#354 + playground.py update

This commit is contained in:
hlky 2022-08-31 13:58:49 +01:00
parent cfc9f00a93
commit dffdaaaf77
No known key found for this signature in database
GPG Key ID: 55A99F1E80D907D5
3 changed files with 78 additions and 92 deletions

View File

@ -153,7 +153,7 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x, txt2img_defaul
value=3, visible=False) value=3, visible=False)
img2img_resize = gr.Radio(label="Resize mode", img2img_resize = gr.Radio(label="Resize mode",
choices=["Just resize", "Crop and resize", "Resize and fill"], choices=["Just resize"],
type="index", type="index",
value=img2img_resize_modes[img2img_defaults['resize_mode']]) value=img2img_resize_modes[img2img_defaults['resize_mode']])

164
webui.py
View File

@ -847,13 +847,10 @@ def process_images(
if use_GFPGAN and GFPGAN is not None and not use_RealESRGAN: if use_GFPGAN and GFPGAN is not None and not use_RealESRGAN:
skip_save = True # #287 >_> skip_save = True # #287 >_>
torch_gc() torch_gc()
cropped_faces, restored_faces, restored_img = GFPGAN.enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True) cropped_faces, restored_faces, restored_img = GFPGAN.enhance(original_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
gfpgan_sample = restored_img[:,:,::-1] gfpgan_sample = restored_img[:,:,::-1]
gfpgan_image = Image.fromarray(gfpgan_sample) gfpgan_image = Image.fromarray(gfpgan_sample)
gfpgan_filename = original_filename + '-gfpgan' gfpgan_filename = original_filename + '-gfpgan'
save_sample(image, sample_path_i, original_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode)
save_sample(gfpgan_image, sample_path_i, gfpgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, save_sample(gfpgan_image, sample_path_i, gfpgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode) skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode)
@ -866,13 +863,10 @@ skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoisin
torch_gc() torch_gc()
if RealESRGAN.model.name != realesrgan_model_name: if RealESRGAN.model.name != realesrgan_model_name:
try_loading_RealESRGAN(realesrgan_model_name) try_loading_RealESRGAN(realesrgan_model_name)
output, img_mode = RealESRGAN.enhance(x_sample[:,:,::-1]) output, img_mode = RealESRGAN.enhance(original_sample[:,:,::-1])
esrgan_filename = original_filename + '-esrgan4x' esrgan_filename = original_filename + '-esrgan4x'
esrgan_sample = output[:,:,::-1] esrgan_sample = output[:,:,::-1]
esrgan_image = Image.fromarray(esrgan_sample) esrgan_image = Image.fromarray(esrgan_sample)
save_sample(image, sample_path_i, original_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode)
save_sample(esrgan_image, sample_path_i, esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, save_sample(esrgan_image, sample_path_i, esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode) skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode)
@ -891,9 +885,6 @@ skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoisin
gfpgan_esrgan_filename = original_filename + '-gfpgan-esrgan4x' gfpgan_esrgan_filename = original_filename + '-gfpgan-esrgan4x'
gfpgan_esrgan_sample = output[:,:,::-1] gfpgan_esrgan_sample = output[:,:,::-1]
gfpgan_esrgan_image = Image.fromarray(gfpgan_esrgan_sample) gfpgan_esrgan_image = Image.fromarray(gfpgan_esrgan_sample)
save_sample(image, sample_path_i, original_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode)
save_sample(gfpgan_esrgan_image, sample_path_i, gfpgan_esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, save_sample(gfpgan_esrgan_image, sample_path_i, gfpgan_esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode) skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode)
@ -901,7 +892,7 @@ skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoisin
if simple_templating: if simple_templating:
