Updates for the v2 trainer

* Restore --config. This will be useful when you have an init config
  that you don't want overwritten.
* Cache the individual transformed images in TextualInversionDataset.
  This gains speed by avoiding reading and reprocessing the image each
  time it's used for training.
* Turn on no_grad for inference and clean up tensors during
  checkpointing. This reduces memory usage slightly.
* Set the sample output size to 384x384. We just need them large enough
  for manual evaluation, and this gains us a decent chunk of speed.
* (breaking change) Custom templates are now semicolon-delineated.
  Additionally, custom templates are properly passed through to
  TextualInversionDataset to generate input_ids for your images. Using
  custom templates which accurately describe your input images seems to
  improve training fidelity.
* Cache autoencoding of image pixel data. This substantially increases
  the speed of training, upwards of 40% for me.
* Clean up a little bit of cruft.
This commit is contained in:
Chris Heald 2022-09-24 19:44:20 -07:00 committed by hlky
parent 0d79243e45
commit c7e126f6f8
No known key found for this signature in database
GPG Key ID: 55A99F1E80D907D5

View File

@ -0,0 +1,792 @@
import argparse
import itertools
import math
import os
import random
import datetime
from pathlib import Path
from typing import Optional
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
import PIL
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, LMSDiscreteScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from pipelines.stable_diffusion.no_check import NoCheck
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from slugify import slugify
import json
import os
import sys
logger = get_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--train_data_dir", type=str, default=None, help="A folder containing the training data."
)
parser.add_argument(
"--placeholder_token",
type=str,
default=None,
help="A token to use as a placeholder for the concept.",
)
parser.add_argument(
"--initializer_token", type=str, default=None, help="A token to use as initializer word."
)
parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'")
parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.")
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
)
parser.add_argument(
"--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=5000,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=True,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--checkpoint_frequency",
type=int,
default=500,
help="How often to save a checkpoint and sample image",
)
parser.add_argument(
"--stable_sample_batches",
type=int,
default=0,
help="Number of fixed seed sample batches to generate per checkpoint",
)
parser.add_argument(
"--random_sample_batches",
type=int,
default=1,
help="Number of random seed sample batches to generate per checkpoint",
)
parser.add_argument(
"--sample_batch_size",
type=int,
default=1,
help="Number of samples to generate per batch",
)
parser.add_argument(
"--sample_steps",
type=int,
default=50,
help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.",
)
parser.add_argument(
"--custom_templates",
type=str,
default=None,
help=(
"A semicolon-delimited list of custom template to use for samples, using {} as a placeholder for the concept."
),
)
parser.add_argument(
"--resume_from",
type=str,
default=None,
help="Path to a directory to resume training from (ie, logs/token_name/2022-09-22T23-36-27)"
)
parser.add_argument(
"--resume_checkpoint",
type=str,
default=None,
help="Path to a specific checkpoint to resume training from (ie, logs/token_name/2022-09-22T23-36-27/checkpoints/something.bin)."
)
parser.add_argument(
"--config",
type=str,
default=None,
help="Path to a JSON configuration file containing arguments for invoking this script. If resume_from is given, its resume.json takes priority over this."
