mirror of
https://github.com/sd-webui/stable-diffusion-webui.git
synced 2024-12-14 23:02:00 +03:00
Updates for the v2 trainer
* Restore --config. This will be useful when you have an init config that you don't want overwritten. * Cache the individual transformed images in TextualInversionDataset. This gains speed by avoiding reading and reprocessing the image each time it's used for training. * Turn on no_grad for inference and clean up tensors during checkpointing. This reduces memory usage slightly. * Set the sample output size to 384x384. We just need them large enough for manual evaluation, and this gains us a decent chunk of speed. * (breaking change) Custom templates are now semicolon-delineated. Additionally, custom templates are properly passed through to TextualInversionDataset to generate input_ids for your images. Using custom templates which accurately describe your input images seems to improve training fidelity. * Cache autoencoding of image pixel data. This substantially increases the speed of training, upwards of 40% for me. * Clean up a little bit of cruft.
This commit is contained in:
parent
0d79243e45
commit
c7e126f6f8
792
scripts/diffusers_textual_inversion_2.py
Normal file
792
scripts/diffusers_textual_inversion_2.py
Normal file
@ -0,0 +1,792 @@
|
||||
import argparse
|
||||
import itertools
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import datetime
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
import PIL
|
||||
from accelerate import Accelerator
|
||||
from accelerate.logging import get_logger
|
||||
from accelerate.utils import set_seed
|
||||
from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, LMSDiscreteScheduler, StableDiffusionPipeline, UNet2DConditionModel
|
||||
from diffusers.optimization import get_scheduler
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
||||
from pipelines.stable_diffusion.no_check import NoCheck
|
||||
from huggingface_hub import HfFolder, Repository, whoami
|
||||
from PIL import Image
|
||||
from torchvision import transforms
|
||||
from tqdm.auto import tqdm
|
||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||
from slugify import slugify
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
||||
parser.add_argument(
|
||||
"--pretrained_model_name_or_path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer_name",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Pretrained tokenizer name or path if not the same as model_name",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--train_data_dir", type=str, default=None, help="A folder containing the training data."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--placeholder_token",
|
||||
type=str,
|
||||
default=None,
|
||||
help="A token to use as a placeholder for the concept.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--initializer_token", type=str, default=None, help="A token to use as initializer word."
|
||||
)
|
||||
parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'")
|
||||
parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.")
|
||||
parser.add_argument(
|
||||
"--output_dir",
|
||||
type=str,
|
||||
default="text-inversion-model",
|
||||
help="The output directory where the model predictions and checkpoints will be written.",
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
||||
parser.add_argument(
|
||||
"--resolution",
|
||||
type=int,
|
||||
default=512,
|
||||
help=(
|
||||
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
||||
" resolution"
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader."
|
||||
)
|
||||
parser.add_argument("--num_train_epochs", type=int, default=100)
|
||||
parser.add_argument(
|
||||
"--max_train_steps",
|
||||
type=int,
|
||||
default=5000,
|
||||
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--gradient_accumulation_steps",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--learning_rate",
|
||||
type=float,
|
||||
default=1e-4,
|
||||
help="Initial learning rate (after the potential warmup period) to use.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--scale_lr",
|
||||
action="store_true",
|
||||
default=True,
|
||||
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lr_scheduler",
|
||||
type=str,
|
||||
default="constant",
|
||||
help=(
|
||||
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
||||
' "constant", "constant_with_warmup"]'
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
||||
)
|
||||
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
||||
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
||||
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
||||
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
||||
parser.add_argument(
|
||||
"--mixed_precision",
|
||||
type=str,
|
||||
default="no",
|
||||
choices=["no", "fp16", "bf16"],
|
||||
help=(
|
||||
"Whether to use mixed precision. Choose"
|
||||
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
||||
"and an Nvidia Ampere GPU."