grid_captions.append( captions[i] + "\ngfpgan_esrgan" ) grid_captions.append( captions[i] + "\ngfpgan_esrgan" )
if not skip_save or (not use_GFPGAN or not use_RealESRGAN): if not skip_save:
save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode) skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode)
@ -1126,7 +1117,7 @@ def img2img(prompt: str, image_editor_mode: str, init_info, mask_mode: str, mask
if image_editor_mode == 'Mask': if image_editor_mode == 'Mask':
init_img = init_info["image"] init_img = init_info["image"]
init_img = init_img.convert("RGBA") init_img = init_img.convert("RGB")
init_img = resize_image(resize_mode, init_img, width, height) init_img = resize_image(resize_mode, init_img, width, height)
init_mask = init_info["mask"] init_mask = init_info["mask"]
init_mask = init_mask.convert("RGB") init_mask = init_mask.convert("RGB")
@ -1134,7 +1125,7 @@ def img2img(prompt: str, image_editor_mode: str, init_info, mask_mode: str, mask
keep_mask = mask_mode == 0 keep_mask = mask_mode == 0
init_mask = init_mask if keep_mask else ImageOps.invert(init_mask) init_mask = init_mask if keep_mask else ImageOps.invert(init_mask)
else: else:
init_img = init_info init_img = init_info.convert("RGB")
init_mask = None init_mask = None
keep_mask = False keep_mask = False
@ -1150,7 +1141,7 @@ def img2img(prompt: str, image_editor_mode: str, init_info, mask_mode: str, mask
mask_channel = None mask_channel = None
if image_editor_mode == "Uncrop": if image_editor_mode == "Uncrop":
alpha = init_img.convert("RGBA") alpha = init_img.convert("RGB")
alpha = resize_image(resize_mode, alpha, width // 8, height // 8) alpha = resize_image(resize_mode, alpha, width // 8, height // 8)
mask_channel = alpha.split()[-1] mask_channel = alpha.split()[-1]
mask_channel = mask_channel.filter(ImageFilter.GaussianBlur(4)) mask_channel = mask_channel.filter(ImageFilter.GaussianBlur(4))
@ -1229,70 +1220,13 @@ def img2img(prompt: str, image_editor_mode: str, init_info, mask_mode: str, mask
return samples_ddim return samples_ddim
try:
if loopback:
output_images, info = None, None
history = []
initial_seed = None
for i in range(n_iter): if loopback:
output_images, seed, info, stats = process_images( output_images, info = None, None
outpath=outpath, history = []
func_init=init, initial_seed = None
func_sample=sample,
prompt=prompt,
seed=seed,
sampler_name=sampler_name,
skip_save=skip_save,
skip_grid=skip_grid,
batch_size=1,
n_iter=1,
steps=ddim_steps,
cfg_scale=cfg_scale,
width=width,
height=height,
prompt_matrix=prompt_matrix,
use_GFPGAN=use_GFPGAN,
use_RealESRGAN=False, # Forcefully disable upscaling when using loopback
realesrgan_model_name=realesrgan_model_name,
fp=fp,
do_not_save_grid=True,
normalize_prompt_weights=normalize_prompt_weights,
init_img=init_img,
init_mask=init_mask,
keep_mask=keep_mask,
mask_blur_strength=mask_blur_strength,
denoising_strength=denoising_strength,
resize_mode=resize_mode,
uses_loopback=loopback,
uses_random_seed_loopback=random_seed_loopback,
sort_samples=sort_samples,
write_info_files=write_info_files,
jpg_sample=jpg_sample,
)
if initial_seed is None: for i in range(n_iter):
initial_seed = seed
init_img = output_images[0]
if not random_seed_loopback:
seed = seed + 1
else:
seed = seed_to_int(None)
denoising_strength = max(denoising_strength * 0.95, 0.1)
history.append(init_img)
if not skip_grid:
grid_count = get_next_sequence_number(outpath, 'grid-')
grid = image_grid(history, batch_size, force_n_rows=1)
grid_file = f"grid-{grid_count:05}-{seed}_{prompt.replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]}.{grid_ext}"
grid.save(os.path.join(outpath, grid_file), grid_format, quality=grid_quality, lossless=grid_lossless, optimize=True)
output_images = history
seed = initial_seed
else:
output_images, seed, info, stats = process_images( output_images, seed, info, stats = process_images(