)
args = parser.parse_args()
if args.resume_from is not None:
with open(f"{args.resume_from}/resume.json", 'rt') as f:
args = parser.parse_args(namespace=argparse.Namespace(**json.load(f)["args"]))
elif args.config is not None:
with open(args.config, 'rt') as f:
args = parser.parse_args(namespace=argparse.Namespace(**json.load(f)))
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.train_data_dir is None:
raise ValueError("You must specify --train_data_dir")
if args.pretrained_model_name_or_path is None:
raise ValueError("You must specify --pretrained_model_name_or_path")
if args.placeholder_token is None:
raise ValueError("You must specify --placeholder_token")
if args.initializer_token is None:
raise ValueError("You must specify --initializer_token")
if args.output_dir is None:
raise ValueError("You must specify --output_dir")
return args
imagenet_templates_small = [
"a photo of a {}",
"a rendering of a {}",
"a cropped photo of the {}",
"the photo of a {}",
"a photo of a clean {}",
"a photo of a dirty {}",
"a dark photo of the {}",
"a photo of my {}",
"a photo of the cool {}",
"a close-up photo of a {}",
"a bright photo of the {}",
"a cropped photo of a {}",
"a photo of the {}",
"a good photo of the {}",
"a photo of one {}",
"a close-up photo of the {}",
"a rendition of the {}",
"a photo of the clean {}",
"a rendition of a {}",
"a photo of a nice {}",
"a good photo of a {}",
"a photo of the nice {}",
"a photo of the small {}",
"a photo of the weird {}",
"a photo of the large {}",
"a photo of a cool {}",
"a photo of a small {}",
]
imagenet_style_templates_small = [
"a painting in the style of {}",
"a rendering in the style of {}",
"a cropped painting in the style of {}",
"the painting in the style of {}",
"a clean painting in the style of {}",
"a dirty painting in the style of {}",
"a dark painting in the style of {}",
"a picture in the style of {}",
"a cool painting in the style of {}",
"a close-up painting in the style of {}",
"a bright painting in the style of {}",
"a cropped painting in the style of {}",
"a good painting in the style of {}",
"a close-up painting in the style of {}",
"a rendition in the style of {}",
"a nice painting in the style of {}",
"a small painting in the style of {}",
"a weird painting in the style of {}",
"a large painting in the style of {}",
]
class TextualInversionDataset(Dataset):
def __init__(
self,
data_root,
tokenizer,
learnable_property="object", # [object, style]
size=512,
repeats=100,
interpolation="bicubic",
set="train",
placeholder_token="*",
center_crop=False,
templates=None
):
self.data_root = data_root
self.tokenizer = tokenizer
self.learnable_property = learnable_property
self.size = size
self.placeholder_token = placeholder_token
self.center_crop = center_crop
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root) if file_path.lower().endswith(('.png', '.jpg', '.jpeg'))]
self.num_images = len(self.image_paths)
self._length = self.num_images
if set == "train":
self._length = self.num_images * repeats
self.interpolation = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
self.templates = templates
self.cache = {}
self.tokenized_templates = [self.tokenizer(
text.format(self.placeholder_token),
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids[0] for text in self.templates]
def __len__(self):
return self._length
def get_example(self, image_path, flipped):
if image_path in self.cache:
return self.cache[image_path]
example = {}
image = Image.open(image_path)
if not image.mode == "RGB":
image = image.convert("RGB")
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
h, w, = (
img.shape[0],
img.shape[1],
)
img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2]
image = Image.fromarray(img)
image = image.resize((self.size, self.size), resample=self.interpolation)
image = transforms.RandomHorizontalFlip(p=1 if flipped else 0)(image)
image = np.array(image).astype(np.uint8)
image = (image / 127.5 - 1.0).astype(np.float32)
example["key"] = "-".join([image_path, "-", str(flipped)])
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
self.cache[image_path] = example
return example
def __getitem__(self, i):
flipped = random.choice([False, True])
example = self.get_example(self.image_paths[i % self.num_images], flipped)
example["input_ids"] = random.choice(self.tokenized_templates)
return example
def freeze_params(params):
for param in params:
param.requires_grad = False
def save_resume_file(basepath, args, extra = {}):
info = {"args": vars(args)}
info["args"].update(extra)
with open(f"{basepath}/resume.json", "w") as f:
json.dump(info, f, indent=4)
class Checkpointer:
def __init__(
self,
accelerator,
vae,
unet,
tokenizer,
placeholder_token,
placeholder_token_id,