|
||||
),
|
||||
)
|
||||
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
||||
parser.add_argument(
|
||||
"--checkpoint_frequency",
|
||||
type=int,
|
||||
default=500,
|
||||
help="How often to save a checkpoint and sample image",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--stable_sample_batches",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Number of fixed seed sample batches to generate per checkpoint",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--random_sample_batches",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of random seed sample batches to generate per checkpoint",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sample_batch_size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of samples to generate per batch",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sample_steps",
|
||||
type=int,
|
||||
default=50,
|
||||
help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--custom_templates",
|
||||
type=str,
|
||||
default=None,
|
||||
help=(
|
||||
"A semicolon-delimited list of custom template to use for samples, using {} as a placeholder for the concept."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--resume_from",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to a directory to resume training from (ie, logs/token_name/2022-09-22T23-36-27)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--resume_checkpoint",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to a specific checkpoint to resume training from (ie, logs/token_name/2022-09-22T23-36-27/checkpoints/something.bin)."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--config",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to a JSON configuration file containing arguments for invoking this script. If resume_from is given, its resume.json takes priority over this."
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
if args.resume_from is not None:
|
||||
with open(f"{args.resume_from}/resume.json", 'rt') as f:
|
||||
args = parser.parse_args(namespace=argparse.Namespace(**json.load(f)["args"]))
|
||||
elif args.config is not None:
|
||||
with open(args.config, 'rt') as f:
|
||||
args = parser.parse_args(namespace=argparse.Namespace(**json.load(f)))
|
||||
|
||||
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
||||
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
||||
args.local_rank = env_local_rank
|
||||
|
||||
if args.train_data_dir is None:
|
||||
raise ValueError("You must specify --train_data_dir")
|
||||
|
||||
if args.pretrained_model_name_or_path is None:
|
||||
raise ValueError("You must specify --pretrained_model_name_or_path")
|
||||
|
||||
if args.placeholder_token is None:
|
||||
raise ValueError("You must specify --placeholder_token")
|
||||
|
||||
if args.initializer_token is None:
|
||||
raise ValueError("You must specify --initializer_token")
|
||||
|
||||
if args.output_dir is None:
|
||||
raise ValueError("You must specify --output_dir")
|
||||
|
||||
return args
|
||||
|
||||
|
||||
imagenet_templates_small = [
|
||||
"a photo of a {}",
|
||||
"a rendering of a {}",
|
||||
"a cropped photo of the {}",
|
||||
"the photo of a {}",
|
||||
"a photo of a clean {}",
|
||||
"a photo of a dirty {}",
|
||||
"a dark photo of the {}",
|
||||
"a photo of my {}",
|
||||
"a photo of the cool {}",
|
||||
"a close-up photo of a {}",
|
||||
"a bright photo of the {}",
|
||||
"a cropped photo of a {}",
|
||||
"a photo of the {}",
|
||||
"a good photo of the {}",
|
||||
"a photo of one {}",
|
||||
"a close-up photo of the {}",
|
||||
"a rendition of the {}",
|
||||
"a photo of the clean {}",
|
||||
"a rendition of a {}",
|
||||
"a photo of a nice {}",
|
||||
"a good photo of a {}",
|
||||
"a photo of the nice {}",
|
||||
"a photo of the small {}",
|
||||
"a photo of the weird {}",
|
||||
"a photo of the large {}",
|
||||
"a photo of a cool {}",