outpath=outpath, outpath=outpath,
func_init=init, func_init=init,
@ -1302,17 +1236,18 @@ def img2img(prompt: str, image_editor_mode: str, init_info, mask_mode: str, mask
sampler_name=sampler_name, sampler_name=sampler_name,
skip_save=skip_save, skip_save=skip_save,
skip_grid=skip_grid, skip_grid=skip_grid,
batch_size=batch_size, batch_size=1,
n_iter=n_iter, n_iter=1,
steps=ddim_steps, steps=ddim_steps,
cfg_scale=cfg_scale, cfg_scale=cfg_scale,
width=width, width=width,
height=height, height=height,
prompt_matrix=prompt_matrix, prompt_matrix=prompt_matrix,
use_GFPGAN=use_GFPGAN, use_GFPGAN=use_GFPGAN,
use_RealESRGAN=use_RealESRGAN, use_RealESRGAN=False, # Forcefully disable upscaling when using loopback
realesrgan_model_name=realesrgan_model_name, realesrgan_model_name=realesrgan_model_name,
fp=fp, fp=fp,
do_not_save_grid=True,
normalize_prompt_weights=normalize_prompt_weights, normalize_prompt_weights=normalize_prompt_weights,
init_img=init_img, init_img=init_img,
init_mask=init_mask, init_mask=init_mask,
@ -1321,22 +1256,71 @@ def img2img(prompt: str, image_editor_mode: str, init_info, mask_mode: str, mask
denoising_strength=denoising_strength, denoising_strength=denoising_strength,
resize_mode=resize_mode, resize_mode=resize_mode,
uses_loopback=loopback, uses_loopback=loopback,
uses_random_seed_loopback=random_seed_loopback,
sort_samples=sort_samples, sort_samples=sort_samples,
write_info_files=write_info_files, write_info_files=write_info_files,
jpg_sample=jpg_sample, jpg_sample=jpg_sample,
) )
del sampler if initial_seed is None:
initial_seed = seed
init_img = output_images[0]
if not random_seed_loopback:
seed = seed + 1
else:
seed = seed_to_int(None)
denoising_strength = max(denoising_strength * 0.95, 0.1)
history.append(init_img)
if not skip_grid:
grid_count = get_next_sequence_number(outpath, 'grid-')
grid = image_grid(history, batch_size, force_n_rows=1)
grid_file = f"grid-{grid_count:05}-{seed}_{prompt.replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]}.{grid_ext}"
grid.save(os.path.join(outpath, grid_file), grid_format, quality=grid_quality, lossless=grid_lossless, optimize=True)
output_images = history
seed = initial_seed
else:
output_images, seed, info, stats = process_images(
outpath=outpath,
func_init=init,
func_sample=sample,
prompt=prompt,
seed=seed,
sampler_name=sampler_name,
skip_save=skip_save,
skip_grid=skip_grid,
batch_size=batch_size,
n_iter=n_iter,
steps=ddim_steps,
cfg_scale=cfg_scale,
width=width,
height=height,
prompt_matrix=prompt_matrix,
use_GFPGAN=use_GFPGAN,
use_RealESRGAN=use_RealESRGAN,
realesrgan_model_name=realesrgan_model_name,
fp=fp,
normalize_prompt_weights=normalize_prompt_weights,
init_img=init_img,
init_mask=init_mask,
keep_mask=keep_mask,
mask_blur_strength=mask_blur_strength,
denoising_strength=denoising_strength,
resize_mode=resize_mode,
uses_loopback=loopback,
sort_samples=sort_samples,
write_info_files=write_info_files,
jpg_sample=jpg_sample,
)
del sampler
return output_images, seed, info, stats
return output_images, seed, info, stats
except RuntimeError as e:
err = e
err_msg = f'CRASHED:<br><textarea rows="5" style="color:white;background: black;width: -webkit-fill-available;font-family: monospace;font-size: small;font-weight: bold;">{str(e)}</textarea><br><br>Please wait while the program restarts.'
stats = err_msg
return [], seed, 'err', stats
finally:
if err:
crash(err, '!!Runtime error (img2img)!!')
prompt_parser = re.compile(""" prompt_parser = re.compile("""
(?P<prompt> # capture group for 'prompt' (?P<prompt> # capture group for 'prompt'

View File

@ -100,7 +100,9 @@ txt2img_defaults = {
'height': 512, 'height': 512,
'width': 512, 'width': 512,
'fp': None, 'fp': None,
'submit_on_enter': 'Yes' 'submit_on_enter': 'Yes',
'variant_amount': 0,
'variant_seed': ''
} }
if 'txt2img' in user_defaults: if 'txt2img' in user_defaults: