mirror of
https://github.com/sd-webui/stable-diffusion-webui.git
synced 2025-01-05 20:28:01 +03:00
img2img-mask
Great work, thanks anon!! 💯 🔥
This commit is contained in:
parent
8d6c046a08
commit
9927f7c38a
30
webui.py
30
webui.py
@ -15,7 +15,7 @@ from contextlib import contextmanager, nullcontext
|
||||
from einops import rearrange, repeat
|
||||
from itertools import islice
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image, ImageFont, ImageDraw
|
||||
from PIL import Image, ImageFont, ImageDraw, ImageFilter, ImageOps
|
||||
from torch import autocast
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
@ -389,7 +389,7 @@ def check_prompt_length(prompt, comments):
|
||||
comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
|
||||
|
||||
|
||||
def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name, skip_grid, skip_save, batch_size, n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, fp, do_not_save_grid=False, normalize_prompt_weights=True):
|
||||
def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name, skip_grid, skip_save, batch_size, n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, fp, do_not_save_grid=False, normalize_prompt_weights=True, init_img=None, init_mask=None, keep_mask=True):
|
||||
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
||||
assert prompt is not None
|
||||
torch_gc()
|
||||
@ -497,6 +497,14 @@ def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name,
|
||||
|
||||
|
||||
image = Image.fromarray(x_sample)
|
||||
if init_mask:
|
||||
init_mask = init_mask if keep_mask else ImageOps.invert(init_mask)
|
||||
init_mask = init_mask.filter(ImageFilter.GaussianBlur(3))
|
||||
init_mask = init_mask.convert('L')
|
||||
init_img = init_img.convert('RGB')
|
||||
image = image.convert('RGB')
|
||||
image = Image.composite(init_img, image, init_mask)
|
||||
|
||||
filename = f"{base_count:05}-{seeds[i]}_{prompts[i].replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]}.png"
|
||||
if not skip_save:
|
||||
image.save(os.path.join(sample_path, filename))
|
||||
@ -673,7 +681,7 @@ txt2img_interface = gr.Interface(
|
||||
)
|
||||
|
||||
|
||||
def img2img(prompt: str, init_img, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, prompt_matrix, loopback: bool, skip_grid: bool, skip_save: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int, resize_mode: int, normalize_prompt_weights: bool, fp):
|
||||
def img2img(prompt: str, init_info, mask_mode, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, prompt_matrix, loopback: bool, skip_grid: bool, skip_save: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int, resize_mode: int, normalize_prompt_weights: bool, fp):
|
||||
outpath = opt.outdir or "outputs/img2img-samples"
|
||||
err = False
|
||||
seed = seed_to_int(seed)
|
||||
@ -685,6 +693,14 @@ def img2img(prompt: str, init_img, ddim_steps: int, sampler_name: str, use_GFPGA
|
||||
else:
|
||||
raise Exception("Unknown sampler: " + sampler_name)
|
||||
|
||||
init_img = init_info["image"]
|
||||
init_img = init_img.convert("RGB")
|
||||
init_img = resize_image(resize_mode, init_img, width, height)
|
||||
init_mask = init_info["mask"]
|
||||
init_mask = init_mask.convert("RGB")
|
||||
init_mask = resize_image(resize_mode, init_mask, width, height)
|
||||
keep_mask = mask_mode == "Keep masked area"
|
||||
|
||||
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
||||
t_enc = int(denoising_strength * ddim_steps)
|
||||
|
||||
@ -789,7 +805,10 @@ def img2img(prompt: str, init_img, ddim_steps: int, sampler_name: str, use_GFPGA
|
||||
prompt_matrix=prompt_matrix,
|
||||
use_GFPGAN=use_GFPGAN,
|
||||
fp=fp,
|
||||
normalize_prompt_weights=normalize_prompt_weights
|
||||
normalize_prompt_weights=normalize_prompt_weights,
|
||||
init_img=init_img,
|
||||
init_mask=init_mask,
|
||||
keep_mask=keep_mask
|
||||
)
|
||||
|
||||
del sampler
|
||||
@ -813,7 +832,8 @@ img2img_interface = gr.Interface(
|
||||
img2img,
|
||||
inputs=[
|
||||
gr.Textbox(placeholder="A fantasy landscape, trending on artstation.", lines=1),
|
||||
gr.Image(value=sample_img2img, source="upload", interactive=True, type="pil"),
|
||||
gr.Image(value=sample_img2img, source="upload", interactive=True, type="pil", tool="sketch"),
|
||||
gr.Radio(choices=["Keep masked area", "Regenerate only masked area"], label="Mask Mode", value="Keep masked area"),
|
||||
gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50),
|
||||
gr.Radio(label='Sampling method', choices=["DDIM", "k-diffusion"], value="k-diffusion"),
|
||||
gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None),
|
||||
|
Loading…
Reference in New Issue
Block a user