|
||||
"a photo of a small {}",
|
||||
]
|
||||
|
||||
imagenet_style_templates_small = [
|
||||
"a painting in the style of {}",
|
||||
"a rendering in the style of {}",
|
||||
"a cropped painting in the style of {}",
|
||||
"the painting in the style of {}",
|
||||
"a clean painting in the style of {}",
|
||||
"a dirty painting in the style of {}",
|
||||
"a dark painting in the style of {}",
|
||||
"a picture in the style of {}",
|
||||
"a cool painting in the style of {}",
|
||||
"a close-up painting in the style of {}",
|
||||
"a bright painting in the style of {}",
|
||||
"a cropped painting in the style of {}",
|
||||
"a good painting in the style of {}",
|
||||
"a close-up painting in the style of {}",
|
||||
"a rendition in the style of {}",
|
||||
"a nice painting in the style of {}",
|
||||
"a small painting in the style of {}",
|
||||
"a weird painting in the style of {}",
|
||||
"a large painting in the style of {}",
|
||||
]
|
||||
|
||||
|
||||
class TextualInversionDataset(Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
data_root,
|
||||
tokenizer,
|
||||
learnable_property="object", # [object, style]
|
||||
size=512,
|
||||
repeats=100,
|
||||
interpolation="bicubic",
|
||||
set="train",
|
||||
placeholder_token="*",
|
||||
center_crop=False,
|
||||
templates=None
|
||||
):
|
||||
|
||||
self.data_root = data_root
|
||||
self.tokenizer = tokenizer
|
||||
self.learnable_property = learnable_property
|
||||
self.size = size
|
||||
self.placeholder_token = placeholder_token
|
||||
self.center_crop = center_crop
|
||||
|
||||
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root) if file_path.lower().endswith(('.png', '.jpg', '.jpeg'))]
|
||||
|
||||
self.num_images = len(self.image_paths)
|
||||
self._length = self.num_images
|
||||
|
||||
if set == "train":
|
||||
self._length = self.num_images * repeats
|
||||
|
||||
self.interpolation = {
|
||||
"linear": PIL.Image.LINEAR,
|
||||
"bilinear": PIL.Image.BILINEAR,
|
||||
"bicubic": PIL.Image.BICUBIC,
|
||||
"lanczos": PIL.Image.LANCZOS,
|
||||
}[interpolation]
|
||||
|
||||
self.templates = templates
|
||||
self.cache = {}
|
||||
self.tokenized_templates = [self.tokenizer(
|
||||
text.format(self.placeholder_token),
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
return_tensors="pt",
|
||||
).input_ids[0] for text in self.templates]
|
||||
|
||||
def __len__(self):
|
||||
return self._length
|
||||
|
||||
def get_example(self, image_path, flipped):
|
||||
if image_path in self.cache:
|
||||
return self.cache[image_path]
|
||||
|
||||
example = {}
|
||||
image = Image.open(image_path)
|
||||
|
||||
if not image.mode == "RGB":
|
||||
image = image.convert("RGB")
|
||||
|
||||
# default to score-sde preprocessing
|
||||
img = np.array(image).astype(np.uint8)
|
||||
if self.center_crop:
|
||||
crop = min(img.shape[0], img.shape[1])
|
||||
h, w, = (
|
||||
img.shape[0],
|
||||
img.shape[1],
|
||||
)
|
||||
img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2]
|
||||
image = Image.fromarray(img)
|
||||
image = image.resize((self.size, self.size), resample=self.interpolation)
|
||||
image = transforms.RandomHorizontalFlip(p=1 if flipped else 0)(image)
|
||||
image = np.array(image).astype(np.uint8)
|
||||
image = (image / 127.5 - 1.0).astype(np.float32)
|
||||
example["key"] = "-".join([image_path, "-", str(flipped)])
|
||||
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
|
||||
|
||||
self.cache[image_path] = example
|
||||
return example
|
||||
|
||||
def __getitem__(self, i):
|
||||
flipped = random.choice([False, True])
|
||||
example = self.get_example(self.image_paths[i % self.num_images], flipped)
|
||||
example["input_ids"] = random.choice(self.tokenized_templates)
|
||||
return example
|
||||
|
||||
|
||||
def freeze_params(params):
|
||||
for param in params:
|
||||
param.requires_grad = False
|
||||
|
||||
|
