs_dropped * head_mask
|
||||
|
||||
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
||||
|
||||
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||||
context_layer = context_layer.view(*new_context_layer_shape)
|
||||
|
||||
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
||||
|
||||
outputs = outputs + (past_key_value,)
|
||||
return outputs
|
||||
|
||||
|
||||
class BertSelfOutput(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
def forward(self, hidden_states, input_tensor):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertAttention(nn.Module):
|
||||
def __init__(self, config, is_cross_attention=False):
|
||||
super().__init__()
|
||||
self.self = BertSelfAttention(config, is_cross_attention)
|
||||
self.output = BertSelfOutput(config)
|
||||
self.pruned_heads = set()
|
||||
|
||||
def prune_heads(self, heads):
|
||||
if len(heads) == 0:
|
||||
return
|
||||
heads, index = find_pruneable_heads_and_indices(
|
||||
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
||||
)
|
||||
|
||||
# Prune linear layers
|
||||
self.self.query = prune_linear_layer(self.self.query, index)
|
||||
self.self.key = prune_linear_layer(self.self.key, index)
|
||||
self.self.value = prune_linear_layer(self.self.value, index)
|
||||
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
||||
|
||||
# Update hyper params and store pruned heads
|
||||
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
||||
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
||||
self.pruned_heads = self.pruned_heads.union(heads)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_value=None,
|
||||
output_attentions=False,
|
||||
):
|
||||
self_outputs = self.self(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
attention_output = self.output(self_outputs[0], hidden_states)
|
||||
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
||||
return outputs
|
||||
|
||||
|
||||
class BertIntermediate(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
||||
if isinstance(config.hidden_act, str):
|
||||
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||||
else:
|
||||
self.intermediate_act_fn = config.hidden_act
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.intermediate_act_fn(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertOutput(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
def forward(self, hidden_states, input_tensor):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertLayer(nn.Module):
|
||||
def __init__(self, config, layer_num):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||||
self.seq_len_dim = 1
|
||||
self.attention = BertAttention(config)
|
||||
self.layer_num = layer_num
|
||||
if self.config.add_cross_attention:
|
||||
self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
|
||||
self.intermediate = BertIntermediate(config)
|
||||
self.output = BertOutput(config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_value=None,
|
||||
output_attentions=False,
|
||||
mode=None,
|
||||
):
|
||||
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
||||
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
||||
self_attention_outputs = self.attention(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
output_attentions=output_attentions,
|
||||
past_key_value=self_attn_past_key_value,
|
||||
)
|
||||
attention_output = self_attention_outputs[0]
|
||||
|
||||
outputs = self_attention_outputs[1:-1]
|
||||
present_key_value = self_attention_outputs[-1]
|
||||
|
||||
if mode=='multimodal':
|
||||
assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
|
||||
|
||||
cross_attention_outputs = self.crossattention(
|
||||
attention_output,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
attention_output = cross_attention_outputs[0]
|
||||
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
||||
layer_output = apply_chunking_to_forward(
|
||||
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
||||
)
|
||||
outputs = (layer_output,) + outputs
|
||||
|
||||
outputs = outputs + (present_key_value,)
|
||||
|
||||
return outputs
|
||||
|
||||
def feed_forward_chunk(self, attention_output):
|
||||
intermediate_output = self.intermediate(attention_output)
|
||||
layer_output = self.output(intermediate_output, attention_output)
|
||||
return layer_output
|
||||
|
||||
|
||||
class BertEncoder(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_values=None,
|
||||
use_cache=None,
|
||||
output_attentions=False,
|
||||
output_hidden_states=False,
|
||||
return_dict=True,
|
||||
mode='multimodal',
|
||||
):
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
||||
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
for i in range(self.config.num_hidden_layers):
|
||||
layer_module = self.layer[i]
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||||
past_key_value = past_key_values[i] if past_key_values is not None else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
if use_cache:
|
||||
logger.warn(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
return module(*inputs, past_key_value, output_attentions)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(layer_module),
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
mode=mode,
|
||||
)
|
||||
else:
|
||||
layer_outputs = layer_module(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
mode=mode,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[-1],)
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
v
|
||||
for v in [
|
||||
hidden_states,
|
||||
next_decoder_cache,
|
||||
all_hidden_states,
|
||||
all_self_attentions,
|
||||
all_cross_attentions,
|
||||
]
|
||||
if v is not None
|
||||
)
|
||||
return BaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_decoder_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
cross_attentions=all_cross_attentions,
|
||||
)
|
||||
|
||||
|
||||
class BertPooler(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
self.activation = nn.Tanh()
|
||||
|
||||
def forward(self, hidden_states):
|
||||
# We "pool" the model by simply taking the hidden state corresponding
|
||||
# to the first token.
|
||||
first_token_tensor = hidden_states[:, 0]
|
||||
pooled_output = self.dense(first_token_tensor)
|
||||
pooled_output = self.activation(pooled_output)
|
||||
return pooled_output
|
||||
|
||||
|
||||
class BertPredictionHeadTransform(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
if isinstance(config.hidden_act, str):
|
||||
self.transform_act_fn = ACT2FN[config.hidden_act]
|
||||
else:
|
||||
self.transform_act_fn = config.hidden_act
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.transform_act_fn(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertLMPredictionHead(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.transform = BertPredictionHeadTransform(config)
