mirror of
https://github.com/sd-webui/stable-diffusion-webui.git
synced 2024-12-13 18:02:31 +03:00
Img2txt dependencies and necessary files. (#1354)
This commit is contained in:
parent
510d103a83
commit
f678efb4e2
21
configs/blip/bert_config.json
Normal file
21
configs/blip/bert_config.json
Normal file
@ -0,0 +1,21 @@
|
||||
{
|
||||
"architectures": [
|
||||
"BertModel"
|
||||
],
|
||||
"attention_probs_dropout_prob": 0.1,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.1,
|
||||
"hidden_size": 768,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"layer_norm_eps": 1e-12,
|
||||
"max_position_embeddings": 512,
|
||||
"model_type": "bert",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 0,
|
||||
"type_vocab_size": 2,
|
||||
"vocab_size": 30522,
|
||||
"encoder_width": 768,
|
||||
"add_cross_attention": true
|
||||
}
|
33
configs/blip/caption_coco.yaml
Normal file
33
configs/blip/caption_coco.yaml
Normal file
@ -0,0 +1,33 @@
|
||||
image_root: '/export/share/datasets/vision/coco/images/'
|
||||
ann_root: 'annotation'
|
||||
coco_gt_root: 'annotation/coco_gt'
|
||||
|
||||
# set pretrained as a file path or an url
|
||||
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
|
||||
|
||||
# size of vit model; base or large
|
||||
vit: 'base'
|
||||
vit_grad_ckpt: False
|
||||
vit_ckpt_layer: 0
|
||||
batch_size: 32
|
||||
init_lr: 1e-5
|
||||
|
||||
# vit: 'large'
|
||||
# vit_grad_ckpt: True
|
||||
# vit_ckpt_layer: 5
|
||||
# batch_size: 16
|
||||
# init_lr: 2e-6
|
||||
|
||||
image_size: 384
|
||||
|
||||
# generation configs
|
||||
max_length: 20
|
||||
min_length: 5
|
||||
num_beams: 3
|
||||
prompt: 'a picture of '
|
||||
|
||||
# optimizer
|
||||
weight_decay: 0.05
|
||||
min_lr: 0
|
||||
max_epoch: 5
|
||||
|
21
configs/blip/med_config.json
Normal file
21
configs/blip/med_config.json
Normal file
@ -0,0 +1,21 @@
|
||||
{
|
||||
"architectures": [
|
||||
"BertModel"
|
||||
],
|
||||
"attention_probs_dropout_prob": 0.1,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.1,
|
||||
"hidden_size": 768,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"layer_norm_eps": 1e-12,
|
||||
"max_position_embeddings": 512,
|
||||
"model_type": "bert",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 0,
|
||||
"type_vocab_size": 2,
|
||||
"vocab_size": 30524,
|
||||
"encoder_width": 768,
|
||||
"add_cross_attention": true
|
||||
}
|
21
configs/blip/nlvr.yaml
Normal file
21
configs/blip/nlvr.yaml
Normal file
@ -0,0 +1,21 @@
|
||||
image_root: '/export/share/datasets/vision/NLVR2/'
|
||||
ann_root: 'annotation'
|
||||
|
||||
# set pretrained as a file path or an url
|
||||
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_nlvr.pth'
|
||||
|
||||
#size of vit model; base or large
|
||||
vit: 'base'
|
||||
batch_size_train: 16
|
||||
batch_size_test: 64
|
||||
vit_grad_ckpt: False
|
||||
vit_ckpt_layer: 0
|
||||
max_epoch: 15
|
||||
|
||||
image_size: 384
|
||||
|
||||
# optimizer
|
||||
weight_decay: 0.05
|
||||
init_lr: 3e-5
|
||||
min_lr: 0
|
||||
|
15
configs/blip/nocaps.yaml
Normal file
15
configs/blip/nocaps.yaml
Normal file
@ -0,0 +1,15 @@
|
||||
image_root: '/export/share/datasets/vision/nocaps/'
|
||||
ann_root: 'annotation'
|
||||
|
||||
# set pretrained as a file path or an url
|
||||
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
|
||||
|
||||
vit: 'base'
|
||||
batch_size: 32
|
||||
|
||||
image_size: 384
|
||||
|
||||
max_length: 20
|
||||
min_length: 5
|
||||
num_beams: 3
|
||||
prompt: 'a picture of '
|
27
configs/blip/pretrain.yaml
Normal file
27
configs/blip/pretrain.yaml
Normal file
@ -0,0 +1,27 @@
|
||||
train_file: ['/export/share/junnan-li/VL_pretrain/annotation/coco_karpathy_train.json',
|
||||
'/export/share/junnan-li/VL_pretrain/annotation/vg_caption.json',