||||
def save_resume_file(basepath, args, extra = {}):
|
||||
info = {"args": vars(args)}
|
||||
info["args"].update(extra)
|
||||
with open(f"{basepath}/resume.json", "w") as f:
|
||||
json.dump(info, f, indent=4)
|
||||
|
||||
class Checkpointer:
|
||||
def __init__(
|
||||
self,
|
||||
accelerator,
|
||||
vae,
|
||||
unet,
|
||||
tokenizer,
|
||||
placeholder_token,
|
||||
placeholder_token_id,
|
||||
templates,
|
||||
output_dir,
|
||||
random_sample_batches,
|
||||
sample_batch_size,
|
||||
stable_sample_batches,
|
||||
seed
|
||||
):
|
||||
self.accelerator = accelerator
|
||||
self.vae = vae
|
||||
self.unet = unet
|
||||
self.tokenizer = tokenizer
|
||||
self.placeholder_token = placeholder_token
|
||||
self.placeholder_token_id = placeholder_token_id
|
||||
self.templates = templates
|
||||
self.output_dir = output_dir
|
||||
self.seed = seed
|
||||
self.random_sample_batches = random_sample_batches
|
||||
self.sample_batch_size = sample_batch_size
|
||||
self.stable_sample_batches = stable_sample_batches
|
||||
|
||||
@torch.no_grad()
|
||||
def checkpoint(self, step, text_encoder, save_samples=True, path=None):
|
||||
print("Saving checkpoint for step %d..." % step)
|
||||
with torch.autocast("cuda"):
|
||||
if path is None:
|
||||
checkpoints_path = f"{self.output_dir}/checkpoints"
|
||||
os.makedirs(checkpoints_path, exist_ok=True)
|
||||
|
||||
unwrapped = self.accelerator.unwrap_model(text_encoder)
|
||||
|
||||
# Save a checkpoint
|
||||
learned_embeds = unwrapped.get_input_embeddings().weight[self.placeholder_token_id]
|
||||
learned_embeds_dict = {self.placeholder_token: learned_embeds.detach().cpu()}
|
||||
|
||||
filename = f"%s_%d.bin" % (slugify(self.placeholder_token), step)
|
||||
if path is not None:
|
||||
torch.save(learned_embeds_dict, path)
|
||||
else:
|
||||
torch.save(learned_embeds_dict, f"{checkpoints_path}/{filename}")
|
||||
torch.save(learned_embeds_dict, f"{checkpoints_path}/last.bin")
|
||||
del unwrapped
|
||||
del learned_embeds
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def save_samples(self, step, text_encoder, height, width, guidance_scale, eta, num_inference_steps):
|
||||
samples_path = f"{self.output_dir}/samples"
|
||||
os.makedirs(samples_path, exist_ok=True)
|
||||
checker = NoCheck()
|
||||
|
||||
unwrapped = self.accelerator.unwrap_model(text_encoder)
|
||||
# Save a sample image
|
||||
pipeline = StableDiffusionPipeline(
|
||||
text_encoder=unwrapped,
|
||||
vae=self.vae,
|
||||
unet=self.unet,
|
||||
tokenizer=self.tokenizer,
|
||||
scheduler=LMSDiscreteScheduler(
|
||||
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
|
||||
),
|
||||
safety_checker=NoCheck(),
|
||||
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),
|
||||
).to("cuda")
|
||||
pipeline.enable_attention_slicing()
|
||||
|
||||
if self.stable_sample_batches > 0:
|
||||
stable_latents = torch.randn(
|
||||
(self.sample_batch_size, pipeline.unet.in_channels, height // 8, width // 8),
|
||||
device=pipeline.device,
|
||||
generator=torch.Generator(device=pipeline.device).manual_seed(self.seed),
|
||||
)
|
||||
|
||||
stable_prompts = [choice.format(self.placeholder_token) for choice in (self.templates * self.sample_batch_size)[:self.sample_batch_size]]
|
||||
|
||||
# Generate and save stable samples
|
||||
for i in range(0, self.stable_sample_batches):
|
||||
samples = pipeline(
|
||||
prompt=stable_prompts,
|
||||
height=384,
|
||||
latents=stable_latents,
|
||||
width=384,
|
||||
guidance_scale=guidance_scale,
|
||||
eta=eta,
|
||||
num_inference_steps=num_inference_steps,
|
||||
output_type='pil'
|
||||
)["sample"]
|
||||
for idx, im in enumerate(samples):
|
||||
filename = f"stable_sample_%d_%d_step_%d.png" % (i+1, idx+1, step)
|
||||
im.save(f"{samples_path}/{filename}")
|
||||
del samples
|
||||
del stable_latents
|
||||
|
||||