|
||||
|
||||
# The output weights are the same as the input embeddings, but there is
|
||||
# an output-only bias for each token.
|
||||
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
||||
|
||||
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
||||
self.decoder.bias = self.bias
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.transform(hidden_states)
|
||||
hidden_states = self.decoder(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertOnlyMLMHead(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.predictions = BertLMPredictionHead(config)
|
||||
|
||||
def forward(self, sequence_output):
|
||||
prediction_scores = self.predictions(sequence_output)
|
||||
return prediction_scores
|
||||
|
||||
|
||||
class BertPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = BertConfig
|
||||
base_model_prefix = "bert"
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
||||
|
||||
def _init_weights(self, module):
|
||||
""" Initialize the weights """
|
||||
if isinstance(module, (nn.Linear, nn.Embedding)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
if isinstance(module, nn.Linear) and module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
|
||||
|
||||
class BertModel(BertPreTrainedModel):
|
||||
"""
|
||||
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
||||
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
||||
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
||||
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
||||
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
||||
input to the forward pass.
|
||||
"""
|
||||
|
||||
def __init__(self, config, add_pooling_layer=True):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
self.embeddings = BertEmbeddings(config)
|
||||
|
||||
self.encoder = BertEncoder(config)
|
||||
|
||||
self.pooler = BertPooler(config) if add_pooling_layer else None
|
||||
|
||||
self.init_weights()
|
||||
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings.word_embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embeddings.word_embeddings = value
|
||||
|
||||
def _prune_heads(self, heads_to_prune):
|
||||
"""
|
||||
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||||
class PreTrainedModel
|
||||
"""
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
|
||||
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
|
||||
"""
|
||||
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
||||
|
||||
Arguments:
|
||||
attention_mask (:obj:`torch.Tensor`):
|
||||
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
||||
input_shape (:obj:`Tuple[int]`):
|
||||
The shape of the input to the model.
|
||||
device: (:obj:`torch.device`):
|
||||
The device of the input to the model.
|
||||
|
||||
Returns:
|
||||
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
||||
"""
|
||||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||||
# ourselves in which case we just need to make it broadcastable to all heads.
|
||||
if attention_mask.dim() == 3:
|
||||
extended_attention_mask = attention_mask[:, None, :, :]
|
||||
elif attention_mask.dim() == 2:
|
||||
# Provided a padding mask of dimensions [batch_size, seq_length]
|
||||
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
||||
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
||||
if is_decoder:
|
||||
batch_size, seq_length = input_shape
|
||||
|
||||
seq_ids = torch.arange(seq_length, device=device)
|
||||
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
||||
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
|
||||
# causal and attention masks must have same type with pytorch version < 1.3
|
||||
causal_mask = causal_mask.to(attention_mask.dtype)
|
||||
|
||||
if causal_mask.shape[1] < attention_mask.shape[1]:
|
||||
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
||||
causal_mask = torch.cat(
|
||||
[
|
||||
torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
|
||||
causal_mask,
|
||||
],
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
||||
else:
|
||||
extended_attention_mask = attention_mask[:, None, None, :]
|
||||
else:
|
||||
raise ValueError(
|
||||
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
||||
input_shape, attention_mask.shape
|
||||
)
|
||||
)
|
||||
|
||||
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||||
# masked positions, this operation will create a tensor which is 0.0 for
|
||||
# positions we want to attend and -10000.0 for masked positions.
|
||||
# Since we are adding it to the raw scores before the softmax, this is
|
||||
# effectively the same as removing these entirely.
|
||||
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
||||
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
||||
return extended_attention_mask
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
encoder_embeds=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_values=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
is_decoder=False,
|
||||
mode='multimodal',
|
||||
):
|
||||
r"""
|
||||
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
the model is configured as a decoder.
|
||||
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
||||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||||
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
||||
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
||||
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
||||
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
||||
use_cache (:obj:`bool`, `optional`):
|
||||
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
||||
decoding (see :obj:`past_key_values`).
|
||||
"""
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if is_decoder:
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
else:
|
||||
use_cache = False
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
batch_size, seq_length = input_shape
|
||||
device = input_ids.device
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
batch_size, seq_length = input_shape
|
||||
device = inputs_embeds.device
|
||||
elif encoder_embeds is not None:
|
||||
input_shape = encoder_embeds.size()[:-1]