|
||||
]
|
||||
laion_path: ''
|
||||
|
||||
# size of vit model; base or large
|
||||
vit: 'base'
|
||||
vit_grad_ckpt: False
|
||||
vit_ckpt_layer: 0
|
||||
|
||||
image_size: 224
|
||||
batch_size: 75
|
||||
|
||||
queue_size: 57600
|
||||
alpha: 0.4
|
||||
|
||||
# optimizer
|
||||
weight_decay: 0.05
|
||||
init_lr: 3e-4
|
||||
min_lr: 1e-6
|
||||
warmup_lr: 1e-6
|
||||
lr_decay_rate: 0.9
|
||||
max_epoch: 20
|
||||
warmup_steps: 3000
|
||||
|
||||
|
||||
|
34
configs/blip/retrieval_coco.yaml
Normal file
34
configs/blip/retrieval_coco.yaml
Normal file
@ -0,0 +1,34 @@
|
||||
image_root: '/export/share/datasets/vision/coco/images/'
|
||||
ann_root: 'annotation'
|
||||
dataset: 'coco'
|
||||
|
||||
# set pretrained as a file path or an url
|
||||
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
|
||||
|
||||
# size of vit model; base or large
|
||||
|
||||
vit: 'base'
|
||||
batch_size_train: 32
|
||||
batch_size_test: 64
|
||||
vit_grad_ckpt: True
|
||||
vit_ckpt_layer: 4
|
||||
init_lr: 1e-5
|
||||
|
||||
# vit: 'large'
|
||||
# batch_size_train: 16
|
||||
# batch_size_test: 32
|
||||
# vit_grad_ckpt: True
|
||||
# vit_ckpt_layer: 12
|
||||
# init_lr: 5e-6
|
||||
|
||||
image_size: 384
|
||||
queue_size: 57600
|
||||
alpha: 0.4
|
||||
k_test: 256
|
||||
negative_all_rank: True
|
||||
|
||||
# optimizer
|
||||
weight_decay: 0.05
|
||||
min_lr: 0
|
||||
max_epoch: 6
|
||||
|
34
configs/blip/retrieval_flickr.yaml
Normal file
34
configs/blip/retrieval_flickr.yaml
Normal file
@ -0,0 +1,34 @@
|
||||
image_root: '/export/share/datasets/vision/flickr30k/'
|
||||
ann_root: 'annotation'
|
||||
dataset: 'flickr'
|
||||
|
||||
# set pretrained as a file path or an url
|
||||
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_flickr.pth'
|
||||
|
||||
# size of vit model; base or large
|
||||
|
||||
vit: 'base'
|
||||
batch_size_train: 32
|
||||
batch_size_test: 64
|
||||
vit_grad_ckpt: True
|
||||
vit_ckpt_layer: 4
|
||||
init_lr: 1e-5
|
||||
|
||||
# vit: 'large'
|
||||
# batch_size_train: 16
|
||||
# batch_size_test: 32
|
||||
# vit_grad_ckpt: True
|
||||
# vit_ckpt_layer: 10
|
||||
# init_lr: 5e-6
|
||||
|
||||
image_size: 384
|
||||
queue_size: 57600
|
||||
alpha: 0.4
|
||||
k_test: 128
|
||||
negative_all_rank: False
|
||||
|
||||
# optimizer
|
||||
weight_decay: 0.05
|
||||
min_lr: 0
|
||||
max_epoch: 6
|
||||
|
12
configs/blip/retrieval_msrvtt.yaml
Normal file
12
configs/blip/retrieval_msrvtt.yaml
Normal file
@ -0,0 +1,12 @@
|
||||
video_root: '/export/share/dongxuli/data/msrvtt_retrieval/videos'
|
||||
ann_root: 'annotation'
|
||||
|
||||
# set pretrained as a file path or an url
|
||||
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
|
||||
|
||||
# size of vit model; base or large
|
||||
vit: 'base'
|
||||
batch_size: 64
|
||||
k_test: 128
|
||||
image_size: 384
|
||||
num_frm_test: 8
|
25
configs/blip/vqa.yaml
Normal file
25
configs/blip/vqa.yaml
Normal file
@ -0,0 +1,25 @@
|
||||
vqa_root: '/export/share/datasets/vision/VQA/Images/mscoco/' #followed by train2014/
|
||||
vg_root: '/export/share/datasets/vision/visual-genome/' #followed by image/
|
||||
train_files: ['vqa_train','vqa_val','vg_qa']
|
||||
ann_root: 'annotation'
|
||||
|
||||
# set pretrained as a file path or an url
|
||||
pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'
|
||||
|
||||
# size of vit model; base or large
|
||||
vit: 'base'
|
||||
batch_size_train: 16
|
||||
batch_size_test: 32
|
||||
vit_grad_ckpt: False
|
||||
vit_ckpt_layer: 0
|
||||
init_lr: 2e-5
|
||||
|
||||
image_size: 480
|
||||
|
||||
k_test: 128
|
||||
inference: 'rank'
|
||||
|
||||
# optimizer
|
||||
weight_decay: 0.05
|
||||
min_lr: 0
|
||||
max_epoch: 10
|
@ -41,6 +41,8 @@ dependencies:
|
||||
- diffusers==0.3.0
|
||||