prompts = [choice.format(self.placeholder_token) for choice in random.choices(self.templates, k=self.sample_batch_size)]
|
||||
# Generate and save random samples
|
||||
for i in range(0, self.random_sample_batches):
|
||||
samples = pipeline(
|
||||
prompt=prompts,
|
||||
height=384,
|
||||
width=384,
|
||||
guidance_scale=guidance_scale,
|
||||
eta=eta,
|
||||
num_inference_steps=num_inference_steps,
|
||||
output_type='pil'
|
||||
)["sample"]
|
||||
for idx, im in enumerate(samples):
|
||||
filename = f"step_%d_sample_%d_%d.png" % (step, i+1, idx+1)
|
||||
im.save(f"{samples_path}/{filename}")
|
||||
del samples
|
||||
|
||||
del checker
|
||||
del unwrapped
|
||||
del pipeline
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
global_step_offset = 0
|
||||
if args.resume_from is not None:
|
||||
basepath = f"{args.resume_from}"
|
||||
print("Resuming state from %s" % args.resume_from)
|
||||
with open(f"{basepath}/resume.json", 'r') as f:
|
||||
state = json.load(f)
|
||||
global_step_offset = state["args"].get("global_step", 0)
|
||||
|
||||
print("We've trained %d steps so far" % global_step_offset)
|
||||
else:
|
||||
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
||||
basepath = f"{args.output_dir}/{slugify(args.placeholder_token)}/{now}"
|
||||
os.makedirs(basepath, exist_ok=True)
|
||||
|
||||
|
||||
accelerator = Accelerator(
|
||||
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
||||
mixed_precision=args.mixed_precision
|
||||
)
|
||||
|
||||
# If passed along, set the training seed now.
|
||||
if args.seed is not None:
|
||||
set_seed(args.seed)
|
||||
|
||||
# Load the tokenizer and add the placeholder token as a additional special token
|
||||
if args.tokenizer_name:
|
||||
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
|
||||
elif args.pretrained_model_name_or_path:
|
||||
tokenizer = CLIPTokenizer.from_pretrained(
|
||||
args.pretrained_model_name_or_path + '/tokenizer'
|
||||
)
|
||||
|
||||
# Add the placeholder token in tokenizer
|
||||
num_added_tokens = tokenizer.add_tokens(args.placeholder_token)
|
||||
if num_added_tokens == 0:
|
||||
raise ValueError(
|
||||
f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
|
||||
" `placeholder_token` that is not already in the tokenizer."
|
||||
)
|
||||
|
||||
# Convert the initializer_token, placeholder_token to ids
|
||||
token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False)
|
||||
# Check if initializer_token is a single token or a sequence of tokens
|
||||
if len(token_ids) > 1:
|
||||
raise ValueError("The initializer token must be a single token.")
|
||||
|
||||
initializer_token_id = token_ids[0]
|
||||
placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token)
|
||||
|
||||
# Load models and create wrapper for stable diffusion
|
||||
text_encoder = CLIPTextModel.from_pretrained(
|
||||
args.pretrained_model_name_or_path + '/text_encoder',
|
||||
)
|
||||
vae = AutoencoderKL.from_pretrained(
|
||||
args.pretrained_model_name_or_path + '/vae',
|
||||
)
|
||||
unet = UNet2DConditionModel.from_pretrained(
|
||||
args.pretrained_model_name_or_path + '/unet',
|
||||
)
|
||||
|
||||
base_templates = imagenet_style_templates_small if args.learnable_property == "style" else imagenet_templates_small
|
||||
if args.custom_templates:
|
||||
templates = args.custom_templates.split(";")
|
||||
else:
|
||||
templates = base_templates
|
||||
|
||||
slice_size = unet.config.attention_head_dim // 2
|
||||
unet.set_attention_slice(slice_size)
|
||||
|
||||
# Resize the token embeddings as we are adding new special tokens to the tokenizer
|
||||
text_encoder.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# Initialise the newly added placeholder token with the embeddings of the initializer token
|
||||
token_embeds = text_encoder.get_input_embeddings().weight.data
|
||||
|
||||
if args.resume_checkpoint is not None:
|
||||