|
||||
batch_size, seq_length = input_shape
|
||||
device = encoder_embeds.device
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
|
||||
|
||||
# past_key_values_length
|
||||
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||||
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
||||
|
||||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||||
# ourselves in which case we just need to make it broadcastable to all heads.
|
||||
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
|
||||
device, is_decoder)
|
||||
|
||||
# If a 2D or 3D attention mask is provided for the cross-attention
|
||||
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
||||
if encoder_hidden_states is not None:
|
||||
if type(encoder_hidden_states) == list:
|
||||
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
||||
else:
|
||||
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
||||
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
||||
|
||||
if type(encoder_attention_mask) == list:
|
||||
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
||||
elif encoder_attention_mask is None:
|
||||
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
||||
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
||||
else:
|
||||
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
||||
else:
|
||||
encoder_extended_attention_mask = None
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_heads x N x N
|
||||
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||||
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||||
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||||
|
||||
if encoder_embeds is None:
|
||||
embedding_output = self.embeddings(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
inputs_embeds=inputs_embeds,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
else:
|
||||
embedding_output = encoder_embeds
|
||||
|
||||
encoder_outputs = self.encoder(
|
||||
embedding_output,
|
||||
attention_mask=extended_attention_mask,
|
||||
head_mask=head_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_extended_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
mode=mode,
|
||||
)
|
||||
sequence_output = encoder_outputs[0]
|
||||
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
||||
|
||||
if not return_dict:
|
||||
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
||||
|
||||
return BaseModelOutputWithPoolingAndCrossAttentions(
|
||||
last_hidden_state=sequence_output,
|
||||
pooler_output=pooled_output,
|
||||
past_key_values=encoder_outputs.past_key_values,
|
||||
hidden_states=encoder_outputs.hidden_states,
|
||||
attentions=encoder_outputs.attentions,
|
||||
cross_attentions=encoder_outputs.cross_attentions,
|
||||
)
|
||||
|
||||
|
||||
|
||||
class BertLMHeadModel(BertPreTrainedModel):
|
||||
|
||||
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
self.bert = BertModel(config, add_pooling_layer=False)
|
||||
self.cls = BertOnlyMLMHead(config)
|
||||
|
||||
self.init_weights()
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.cls.predictions.decoder
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.cls.predictions.decoder = new_embeddings
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
labels=None,
|
||||
past_key_values=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
return_logits=False,
|
||||
is_decoder=True,
|
||||
reduction='mean',
|
||||
mode='multimodal',
|
||||
):
|
||||
r"""
|
||||
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
the model is configured as a decoder.
|
||||
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
||||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||||
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
||||
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
||||
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
||||
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
||||
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
||||
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
||||
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
||||
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
||||
use_cache (:obj:`bool`, `optional`):
|
||||
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
||||
decoding (see :obj:`past_key_values`).
|
||||
Returns:
|
||||
Example::
|
||||
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
||||
>>> import torch
|
||||
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
||||
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
||||
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
||||
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
>>> prediction_logits = outputs.logits
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
if labels is not None:
|
||||
use_cache = False
|
||||
|
||||
outputs = self.bert(
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
is_decoder=is_decoder,
|
||||
mode=mode,
|
||||
)
|
||||
|
||||
sequence_output = outputs[0]
|
||||
prediction_scores = self.cls(sequence_output)
|
||||
|
||||
if return_logits:
|
||||
return prediction_scores[:, :-1, :].contiguous()
|
||||
|
||||
lm_loss = None
|
||||
if labels is not None:
|
||||
# we are doing next-token prediction; shift prediction scores and input ids by one
|
||||
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
||||
labels = labels[:, 1:].contiguous()
|
||||
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
|
||||
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
if reduction=='none':
|
||||
lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1)
|
||||
|
||||
if not return_dict:
|
||||
output = (prediction_scores,) + outputs[2:]
|
||||
return ((lm_loss,) + output) if lm_loss is not None else output
|
||||
|
||||
return CausalLMOutputWithCrossAttentions(
|
||||
loss=lm_loss,
|
||||
logits=prediction_scores,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
cross_attentions=outputs.cross_attentions,
|
||||
)
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
|
||||
input_shape = input_ids.shape
|
||||
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
||||
if attention_mask is None:
|
||||
attention_mask = input_ids.new_ones(input_shape)
|
||||
|
||||
# cut decoder_input_ids if past is used
|
||||
if past is not None:
|
||||
input_ids = input_ids[:, -1:]
|
||||
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"past_key_values": past,
|
||||
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
||||
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
||||
"is_decoder": True,
|
||||
}
|
||||
|
||||
def _reorder_cache(self, past, beam_idx):
|
||||
reordered_past = ()
|
||||
for layer_past in past:
|
||||
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
||||
return reordered_past
|
843
ldm/models/nlvr_encoder.py