- einops==0.3.0
|
||||
- facexlib>=0.2.3
|
||||
- ftfy==6.1.1
|
||||
- fairscale==0.4.4
|
||||
- gradio==3.1.6
|
||||
- hydralit==1.0.14
|
||||
- hydralit_components==1.0.10
|
||||
@ -51,11 +53,14 @@ dependencies:
|
||||
- opencv-python-headless==4.6.0.66
|
||||
- pandas==1.4.3
|
||||
- piexif==1.1.3
|
||||
- pycocotools==2.0.5
|
||||
- pycocoevalcap==1.2
|
||||
- pudb==2019.2
|
||||
- pynvml==11.4.1
|
||||
- python-slugify>=6.1.2
|
||||
- pytorch-lightning==1.4.2
|
||||
- retry>=0.9.2
|
||||
- regex
|
||||
- realesrgan==0.3.0
|
||||
- streamlit==1.13.0
|
||||
- streamlit-on-Hover-tabs==1.0.1
|
||||
@ -65,7 +70,9 @@ dependencies:
|
||||
- streamlit-tensorboard==0.0.2
|
||||
- test-tube>=0.7.5
|
||||
- tensorboard==2.10.1
|
||||
- timm==0.4.12
|
||||
- torch-fidelity==0.3.0
|
||||
- torchmetrics==0.6.0
|
||||
- transformers==4.19.2
|
||||
|
||||
- tqdm==4.64.0
|
||||
|
@ -0,0 +1,101 @@
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import transforms
|
||||
from torchvision.transforms.functional import InterpolationMode
|
||||
|
||||
from data.coco_karpathy_dataset import coco_karpathy_train, coco_karpathy_caption_eval, coco_karpathy_retrieval_eval
|
||||
from data.nocaps_dataset import nocaps_eval
|
||||
from data.flickr30k_dataset import flickr30k_train, flickr30k_retrieval_eval
|
||||
from data.vqa_dataset import vqa_dataset
|
||||
from data.nlvr_dataset import nlvr_dataset
|
||||
from data.pretrain_dataset import pretrain_dataset
|
||||
from transform.randaugment import RandomAugment
|
||||
|
||||
def create_dataset(dataset, config, min_scale=0.5):
|
||||
|
||||
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
||||
|
||||
transform_train = transforms.Compose([
|
||||
transforms.RandomResizedCrop(config['image_size'],scale=(min_scale, 1.0),interpolation=InterpolationMode.BICUBIC),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
RandomAugment(2,5,isPIL=True,augs=['Identity','AutoContrast','Brightness','Sharpness','Equalize',
|
||||
'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']),
|
||||
transforms.ToTensor(),
|
||||
normalize,
|
||||
])
|
||||
transform_test = transforms.Compose([
|
||||
transforms.Resize((config['image_size'],config['image_size']),interpolation=InterpolationMode.BICUBIC),
|
||||
transforms.ToTensor(),
|
||||
normalize,
|
||||
])
|
||||
|
||||
if dataset=='pretrain':
|
||||
dataset = pretrain_dataset(config['train_file'], config['laion_path'], transform_train)
|
||||
return dataset
|
||||
|
||||
elif dataset=='caption_coco':
|
||||
train_dataset = coco_karpathy_train(transform_train, config['image_root'], config['ann_root'], prompt=config['prompt'])
|
||||
val_dataset = coco_karpathy_caption_eval(transform_test, config['image_root'], config['ann_root'], 'val')
|
||||
test_dataset = coco_karpathy_caption_eval(transform_test, config['image_root'], config['ann_root'], 'test')
|
||||
return train_dataset, val_dataset, test_dataset
|
||||
|
||||
elif dataset=='nocaps':
|
||||
val_dataset = nocaps_eval(transform_test, config['image_root'], config['ann_root'], 'val')
|
||||
test_dataset = nocaps_eval(transform_test, config['image_root'], config['ann_root'], 'test')
|
||||
return val_dataset, test_dataset
|
||||
|
||||
elif dataset=='retrieval_coco':
|
||||
train_dataset = coco_karpathy_train(transform_train, config['image_root'], config['ann_root'])
|
||||
val_dataset = coco_karpathy_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'val')
|
||||
test_dataset = coco_karpathy_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'test')
|
||||
return train_dataset, val_dataset, test_dataset
|
||||
|
||||
elif dataset=='retrieval_flickr':
|
||||
train_dataset = flickr30k_train(transform_train, config['image_root'], config['ann_root'])
|
||||
