This commit is contained in:
hlky 2022-08-26 20:29:26 +01:00
parent 7b44c49680
commit 87f8712f53
No known key found for this signature in database
GPG Key ID: 55A99F1E80D907D5

View File

@ -1195,13 +1195,13 @@ with gr.Blocks(css=css, analytics_enabled=False, title="Stable Diffusion WebUI")
txt2img_sampling = gr.Radio(label='Sampling method (k_lms is default k-diffusion sampler)', choices=["DDIM", "PLMS", 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms'], value=txt2img_defaults['sampler_name'])
txt2img_toggles = gr.CheckboxGroup(label='', choices=txt2img_toggles, value=txt2img_toggle_defaults, type="index")
txt2img_realesrgan_model_name = gr.Dropdown(label='RealESRGAN model', choices=['RealESRGAN_x4plus', 'RealESRGAN_x4plus_anime_6B'], value='RealESRGAN_x4plus', visible=RealESRGAN is not None) # TODO: Feels like I shouldnt slot it in here.
txt2img_ddim_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False)
txt2img_batch_count = gr.Slider(minimum=1, maximum=250, step=1, label='Batch count (how many batches of images to generate)', value=1)
txt2img_batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1)
txt2img_cfg = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.5)
txt2img_seed = gr.Textbox(label="Seed (blank to randomize)", lines=1, value="")
txt2img_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
txt2img_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
txt2img_ddim_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=txt2img_defaults['ddim_eta'], visible=False)
txt2img_batch_count = gr.Slider(minimum=1, maximum=250, step=1, label='Batch count (how many batches of images to generate)', value=txt2img_defaults['n_iter'])
txt2img_batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=txt2img_defaults['batch_size'])
txt2img_cfg = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=txt2img_defaults['cfg_scale'])
txt2img_seed = gr.Textbox(label="Seed (blank to randomize)", lines=1, value=txt2img_defaults["seed"])
txt2img_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=txt2img_defaults["height"])
txt2img_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=txt2img_defaults["width"])
txt2img_embeddings = gr.File(label = "Embeddings file for textual inversion", visible=hasattr(model, "embedding_manager"))
txt2img_btn = gr.Button("Generate")
with gr.Column():
@ -1241,14 +1241,14 @@ with gr.Blocks(css=css, analytics_enabled=False, title="Stable Diffusion WebUI")
img2img_sampling = gr.Radio(label='Sampling method (k_lms is default k-diffusion sampler)', choices=["DDIM", 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms'], value=img2img_defaults['sampler_name'])
img2img_toggles = gr.CheckboxGroup(label='', choices=img2img_toggles, value=img2img_toggle_defaults, type="index")
img2img_realesrgan_model_name = gr.Dropdown(label='RealESRGAN model', choices=['RealESRGAN_x4plus', 'RealESRGAN_x4plus_anime_6B'], value='RealESRGAN_x4plus', visible=RealESRGAN is not None) # TODO: Feels like I shouldnt slot it in here.
img2img_batch_count = gr.Slider(minimum=1, maximum=250, step=1, label='Batch count (how many batches of images to generate)', value=1)
img2img_batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1)
img2img_cfg = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=5.0)
img2img_denoising = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength', value=0.75)
img2img_seed = gr.Textbox(label="Seed (blank to randomize)", lines=1, value="")
img2img_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
img2img_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
img2img_resize = gr.Radio(label="Resize mode", choices=["Just resize", "Crop and resize", "Resize and fill"], type="index", value="Just resize")
img2img_batch_count = gr.Slider(minimum=1, maximum=250, step=1, label='Batch count (how many batches of images to generate)', value=img2img_defaults['n_iter'])
img2img_batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=img2img_defaults['batch_size'])
img2img_cfg = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=img2img_defaults['cfg_scale'])
img2img_denoising = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength', value=img2img_defaults['denoising_strength'])
img2img_seed = gr.Textbox(label="Seed (blank to randomize)", lines=1, value=img2img_defaults["seed"])
img2img_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=img2img_defaults["height"])
img2img_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=img2img_defaults["width"])
img2img_resize = gr.Radio(label="Resize mode", choices=["Just resize", "Crop and resize", "Resize and fill"], type="index", value=img2img_resize_modes[img2img_defaults['resize_mode']])
img2img_embeddings = gr.File(label = "Embeddings file for textual inversion", visible=hasattr(model, "embedding_manager"))
img2img_btn_mask = gr.Button("Generate", visible=False)
img2img_btn_editor = gr.Button("Generate")