Normal file
@ -0,0 +1,843 @@
|
||||
import math
|
||||
import os
|
||||
import warnings
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor, device, dtype, nn
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
import torch.nn.functional as F
|
||||
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.file_utils import (
|
||||
ModelOutput,
|
||||
)
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPastAndCrossAttentions,
|
||||
BaseModelOutputWithPoolingAndCrossAttentions,
|
||||
CausalLMOutputWithCrossAttentions,
|
||||
MaskedLMOutput,
|
||||
MultipleChoiceModelOutput,
|
||||
NextSentencePredictorOutput,
|
||||
QuestionAnsweringModelOutput,
|
||||
SequenceClassifierOutput,
|
||||
TokenClassifierOutput,
|
||||
)
|
||||
from transformers.modeling_utils import (
|
||||
PreTrainedModel,
|
||||
apply_chunking_to_forward,
|
||||
find_pruneable_heads_and_indices,
|
||||
prune_linear_layer,
|
||||
)
|
||||
from transformers.utils import logging
|
||||
from transformers.models.bert.configuration_bert import BertConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class BertEmbeddings(nn.Module):
|
||||
"""Construct the embeddings from word and position embeddings."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
||||
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
||||
|
||||
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
||||
# any TensorFlow checkpoint file
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
||||
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
||||
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
||||
|
||||
self.config = config
|
||||
|
||||
def forward(
|
||||
self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
||||
):
|
||||
if input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
else:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
|
||||
seq_length = input_shape[1]
|
||||
|
||||
if position_ids is None:
|
||||
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.word_embeddings(input_ids)
|
||||
|
||||
embeddings = inputs_embeds
|
||||
|
||||
if self.position_embedding_type == "absolute":
|
||||
position_embeddings = self.position_embeddings(position_ids)
|
||||
embeddings += position_embeddings
|
||||
embeddings = self.LayerNorm(embeddings)
|
||||
embeddings = self.dropout(embeddings)
|
||||
return embeddings
|
||||
|
||||
|
||||
class BertSelfAttention(nn.Module):
|
||||
def __init__(self, config, is_cross_attention):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
||||
raise ValueError(
|
||||
"The hidden size (%d) is not a multiple of the number of attention "
|
||||
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
||||
)
|
||||
|
||||
self.num_attention_heads = config.num_attention_heads
|
||||
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
||||
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||||
|
||||
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
||||
if is_cross_attention:
|
||||
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
||||
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
||||
else:
|
||||
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
||||
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
||||
|
||||
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
||||
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
||||
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
||||
self.max_position_embeddings = config.max_position_embeddings
|
||||
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
||||
self.save_attention = False
|
||||
|
||||
def save_attn_gradients(self, attn_gradients):
|
||||
self.attn_gradients = attn_gradients
|
||||
|
||||
def get_attn_gradients(self):
|
||||
return self.attn_gradients
|
||||
|
||||
def save_attention_map(self, attention_map):
|
||||
self.attention_map = attention_map
|
||||
|
||||
def get_attention_map(self):
|
||||
return self.attention_map
|
||||
|
||||
def transpose_for_scores(self, x):
|
||||
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
||||
x = x.view(*new_x_shape)
|
||||
return x.permute(0, 2, 1, 3)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_value=None,
|
||||
output_attentions=False,
|
||||
):
|
||||
mixed_query_layer = self.query(hidden_states)
|
||||
|
||||
# If this is instantiated as a cross-attention module, the keys
|
||||
# and values come from an encoder; the attention mask needs to be
|
||||
# such that the encoder's padding tokens are not attended to.
|
||||
is_cross_attention = encoder_hidden_states is not None
|
||||
|
||||
if is_cross_attention:
|
||||
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
||||
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
||||
attention_mask = encoder_attention_mask
|
||||
elif past_key_value is not None:
|
||||
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||||
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||||
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
||||
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
||||
else:
|
||||
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||||
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||||
|
||||
query_layer = self.transpose_for_scores(mixed_query_layer)
|
||||
|
||||
past_key_value = (key_layer, value_layer)
|
||||
|
||||
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||||
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
||||
|
||||
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
||||
seq_length = hidden_states.size()[1]
|
||||
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
||||
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
||||
distance = position_ids_l - position_ids_r
|
||||
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
||||
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
||||
|
||||
if self.position_embedding_type == "relative_key":
|
||||
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
||||
attention_scores = attention_scores + relative_position_scores
|
||||
elif self.position_embedding_type == "relative_key_query":
|
||||
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
||||
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
||||
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
||||
|
||||
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
||||
if attention_mask is not None:
|
||||
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
||||
attention_scores = attention_scores + attention_mask
|
||||
|
||||
# Normalize the attention scores to probabilities.
|
||||
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
||||
|
||||
if is_cross_attention and self.save_attention:
|
||||
self.save_attention_map(attention_probs)
|
||||
attention_probs.register_hook(self.save_attn_gradients)