val_dataset = flickr30k_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'val')
|
||||
test_dataset = flickr30k_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'test')
|
||||
return train_dataset, val_dataset, test_dataset
|
||||
|
||||
elif dataset=='vqa':
|
||||
train_dataset = vqa_dataset(transform_train, config['ann_root'], config['vqa_root'], config['vg_root'],
|
||||
train_files = config['train_files'], split='train')
|
||||
test_dataset = vqa_dataset(transform_test, config['ann_root'], config['vqa_root'], config['vg_root'], split='test')
|
||||
return train_dataset, test_dataset
|
||||
|
||||
elif dataset=='nlvr':
|
||||
train_dataset = nlvr_dataset(transform_train, config['image_root'], config['ann_root'],'train')
|
||||
val_dataset = nlvr_dataset(transform_test, config['image_root'], config['ann_root'],'val')
|
||||
test_dataset = nlvr_dataset(transform_test, config['image_root'], config['ann_root'],'test')
|
||||
return train_dataset, val_dataset, test_dataset
|
||||
|
||||
|
||||
def create_sampler(datasets, shuffles, num_tasks, global_rank):
|
||||
samplers = []
|
||||
for dataset,shuffle in zip(datasets,shuffles):
|
||||
sampler = torch.utils.data.DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank, shuffle=shuffle)
|
||||
samplers.append(sampler)
|
||||
return samplers
|
||||
|
||||
|
||||
def create_loader(datasets, samplers, batch_size, num_workers, is_trains, collate_fns):
|
||||
loaders = []
|
||||
for dataset,sampler,bs,n_worker,is_train,collate_fn in zip(datasets,samplers,batch_size,num_workers,is_trains,collate_fns):
|
||||
if is_train:
|
||||
shuffle = (sampler is None)
|
||||
drop_last = True
|
||||
else:
|
||||
shuffle = False
|
||||
drop_last = False
|
||||
loader = DataLoader(
|
||||
dataset,
|
||||
batch_size=bs,
|
||||
num_workers=n_worker,
|
||||
pin_memory=True,
|
||||
sampler=sampler,
|
||||
shuffle=shuffle,
|
||||
collate_fn=collate_fn,
|
||||
drop_last=drop_last,
|
||||
)
|
||||
loaders.append(loader)
|
||||
return loaders
|
||||
|
126
ldm/data/coco_karpathy_dataset.py
Normal file
126
ldm/data/coco_karpathy_dataset.py
Normal file
@ -0,0 +1,126 @@
|
||||
import os
|
||||
import json
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.datasets.utils import download_url
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from data.utils import pre_caption
|
||||
|
||||
class coco_karpathy_train(Dataset):
|
||||
def __init__(self, transform, image_root, ann_root, max_words=30, prompt=''):
|
||||
'''
|
||||
image_root (string): Root directory of images (e.g. coco/images/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
'''
|
||||
url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_train.json'
|
||||
filename = 'coco_karpathy_train.json'
|
||||
|
||||
download_url(url,ann_root)
|
||||
|
||||
self.annotation = json.load(open(os.path.join(ann_root,filename),'r'))
|
||||
self.transform = transform
|
||||
self.image_root = image_root
|
||||
self.max_words = max_words
|
||||
self.prompt = prompt
|
||||
|
||||
self.img_ids = {}
|
||||
n = 0
|
||||
for ann in self.annotation:
|
||||
img_id = ann['image_id']
|
||||
if img_id not in self.img_ids.keys():
|
||||
self.img_ids[img_id] = n
|
||||
n += 1
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
image_path = os.path.join(self.image_root,ann['image'])
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
image = self.transform(image)
|
||||
|
||||
caption = self.prompt+pre_caption(ann['caption'], self.max_words)
|
||||
|
||||
return image, caption, self.img_ids[ann['image_id']]
|
||||
|
||||
|
||||
class coco_karpathy_caption_eval(Dataset):
|
||||
def __init__(self, transform, image_root, ann_root, split):
|
||||
'''
|
||||
image_root (string): Root directory of images (e.g. coco/images/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