token_embeds[placeholder_token_id] = torch.load(args.resume_checkpoint)[args.placeholder_token]
|
||||
else:
|
||||
token_embeds[placeholder_token_id] = token_embeds[initializer_token_id]
|
||||
|
||||
# Freeze vae and unet
|
||||
freeze_params(vae.parameters())
|
||||
freeze_params(unet.parameters())
|
||||
# Freeze all parameters except for the token embeddings in text encoder
|
||||
params_to_freeze = itertools.chain(
|
||||
text_encoder.text_model.encoder.parameters(),
|
||||
text_encoder.text_model.final_layer_norm.parameters(),
|
||||
text_encoder.text_model.embeddings.position_embedding.parameters(),
|
||||
)
|
||||
freeze_params(params_to_freeze)
|
||||
|
||||
checkpointer = Checkpointer(
|
||||
accelerator=accelerator,
|
||||
vae=vae,
|
||||
unet=unet,
|
||||
tokenizer=tokenizer,
|
||||
placeholder_token=args.placeholder_token,
|
||||
placeholder_token_id=placeholder_token_id,
|
||||
templates=templates,
|
||||
output_dir=basepath,
|
||||
sample_batch_size=args.sample_batch_size,
|
||||
random_sample_batches=args.random_sample_batches,
|
||||
stable_sample_batches=args.stable_sample_batches,
|
||||
seed=args.seed
|
||||
)
|
||||
|
||||
if args.scale_lr:
|
||||
args.learning_rate = (
|
||||
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
||||
)
|
||||
|
||||
# Initialize the optimizer
|
||||
optimizer = torch.optim.AdamW(
|
||||
text_encoder.get_input_embeddings().parameters(), # only optimize the embeddings
|
||||
lr=args.learning_rate,
|
||||
betas=(args.adam_beta1, args.adam_beta2),
|
||||
weight_decay=args.adam_weight_decay,
|
||||
eps=args.adam_epsilon,
|
||||
)
|
||||
|
||||
# TODO (patil-suraj): laod scheduler using args
|
||||
noise_scheduler = DDPMScheduler(
|
||||
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, tensor_format="pt"
|
||||
)
|
||||
|
||||
train_dataset = TextualInversionDataset(
|
||||
data_root=args.train_data_dir,
|
||||
tokenizer=tokenizer,
|
||||
size=args.resolution,
|
||||
placeholder_token=args.placeholder_token,
|
||||
repeats=args.repeats,
|
||||
learnable_property=args.learnable_property,
|
||||
center_crop=args.center_crop,
|
||||
set="train",
|
||||
templates=templates
|
||||
)
|
||||
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True)
|
||||
|
||||
# Scheduler and math around the number of training steps.
|
||||
overrode_max_train_steps = False
|
||||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||||
if args.max_train_steps is None:
|
||||
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
||||
overrode_max_train_steps = True
|
||||
|
||||
lr_scheduler = get_scheduler(
|
||||
args.lr_scheduler,
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
|
||||
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
|
||||
)
|
||||
|
||||
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
text_encoder, optimizer, train_dataloader, lr_scheduler
|
||||
)
|
||||
|
||||
# Move vae and unet to device
|
||||
vae.to(accelerator.device)
|
||||
unet.to(accelerator.device)
|
||||
|
||||
# Keep vae and unet in eval mode as we don't train these
|
||||
vae.eval()
|
||||
unet.eval()
|
||||
|
||||
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
||||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||||
if overrode_max_train_steps:
|
||||
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
||||
# Afterwards we recalculate our number of training epochs
|
||||
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
||||
|
||||
# We need to initialize the trackers we use, and also store our configuration.
|
||||
# The trackers initializes automatically on the main process.
|
||||
if accelerator.is_main_process:
|
||||
accelerator.init_trackers("textual_inversion", config=vars(args))
|
||||
|
||||
# Train!
|
||||
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
||||
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(f" Num examples = {len(train_dataset)}")