|
||||
|
||||
# This is actually dropping out entire tokens to attend to, which might
|
||||
# seem a bit unusual, but is taken from the original Transformer paper.
|
||||
attention_probs_dropped = self.dropout(attention_probs)
|
||||
|
||||
# Mask heads if we want to
|
||||
if head_mask is not None:
|
||||
attention_probs_dropped = attention_probs_dropped * head_mask
|
||||
|
||||
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
||||
|
||||
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||||
context_layer = context_layer.view(*new_context_layer_shape)
|
||||
|
||||
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
||||
|
||||
outputs = outputs + (past_key_value,)
|
||||
return outputs
|
||||
|
||||
|
||||
class BertSelfOutput(nn.Module):
|
||||
def __init__(self, config, twin=False, merge=False):
|
||||
super().__init__()
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
if twin:
|
||||
self.dense0 = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
self.dense1 = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
else:
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
if merge:
|
||||
self.act = ACT2FN[config.hidden_act]
|
||||
self.merge_layer = nn.Linear(config.hidden_size * 2, config.hidden_size)
|
||||
self.merge = True
|
||||
else:
|
||||
self.merge = False
|
||||
|
||||
def forward(self, hidden_states, input_tensor):
|
||||
if type(hidden_states) == list:
|
||||
hidden_states0 = self.dense0(hidden_states[0])
|
||||
hidden_states1 = self.dense1(hidden_states[1])
|
||||
if self.merge:
|
||||
#hidden_states = self.merge_layer(self.act(torch.cat([hidden_states0,hidden_states1],dim=-1)))
|
||||
hidden_states = self.merge_layer(torch.cat([hidden_states0,hidden_states1],dim=-1))
|
||||
else:
|
||||
hidden_states = (hidden_states0+hidden_states1)/2
|
||||
else:
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertAttention(nn.Module):
|
||||
def __init__(self, config, is_cross_attention=False, layer_num=-1):
|
||||
super().__init__()
|
||||
if is_cross_attention:
|
||||
self.self0 = BertSelfAttention(config, is_cross_attention)
|
||||
self.self1 = BertSelfAttention(config, is_cross_attention)
|
||||
else:
|
||||
self.self = BertSelfAttention(config, is_cross_attention)
|
||||
self.output = BertSelfOutput(config, twin=is_cross_attention, merge=(is_cross_attention and layer_num>=6))
|
||||
self.pruned_heads = set()
|
||||
|
||||
def prune_heads(self, heads):
|
||||
if len(heads) == 0:
|
||||
return
|
||||
heads, index = find_pruneable_heads_and_indices(
|
||||
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
||||
)
|
||||
|
||||
# Prune linear layers
|
||||
self.self.query = prune_linear_layer(self.self.query, index)
|
||||
self.self.key = prune_linear_layer(self.self.key, index)
|
||||
self.self.value = prune_linear_layer(self.self.value, index)
|
||||
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
||||
|
||||
# Update hyper params and store pruned heads
|
||||
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
||||
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
||||
self.pruned_heads = self.pruned_heads.union(heads)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_value=None,
|
||||
output_attentions=False,
|
||||
):
|
||||
if type(encoder_hidden_states)==list:
|
||||
self_outputs0 = self.self0(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
encoder_hidden_states[0],
|
||||
encoder_attention_mask[0],
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
self_outputs1 = self.self1(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
encoder_hidden_states[1],
|
||||
encoder_attention_mask[1],
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
attention_output = self.output([self_outputs0[0],self_outputs1[0]], hidden_states)
|
||||
|
||||
outputs = (attention_output,) + self_outputs0[1:] # add attentions if we output them
|
||||
else:
|
||||
self_outputs = self.self(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
attention_output = self.output(self_outputs[0], hidden_states)
|
||||
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
||||
return outputs
|
||||
|
||||
|
||||
class BertIntermediate(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
||||
if isinstance(config.hidden_act, str):
|
||||
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||||
else:
|
||||
self.intermediate_act_fn = config.hidden_act
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.intermediate_act_fn(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertOutput(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
def forward(self, hidden_states, input_tensor):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertLayer(nn.Module):
|
||||
def __init__(self, config, layer_num):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||||
self.seq_len_dim = 1
|
||||
self.attention = BertAttention(config)
|
||||
self.layer_num = layer_num
|
||||
if self.config.add_cross_attention:
|
||||
self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention, layer_num=layer_num)
|
||||
self.intermediate = BertIntermediate(config)
|
||||
self.output = BertOutput(config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_value=None,
|
||||
output_attentions=False,
|
||||
mode=None,
|
||||
):
|
||||
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
||||
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
||||
self_attention_outputs = self.attention(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
output_attentions=output_attentions,
|
||||
past_key_value=self_attn_past_key_value,
|
||||
)
|
||||
attention_output = self_attention_outputs[0]
|
||||
|
||||
outputs = self_attention_outputs[1:-1]
|
||||
present_key_value = self_attention_outputs[-1]
|
||||
|
||||
if mode=='multimodal':
|
||||
assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
|
||||
cross_attention_outputs = self.crossattention(
|
||||
attention_output,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
attention_output = cross_attention_outputs[0]
|
||||
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
||||
layer_output = apply_chunking_to_forward(
|
||||
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
||||
)
|
||||
outputs = (layer_output,) + outputs
|
||||
|
||||
outputs = outputs + (present_key_value,)
|
||||
|
||||
return outputs
|
||||
|
||||
def feed_forward_chunk(self, attention_output):
|
||||
intermediate_output = self.intermediate(attention_output)
|
||||
layer_output = self.output(intermediate_output, attention_output)
|
||||
return layer_output
|
||||
|
||||
|
||||
class BertEncoder(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_values=None,
|
||||
use_cache=None,
|
||||
output_attentions=False,
|
||||
output_hidden_states=False,
|
||||
return_dict=True,
|
||||
mode='multimodal',
|
||||
):
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
||||
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
for i in range(self.config.num_hidden_layers):
|
||||
layer_module = self.layer[i]
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||||
past_key_value = past_key_values[i] if past_key_values is not None else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
if use_cache:
|
||||
logger.warn(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
return module(*inputs, past_key_value, output_attentions)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(layer_module),
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
mode=mode,
|
||||
)
|
||||
else:
|
||||
layer_outputs = layer_module(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
mode=mode,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[-1],)
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
v
|
||||
for v in [
|
||||
hidden_states,
|
||||
next_decoder_cache,
|
||||
all_hidden_states,
|
||||
all_self_attentions,
|
||||
all_cross_attentions,
|
||||
]
|
||||
if v is not None
|
||||
)
|
||||
return BaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_decoder_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
cross_attentions=all_cross_attentions,
|
||||
)
|
||||
|
||||
|
||||
class BertPooler(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
self.activation = nn.Tanh()
|
||||
|
||||
def forward(self, hidden_states):