split (string): val or test
|
||||
'''
|
||||
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json',
|
||||
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'}
|
||||
filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'}
|
||||
|
||||
download_url(urls[split],ann_root)
|
||||
|
||||
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
||||
self.transform = transform
|
||||
self.image_root = image_root
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
image_path = os.path.join(self.image_root,ann['image'])
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
image = self.transform(image)
|
||||
|
||||
img_id = ann['image'].split('/')[-1].strip('.jpg').split('_')[-1]
|
||||
|
||||
return image, int(img_id)
|
||||
|
||||
|
||||
class coco_karpathy_retrieval_eval(Dataset):
|
||||
def __init__(self, transform, image_root, ann_root, split, max_words=30):
|
||||
'''
|
||||
image_root (string): Root directory of images (e.g. coco/images/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
split (string): val or test
|
||||
'''
|
||||
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json',
|
||||
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'}
|
||||
filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'}
|
||||
|
||||
download_url(urls[split],ann_root)
|
||||
|
||||
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
||||
self.transform = transform
|
||||
self.image_root = image_root
|
||||
|
||||
self.text = []
|
||||
self.image = []
|
||||
self.txt2img = {}
|
||||
self.img2txt = {}
|
||||
|
||||
txt_id = 0
|
||||
for img_id, ann in enumerate(self.annotation):
|
||||
self.image.append(ann['image'])
|
||||
self.img2txt[img_id] = []
|
||||
for i, caption in enumerate(ann['caption']):
|
||||
self.text.append(pre_caption(caption,max_words))
|
||||
self.img2txt[img_id].append(txt_id)
|
||||
self.txt2img[txt_id] = img_id
|
||||
txt_id += 1
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
image_path = os.path.join(self.image_root, self.annotation[index]['image'])
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
image = self.transform(image)
|
||||
|
||||
return image, index
|
93
ldm/data/flickr30k_dataset.py
Normal file
93
ldm/data/flickr30k_dataset.py
Normal file
@ -0,0 +1,93 @@
|
||||
import os
|
||||
import json
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.datasets.utils import download_url
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from data.utils import pre_caption
|
||||
|
||||
class flickr30k_train(Dataset):
|
||||
def __init__(self, transform, image_root, ann_root, max_words=30, prompt=''):
|
||||
'''
|
||||
image_root (string): Root directory of images (e.g. flickr30k/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
'''
|
||||
url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_train.json'
|
||||
filename = 'flickr30k_train.json'
|
||||
|
||||
download_url(url,ann_root)
|
||||
|
||||
self.annotation = json.load(open(os.path.join(ann_root,filename),'r'))
|
||||
self.transform = transform
|
||||
self.image_root = image_root
|
||||
self.max_words = max_words
|
||||
self.prompt = prompt
|
||||
|
||||
self.img_ids = {}
|
||||
n = 0
|
||||
for ann in self.annotation:
|
||||
img_id = ann['image_id']
|
||||
if img_id not in self.img_ids.keys():
|
||||
self.img_ids[img_id] = n
|
||||
n += 1
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
image_path = os.path.join(self.image_root,ann['image'])
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
image = self.transform(image)
|
||||
|
||||
caption = self.prompt+pre_caption(ann['caption'], self.max_words)
|
||||
|
||||
return image, caption, self.img_ids[ann['image_id']]
|
||||
|
||||
|
||||
class flickr30k_retrieval_eval(Dataset):
|
||||