templates,
output_dir,
random_sample_batches,
sample_batch_size,
stable_sample_batches,
seed
):
self.accelerator = accelerator
self.vae = vae
self.unet = unet
self.tokenizer = tokenizer
self.placeholder_token = placeholder_token
self.placeholder_token_id = placeholder_token_id
self.templates = templates
self.output_dir = output_dir
self.seed = seed
self.random_sample_batches = random_sample_batches
self.sample_batch_size = sample_batch_size
self.stable_sample_batches = stable_sample_batches
@torch.no_grad()
def checkpoint(self, step, text_encoder, save_samples=True, path=None):
print("Saving checkpoint for step %d..." % step)
with torch.autocast("cuda"):
if path is None:
checkpoints_path = f"{self.output_dir}/checkpoints"
os.makedirs(checkpoints_path, exist_ok=True)
unwrapped = self.accelerator.unwrap_model(text_encoder)
# Save a checkpoint
learned_embeds = unwrapped.get_input_embeddings().weight[self.placeholder_token_id]
learned_embeds_dict = {self.placeholder_token: learned_embeds.detach().cpu()}
filename = f"%s_%d.bin" % (slugify(self.placeholder_token), step)
if path is not None:
torch.save(learned_embeds_dict, path)
else:
torch.save(learned_embeds_dict, f"{checkpoints_path}/{filename}")
torch.save(learned_embeds_dict, f"{checkpoints_path}/last.bin")
del unwrapped
del learned_embeds
@torch.no_grad()
def save_samples(self, step, text_encoder, height, width, guidance_scale, eta, num_inference_steps):
samples_path = f"{self.output_dir}/samples"
os.makedirs(samples_path, exist_ok=True)
checker = NoCheck()
unwrapped = self.accelerator.unwrap_model(text_encoder)
# Save a sample image
pipeline = StableDiffusionPipeline(
text_encoder=unwrapped,
vae=self.vae,
unet=self.unet,
tokenizer=self.tokenizer,
scheduler=LMSDiscreteScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
),
safety_checker=NoCheck(),
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),
).to("cuda")
pipeline.enable_attention_slicing()
if self.stable_sample_batches > 0:
stable_latents = torch.randn(
(self.sample_batch_size, pipeline.unet.in_channels, height // 8, width // 8),
device=pipeline.device,
generator=torch.Generator(device=pipeline.device).manual_seed(self.seed),
)
stable_prompts = [choice.format(self.placeholder_token) for choice in (self.templates * self.sample_batch_size)[:self.sample_batch_size]]
# Generate and save stable samples
for i in range(0, self.stable_sample_batches):
samples = pipeline(
prompt=stable_prompts,
height=384,
latents=stable_latents,
width=384,
guidance_scale=guidance_scale,
eta=eta,
num_inference_steps=num_inference_steps,
output_type='pil'
)["sample"]
for idx, im in enumerate(samples):
filename = f"stable_sample_%d_%d_step_%d.png" % (i+1, idx+1, step)
im.save(f"{samples_path}/{filename}")
del samples
del stable_latents
prompts = [choice.format(self.placeholder_token) for choice in random.choices(self.templates, k=self.sample_batch_size)]
# Generate and save random samples
for i in range(0, self.random_sample_batches):
samples = pipeline(
prompt=prompts,
height=384,
width=384,
guidance_scale=guidance_scale,
eta=eta,
num_inference_steps=num_inference_steps,
output_type='pil'
)["sample"]
for idx, im in enumerate(samples):
filename = f"step_%d_sample_%d_%d.png" % (step, i+1, idx+1)
im.save(f"{samples_path}/{filename}")
del samples
del checker
del unwrapped
del pipeline
torch.cuda.empty_cache()
def main():
args = parse_args()
global_step_offset = 0
if args.resume_from is not None:
basepath = f"{args.resume_from}"
print("Resuming state from %s" % args.resume_from)
with open(f"{basepath}/resume.json", 'r') as f:
state = json.load(f)
global_step_offset = state["args"].get("global_step", 0)
print("We've trained %d steps so far" % global_step_offset)
else:
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
basepath = f"{args.output_dir}/{slugify(args.placeholder_token)}/{now}"
os.makedirs(basepath, exist_ok=True)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision
)
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Load the tokenizer and add the placeholder token as a additional special token
if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path + '/tokenizer'
)
# Add the placeholder token in tokenizer
num_added_tokens = tokenizer.add_tokens(args.placeholder_token)
if num_added_tokens == 0:
raise ValueError(
f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
" `placeholder_token` that is not already in the tokenizer."
)
# Convert the initializer_token, placeholder_token to ids
token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False)
# Check if initializer_token is a single token or a sequence of tokens
if len(token_ids) > 1:
raise ValueError("The initializer token must be a single token.")