|
||||
# We "pool" the model by simply taking the hidden state corresponding
|
||||
# to the first token.
|
||||
first_token_tensor = hidden_states[:, 0]
|
||||
pooled_output = self.dense(first_token_tensor)
|
||||
pooled_output = self.activation(pooled_output)
|
||||
return pooled_output
|
||||
|
||||
|
||||
class BertPredictionHeadTransform(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
if isinstance(config.hidden_act, str):
|
||||
self.transform_act_fn = ACT2FN[config.hidden_act]
|
||||
else:
|
||||
self.transform_act_fn = config.hidden_act
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.transform_act_fn(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertLMPredictionHead(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.transform = BertPredictionHeadTransform(config)
|
||||
|
||||
# The output weights are the same as the input embeddings, but there is
|
||||
# an output-only bias for each token.
|
||||
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
||||
|
||||
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
||||
self.decoder.bias = self.bias
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.transform(hidden_states)
|
||||
hidden_states = self.decoder(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertOnlyMLMHead(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.predictions = BertLMPredictionHead(config)
|
||||
|
||||
def forward(self, sequence_output):
|
||||
prediction_scores = self.predictions(sequence_output)
|
||||
return prediction_scores
|
||||
|
||||
|
||||
class BertPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = BertConfig
|
||||
base_model_prefix = "bert"
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
||||
|
||||
def _init_weights(self, module):
|
||||
""" Initialize the weights """
|
||||
if isinstance(module, (nn.Linear, nn.Embedding)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
if isinstance(module, nn.Linear) and module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
|
||||
|
||||
class BertModel(BertPreTrainedModel):
|
||||
"""
|
||||
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
||||
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
||||
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
||||
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
||||
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
||||
input to the forward pass.
|
||||
"""
|
||||
|
||||
def __init__(self, config, add_pooling_layer=True):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
self.embeddings = BertEmbeddings(config)
|
||||
|
||||
self.encoder = BertEncoder(config)
|
||||
|
||||
self.pooler = BertPooler(config) if add_pooling_layer else None
|
||||
|
||||
self.init_weights()
|
||||
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings.word_embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embeddings.word_embeddings = value
|
||||
|
||||
def _prune_heads(self, heads_to_prune):
|
||||
"""
|
||||
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||||
class PreTrainedModel
|
||||
"""
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
|
||||
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
|
||||
"""
|
||||
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
||||
|
||||
Arguments:
|
||||
attention_mask (:obj:`torch.Tensor`):
|
||||
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
||||
input_shape (:obj:`Tuple[int]`):
|
||||
The shape of the input to the model.
|
||||
device: (:obj:`torch.device`):
|
||||
The device of the input to the model.
|
||||
|
||||
Returns:
|
||||
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
||||
"""
|
||||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||||
# ourselves in which case we just need to make it broadcastable to all heads.
|
||||
if attention_mask.dim() == 3:
|
||||
extended_attention_mask = attention_mask[:, None, :, :]
|
||||
elif attention_mask.dim() == 2:
|
||||
# Provided a padding mask of dimensions [batch_size, seq_length]
|
||||
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
||||
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
||||
if is_decoder:
|
||||
batch_size, seq_length = input_shape
|
||||
|
||||
seq_ids = torch.arange(seq_length, device=device)
|
||||
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
||||
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
|
||||
# causal and attention masks must have same type with pytorch version < 1.3
|
||||
causal_mask = causal_mask.to(attention_mask.dtype)
|
||||
|
||||
if causal_mask.shape[1] < attention_mask.shape[1]:
|
||||
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
||||
causal_mask = torch.cat(
|
||||
[
|
||||
torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
|
||||
causal_mask,
|
||||
],
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
||||
else:
|
||||
extended_attention_mask = attention_mask[:, None, None, :]
|
||||
else:
|
||||
raise ValueError(
|
||||
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
||||
input_shape, attention_mask.shape
|
||||
)
|
||||
)
|
||||
|
||||
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||||
# masked positions, this operation will create a tensor which is 0.0 for
|
||||
# positions we want to attend and -10000.0 for masked positions.
|
||||
# Since we are adding it to the raw scores before the softmax, this is
|
||||
# effectively the same as removing these entirely.
|
||||
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
||||
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
||||
return extended_attention_mask
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
encoder_embeds=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_values=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
is_decoder=False,
|
||||
mode='multimodal',
|
||||
):
|
||||
r"""
|
||||
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
the model is configured as a decoder.
|
||||
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
||||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||||
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
||||
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
||||
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
||||
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
||||
use_cache (:obj:`bool`, `optional`):
|
||||
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
||||
decoding (see :obj:`past_key_values`).
