From e71c4225cac0edae93d1792cd4842eceb3f8f11c Mon Sep 17 00:00:00 2001 From: hlky <106811348+hlky@users.noreply.github.com> Date: Wed, 26 Oct 2022 08:14:25 +0100 Subject: [PATCH] Create kdiffusion.py --- ldm/models/diffusion/kdiffusion.py | 55 ++++++++++++++++++++++++++++++ 1 file changed, 55 insertions(+) create mode 100644 ldm/models/diffusion/kdiffusion.py diff --git a/ldm/models/diffusion/kdiffusion.py b/ldm/models/diffusion/kdiffusion.py new file mode 100644 index 0000000..da5670d --- /dev/null +++ b/ldm/models/diffusion/kdiffusion.py @@ -0,0 +1,55 @@ +import k_diffusion as K +import torch +import torch.nn as nn + +class KDiffusionSampler: + def __init__(self, m, sampler, callback=None): + self.model = m + self.model_wrap = K.external.CompVisDenoiser(m) + self.schedule = sampler + self.generation_callback = callback + def get_sampler_name(self): + return self.schedule + def sample(self, S, conditioning, unconditional_guidance_scale, unconditional_conditioning, x_T): + sigmas = self.model_wrap.get_sigmas(S) + x = x_T * sigmas[0] + model_wrap_cfg = CFGDenoiser(self.model_wrap) + samples_ddim = None + samples_ddim = K.sampling.__dict__[f'sample_{self.schedule}']( + model_wrap_cfg, x, sigmas, + extra_args={'cond': conditioning, 'uncond': unconditional_conditioning,'cond_scale': unconditional_guidance_scale}, + disable=False, callback=self.generation_callback) + # + return samples_ddim, None +class CFGMaskedDenoiser(nn.Module): + def __init__(self, model): + super().__init__() + self.inner_model = model + + def forward(self, x, sigma, uncond, cond, cond_scale, mask, x0, xi): + x_in = x + x_in = torch.cat([x_in] * 2) + sigma_in = torch.cat([sigma] * 2) + cond_in = torch.cat([uncond, cond]) + uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) + denoised = uncond + (cond - uncond) * cond_scale + + if mask is not None: + assert x0 is not None + img_orig = x0 + mask_inv = 1. - mask + denoised = (img_orig * mask_inv) + (mask * denoised) + + return denoised + +class CFGDenoiser(nn.Module): + def __init__(self, model): + super().__init__() + self.inner_model = model + + def forward(self, x, sigma, uncond, cond, cond_scale): + x_in = torch.cat([x] * 2) + sigma_in = torch.cat([sigma] * 2) + cond_in = torch.cat([uncond, cond]) + uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) + return uncond + (cond - uncond) * cond_scale \ No newline at end of file