initializer_token_id = token_ids[0]
placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token)
# Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path + '/text_encoder',
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path + '/vae',
)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path + '/unet',
)
base_templates = imagenet_style_templates_small if args.learnable_property == "style" else imagenet_templates_small
if args.custom_templates:
templates = args.custom_templates.split(";")
else:
templates = base_templates
slice_size = unet.config.attention_head_dim // 2
unet.set_attention_slice(slice_size)
# Resize the token embeddings as we are adding new special tokens to the tokenizer
text_encoder.resize_token_embeddings(len(tokenizer))
# Initialise the newly added placeholder token with the embeddings of the initializer token
token_embeds = text_encoder.get_input_embeddings().weight.data
if args.resume_checkpoint is not None:
token_embeds[placeholder_token_id] = torch.load(args.resume_checkpoint)[args.placeholder_token]
else:
token_embeds[placeholder_token_id] = token_embeds[initializer_token_id]
# Freeze vae and unet
freeze_params(vae.parameters())
freeze_params(unet.parameters())
# Freeze all parameters except for the token embeddings in text encoder
params_to_freeze = itertools.chain(
text_encoder.text_model.encoder.parameters(),
text_encoder.text_model.final_layer_norm.parameters(),
text_encoder.text_model.embeddings.position_embedding.parameters(),
)
freeze_params(params_to_freeze)
checkpointer = Checkpointer(
accelerator=accelerator,
vae=vae,
unet=unet,
tokenizer=tokenizer,
placeholder_token=args.placeholder_token,
placeholder_token_id=placeholder_token_id,
templates=templates,
output_dir=basepath,
sample_batch_size=args.sample_batch_size,
random_sample_batches=args.random_sample_batches,
stable_sample_batches=args.stable_sample_batches,
seed=args.seed
)
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Initialize the optimizer
optimizer = torch.optim.AdamW(
text_encoder.get_input_embeddings().parameters(), # only optimize the embeddings
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# TODO (patil-suraj): laod scheduler using args
noise_scheduler = DDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, tensor_format="pt"
)
train_dataset = TextualInversionDataset(
data_root=args.train_data_dir,
tokenizer=tokenizer,
size=args.resolution,
placeholder_token=args.placeholder_token,
repeats=args.repeats,
learnable_property=args.learnable_property,
center_crop=args.center_crop,
set="train",
templates=templates
)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
text_encoder, optimizer, train_dataloader, lr_scheduler
)
# Move vae and unet to device
vae.to(accelerator.device)
unet.to(accelerator.device)
# Keep vae and unet in eval mode as we don't train these
vae.eval()
unet.eval()
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("textual_inversion", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
global_step = 0
encoded_pixel_values_cache = {}
try:
for epoch in range(args.num_train_epochs):
text_encoder.train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(text_encoder):
# Convert images to latent space
key = "|".join(batch["key"])
if encoded_pixel_values_cache.get(key, None) is None:
encoded_pixel_values_cache[key] = vae.encode(batch["pixel_values"]).latent_dist
latents = encoded_pixel_values_cache[key].sample().detach().half() * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn(latents.shape).to(latents.device)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device).long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
# Predict the noise residual
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
accelerator.backward(loss)
# Zero out the gradients for all token embeddings except the newly added
# embeddings for the concept, as we only want to optimize the concept embeddings
if accelerator.num_processes > 1:
grads = text_encoder.module.get_input_embeddings().weight.grad
else:
grads = text_encoder.get_input_embeddings().weight.grad
# Get the index for tokens that we want to zero the grads for
index_grads_to_zero = torch.arange(len(tokenizer)) != placeholder_token_id
grads.data[index_grads_to_zero, :] = grads.data[index_grads_to_zero, :].fill_(0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % args.checkpoint_frequency == 0 and global_step > 0 and accelerator.is_main_process:
checkpointer.checkpoint(global_step + global_step_offset, text_encoder)
save_resume_file(basepath, args, {
"global_step": global_step + global_step_offset,
"resume_checkpoint": f"{basepath}/checkpoints/last.bin"
})
checkpointer.save_samples(
global_step + global_step_offset,
text_encoder,
args.resolution, args.resolution, 7.5, 0.0, args.sample_steps)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
#accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
# Create the pipeline using using the trained modules and save it.
if accelerator.is_main_process:
print("Finished! Saving final checkpoint and resume state.")
checkpointer.checkpoint(
global_step + global_step_offset,
text_encoder,
path=f"{basepath}/learned_embeds.bin"
)
save_resume_file(basepath, args, {
"global_step": global_step + global_step_offset,
"resume_checkpoint": f"{basepath}/checkpoints/last.bin"
})
accelerator.end_training()
except KeyboardInterrupt:
if accelerator.is_main_process:
print("Interrupted, saving checkpoint and resume state...")
checkpointer.checkpoint(global_step + global_step_offset, text_encoder)
save_resume_file(basepath, args, {
"global_step": global_step + global_step_offset,
"resume_checkpoint": f"{basepath}/checkpoints/last.bin"
})
quit()
if __name__ == "__main__":
main()