|
||||
"""
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if is_decoder:
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
else:
|
||||
use_cache = False
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
batch_size, seq_length = input_shape
|
||||
device = input_ids.device
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
batch_size, seq_length = input_shape
|
||||
device = inputs_embeds.device
|
||||
elif encoder_embeds is not None:
|
||||
input_shape = encoder_embeds.size()[:-1]
|
||||
batch_size, seq_length = input_shape
|
||||
device = encoder_embeds.device
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
|
||||
|
||||
# past_key_values_length
|
||||
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||||
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
||||
|
||||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||||
# ourselves in which case we just need to make it broadcastable to all heads.
|
||||
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
|
||||
device, is_decoder)
|
||||
|
||||
# If a 2D or 3D attention mask is provided for the cross-attention
|
||||
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
||||
if encoder_hidden_states is not None:
|
||||
if type(encoder_hidden_states) == list:
|
||||
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
||||
else:
|
||||
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
||||
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
||||
|
||||
if type(encoder_attention_mask) == list:
|
||||
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
||||
elif encoder_attention_mask is None:
|
||||
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
||||
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
||||
else:
|
||||
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
||||
else:
|
||||
encoder_extended_attention_mask = None
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_heads x N x N
|
||||
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||||
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||||
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||||
|
||||
if encoder_embeds is None:
|
||||
embedding_output = self.embeddings(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
inputs_embeds=inputs_embeds,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
else:
|
||||
embedding_output = encoder_embeds
|
||||
|
||||
encoder_outputs = self.encoder(
|
||||
embedding_output,
|
||||
attention_mask=extended_attention_mask,
|
||||
head_mask=head_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_extended_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
mode=mode,
|
||||
)
|
||||
sequence_output = encoder_outputs[0]
|
||||
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
||||
|
||||
if not return_dict:
|
||||
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
||||
|
||||
return BaseModelOutputWithPoolingAndCrossAttentions(
|
||||
last_hidden_state=sequence_output,
|
||||
pooler_output=pooled_output,
|
||||
past_key_values=encoder_outputs.past_key_values,
|
||||
hidden_states=encoder_outputs.hidden_states,
|
||||
attentions=encoder_outputs.attentions,
|
||||
cross_attentions=encoder_outputs.cross_attentions,
|
||||
)
|
||||
|
305
ldm/models/vit.py
Normal file
@ -0,0 +1,305 @@
|
||||
'''
|
||||
* Copyright (c) 2022, salesforce.com, inc.
|
||||
* All rights reserved.
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
* By Junnan Li
|
||||
* Based on timm code base
|
||||
* https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
||||
'''
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from functools import partial
|
||||
|
||||
from timm.models.vision_transformer import _cfg, PatchEmbed
|
||||
from timm.models.registry import register_model
|
||||
from timm.models.layers import trunc_normal_, DropPath
|
||||
from timm.models.helpers import named_apply, adapt_input_conv
|
||||
|
||||
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
|
||||
|
||||
class Mlp(nn.Module):
|
||||
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
|
||||
"""
|
||||
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
||||
self.scale = qk_scale or head_dim ** -0.5
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
self.attn_gradients = None
|
||||
self.attention_map = None
|
||||
|
||||
def save_attn_gradients(self, attn_gradients):
|
||||
self.attn_gradients = attn_gradients
|
||||
|
||||
def get_attn_gradients(self):
|
||||
return self.attn_gradients
|
||||
|
||||
def save_attention_map(self, attention_map):
|
||||
self.attention_map = attention_map
|
||||
|
||||
def get_attention_map(self):
|
||||
return self.attention_map
|
||||
|
||||
def forward(self, x, register_hook=False):
|
||||
B, N, C = x.shape
|
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
if register_hook:
|
||||
self.save_attention_map(attn)
|
||||
attn.register_hook(self.save_attn_gradients)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
|
||||
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
||||
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False):
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
||||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
||||
|
||||
if use_grad_checkpointing:
|
||||
self.attn = checkpoint_wrapper(self.attn)
|
||||
self.mlp = checkpoint_wrapper(self.mlp)
|
||||
|
||||
def forward(self, x, register_hook=False):
|
||||
x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
class VisionTransformer(nn.Module):
|
||||
""" Vision Transformer
|
||||
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
|
||||
https://arxiv.org/abs/2010.11929
|
||||
"""
|
||||
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
||||
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
|
||||
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None,
|
||||
use_grad_checkpointing=False, ckpt_layer=0):
|
||||
"""
|
||||
Args:
|
||||
img_size (int, tuple): input image size
|
||||
patch_size (int, tuple): patch size
|
||||
in_chans (int): number of input channels
|
||||
num_classes (int): number of classes for classification head
|
||||
embed_dim (int): embedding dimension
|
||||
depth (int): depth of transformer
|
||||
num_heads (int): number of attention heads
|
||||
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
||||
qkv_bias (bool): enable bias for qkv if True
|
||||
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
||||
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
|
||||
drop_rate (float): dropout rate
|
||||
attn_drop_rate (float): attention dropout rate
|
||||
drop_path_rate (float): stochastic depth rate
|
||||
norm_layer: (nn.Module): normalization layer
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
||||
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
||||
|
||||
self.patch_embed = PatchEmbed(
|
||||
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
||||
|
||||
num_patches = self.patch_embed.num_patches
|
||||
|
||||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
||||
self.pos_drop = nn.Dropout(p=drop_rate)
|
||||
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||