|
||||
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
||||
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
||||
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
||||
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
||||
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
||||
# Only show the progress bar once on each machine.
|
||||
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
|
||||
progress_bar.set_description("Steps")
|
||||
global_step = 0
|
||||
encoded_pixel_values_cache = {}
|
||||
|
||||
try:
|
||||
for epoch in range(args.num_train_epochs):
|
||||
text_encoder.train()
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
with accelerator.accumulate(text_encoder):
|
||||
# Convert images to latent space
|
||||
key = "|".join(batch["key"])
|
||||
if encoded_pixel_values_cache.get(key, None) is None:
|
||||
encoded_pixel_values_cache[key] = vae.encode(batch["pixel_values"]).latent_dist
|
||||
latents = encoded_pixel_values_cache[key].sample().detach().half() * 0.18215
|
||||
|
||||
# Sample noise that we'll add to the latents
|
||||
noise = torch.randn(latents.shape).to(latents.device)
|
||||
bsz = latents.shape[0]
|
||||
# Sample a random timestep for each image
|
||||
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device).long()
|
||||
|
||||
# Add noise to the latents according to the noise magnitude at each timestep
|
||||
# (this is the forward diffusion process)
|
||||
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
||||
|
||||
# Get the text embedding for conditioning
|
||||
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
||||
|
||||
# Predict the noise residual
|
||||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||||
|
||||
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
|
||||
accelerator.backward(loss)
|
||||
|
||||
# Zero out the gradients for all token embeddings except the newly added
|
||||
# embeddings for the concept, as we only want to optimize the concept embeddings
|
||||
if accelerator.num_processes > 1:
|
||||
grads = text_encoder.module.get_input_embeddings().weight.grad
|
||||
else:
|
||||
grads = text_encoder.get_input_embeddings().weight.grad
|
||||
# Get the index for tokens that we want to zero the grads for
|
||||
index_grads_to_zero = torch.arange(len(tokenizer)) != placeholder_token_id
|
||||
grads.data[index_grads_to_zero, :] = grads.data[index_grads_to_zero, :].fill_(0)
|
||||
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
# Checks if the accelerator has performed an optimization step behind the scenes
|
||||
if accelerator.sync_gradients:
|
||||
progress_bar.update(1)
|
||||
global_step += 1
|
||||
|
||||
if global_step % args.checkpoint_frequency == 0 and global_step > 0 and accelerator.is_main_process:
|
||||
checkpointer.checkpoint(global_step + global_step_offset, text_encoder)
|
||||
save_resume_file(basepath, args, {
|
||||
"global_step": global_step + global_step_offset,
|
||||
"resume_checkpoint": f"{basepath}/checkpoints/last.bin"
|
||||
})
|
||||
checkpointer.save_samples(
|
||||
global_step + global_step_offset,
|
||||
text_encoder,
|
||||
args.resolution, args.resolution, 7.5, 0.0, args.sample_steps)
|
||||
|
||||
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
||||
progress_bar.set_postfix(**logs)
|
||||
#accelerator.log(logs, step=global_step)
|
||||
|
||||
if global_step >= args.max_train_steps:
|
||||
break
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
# Create the pipeline using using the trained modules and save it.
|
||||
if accelerator.is_main_process:
|
||||
print("Finished! Saving final checkpoint and resume state.")
|
||||
checkpointer.checkpoint(
|
||||
global_step + global_step_offset,
|
||||
text_encoder,
|
||||
path=f"{basepath}/learned_embeds.bin"
|
||||
)
|
||||
|
||||
save_resume_file(basepath, args, {
|
||||
"global_step": global_step + global_step_offset,
|
||||
"resume_checkpoint": f"{basepath}/checkpoints/last.bin"
|
||||
})
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
except KeyboardInterrupt:
|
||||
if accelerator.is_main_process:
|
||||
print("Interrupted, saving checkpoint and resume state...")
|
||||
checkpointer.checkpoint(global_step + global_step_offset, text_encoder)
|
||||
save_resume_file(basepath, args, {
|
||||
"global_step": global_step + global_step_offset,
|
||||
"resume_checkpoint": f"{basepath}/checkpoints/last.bin"
|
||||
})
|
||||
quit()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue
Block a user