self.blocks = nn.ModuleList([
|
||||
Block(
|
||||
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
||||
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
||||
use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer)
|
||||
)
|
||||
for i in range(depth)])
|
||||
self.norm = norm_layer(embed_dim)
|
||||
|
||||
trunc_normal_(self.pos_embed, std=.02)
|
||||
trunc_normal_(self.cls_token, std=.02)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
return {'pos_embed', 'cls_token'}
|
||||
|
||||
def forward(self, x, register_blk=-1):
|
||||
B = x.shape[0]
|
||||
x = self.patch_embed(x)
|
||||
|
||||
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
|
||||
x = x + self.pos_embed[:,:x.size(1),:]
|
||||
x = self.pos_drop(x)
|
||||
|
||||
for i,blk in enumerate(self.blocks):
|
||||
x = blk(x, register_blk==i)
|
||||
x = self.norm(x)
|
||||
|
||||
return x
|
||||
|
||||
@torch.jit.ignore()
|
||||
def load_pretrained(self, checkpoint_path, prefix=''):
|
||||
_load_weights(self, checkpoint_path, prefix)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
|
||||
""" Load weights from .npz checkpoints for official Google Brain Flax implementation
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
def _n2p(w, t=True):
|
||||
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
|
||||
w = w.flatten()
|
||||
if t:
|
||||
if w.ndim == 4:
|
||||
w = w.transpose([3, 2, 0, 1])
|
||||
elif w.ndim == 3:
|
||||
w = w.transpose([2, 0, 1])
|
||||
elif w.ndim == 2:
|
||||
w = w.transpose([1, 0])
|
||||
return torch.from_numpy(w)
|
||||
|
||||
w = np.load(checkpoint_path)
|
||||
if not prefix and 'opt/target/embedding/kernel' in w:
|
||||
prefix = 'opt/target/'
|
||||
|
||||
if hasattr(model.patch_embed, 'backbone'):
|
||||
# hybrid
|
||||
backbone = model.patch_embed.backbone
|
||||
stem_only = not hasattr(backbone, 'stem')
|
||||
stem = backbone if stem_only else backbone.stem
|
||||
stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
|
||||
stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
|
||||
stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
|
||||
if not stem_only:
|
||||
for i, stage in enumerate(backbone.stages):
|
||||
for j, block in enumerate(stage.blocks):
|
||||
bp = f'{prefix}block{i + 1}/unit{j + 1}/'
|
||||
for r in range(3):
|
||||
getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
|
||||
getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
|
||||
getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
|
||||
if block.downsample is not None:
|
||||
block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
|
||||
block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
|
||||
block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
|
||||
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
|
||||
else:
|
||||
embed_conv_w = adapt_input_conv(
|
||||
model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
|
||||
model.patch_embed.proj.weight.copy_(embed_conv_w)
|
||||
model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
|
||||
model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
|
||||
pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
|
||||
if pos_embed_w.shape != model.pos_embed.shape:
|
||||
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
|
||||
pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
|
||||
model.pos_embed.copy_(pos_embed_w)
|
||||
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
|
||||
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
|
||||
# if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
|
||||
# model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
|
||||
# model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
|
||||
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
|
||||
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
|
||||
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
|
||||
for i, block in enumerate(model.blocks.children()):
|
||||
block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
|
||||
mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
|
||||
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
|
||||
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
|
||||
block.attn.qkv.weight.copy_(torch.cat([
|
||||
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
|
||||
block.attn.qkv.bias.copy_(torch.cat([
|
||||
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
|
||||
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
|
||||
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
|
||||
for r in range(2):
|
||||
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
|
||||
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
|
||||
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
|
||||
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
|
||||
|
||||
|
||||
def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
|
||||
# interpolate position embedding
|
||||
embedding_size = pos_embed_checkpoint.shape[-1]
|
||||
num_patches = visual_encoder.patch_embed.num_patches
|
||||
num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
|
||||
# height (== width) for the checkpoint position embedding
|
||||
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
||||
# height (== width) for the new position embedding
|
||||
new_size = int(num_patches ** 0.5)
|
||||
|
||||
if orig_size!=new_size:
|
||||
# class_token and dist_token are kept unchanged
|
||||
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
||||
# only the position tokens are interpolated
|
||||
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
||||
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
||||
pos_tokens = torch.nn.functional.interpolate(
|
||||
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
||||
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
||||
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
||||
print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2))
|
||||
|
||||
return new_pos_embed
|
||||
else:
|
||||
return pos_embed_checkpoint
|
@ -5,7 +5,7 @@ import clip
|
||||
from einops import rearrange, repeat
|
||||
from transformers import CLIPTokenizer, CLIPTextModel
|
||||
import kornia
|
||||
|
||||
import os
|
||||
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
||||
|
||||
|
||||
@ -138,8 +138,12 @@ class FrozenCLIPEmbedder(AbstractEncoder):
|
||||
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
||||
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
|
||||
super().__init__()
|
||||
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
||||
self.transformer = CLIPTextModel.from_pretrained(version)
|
||||
if os.path.exists("models/clip-vit-large-patch14"):
|
||||
self.tokenizer = CLIPTokenizer.from_pretrained("models/clip-vit-large-patch14")
|
||||
self.transformer = CLIPTextModel.from_pretrained("models/clip-vit-large-patch14")
|
||||
else:
|
||||
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
||||
self.transformer = CLIPTextModel.from_pretrained(version)
|
||||
self.device = device
|
||||
self.max_length = max_length
|
||||
self.freeze()
|
||||
|