def __init__(self, transform, image_root, ann_root, split, max_words=30):
|
||||
'''
|
||||
image_root (string): Root directory of images (e.g. flickr30k/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
split (string): val or test
|
||||
'''
|
||||
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_val.json',
|
||||
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_test.json'}
|
||||
filenames = {'val':'flickr30k_val.json','test':'flickr30k_test.json'}
|
||||
|
||||
download_url(urls[split],ann_root)
|
||||
|
||||
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
||||
self.transform = transform
|
||||
self.image_root = image_root
|
||||
|
||||
self.text = []
|
||||
self.image = []
|
||||
self.txt2img = {}
|
||||
self.img2txt = {}
|
||||
|
||||
txt_id = 0
|
||||
for img_id, ann in enumerate(self.annotation):
|
||||
self.image.append(ann['image'])
|
||||
self.img2txt[img_id] = []
|
||||
for i, caption in enumerate(ann['caption']):
|
||||
self.text.append(pre_caption(caption,max_words))
|
||||
self.img2txt[img_id].append(txt_id)
|
||||
self.txt2img[txt_id] = img_id
|
||||
txt_id += 1
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
image_path = os.path.join(self.image_root, self.annotation[index]['image'])
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
image = self.transform(image)
|
||||
|
||||
return image, index
|
78
ldm/data/nlvr_dataset.py
Normal file
78
ldm/data/nlvr_dataset.py
Normal file
@ -0,0 +1,78 @@
|
||||
import os
|
||||
import json
|
||||
import random
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.datasets.utils import download_url
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from data.utils import pre_caption
|
||||
|
||||
class nlvr_dataset(Dataset):
|
||||
def __init__(self, transform, image_root, ann_root, split):
|
||||
'''
|
||||
image_root (string): Root directory of images
|
||||
ann_root (string): directory to store the annotation file
|
||||
split (string): train, val or test
|
||||
'''
|
||||
urls = {'train':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_train.json',
|
||||
'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_dev.json',
|
||||
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_test.json'}
|
||||
filenames = {'train':'nlvr_train.json','val':'nlvr_dev.json','test':'nlvr_test.json'}
|
||||
|
||||
download_url(urls[split],ann_root)
|
||||
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
||||
|
||||
self.transform = transform
|
||||
self.image_root = image_root
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
image0_path = os.path.join(self.image_root,ann['images'][0])
|
||||
image0 = Image.open(image0_path).convert('RGB')
|
||||
image0 = self.transform(image0)
|
||||
|
||||
image1_path = os.path.join(self.image_root,ann['images'][1])
|
||||
image1 = Image.open(image1_path).convert('RGB')
|
||||
image1 = self.transform(image1)
|
||||
|
||||
sentence = pre_caption(ann['sentence'], 40)
|
||||
|
||||
if ann['label']=='True':
|
||||
label = 1
|
||||
else:
|
||||
label = 0
|
||||
|
||||
words = sentence.split(' ')
|
||||
|
||||
if 'left' not in words and 'right' not in words:
|
||||
if random.random()<0.5:
|
||||
return image0, image1, sentence, label
|
||||
else:
|
||||
return image1, image0, sentence, label
|
||||
else:
|
||||
if random.random()<0.5:
|
||||
return image0, image1, sentence, label
|
||||
else:
|
||||
new_words = []
|
||||
for word in words:
|
||||
if word=='left':
|
||||
new_words.append('right')
|
||||
elif word=='right':
|
||||
new_words.append('left')
|
||||
else:
|
||||
new_words.append(word)
|
||||
|
||||
sentence = ' '.join(new_words)
|
||||
return image1, image0, sentence, label
|
||||
|
||||
|
||||
|
32
ldm/data/nocaps_dataset.py
Normal file
32
ldm/data/nocaps_dataset.py
Normal file
@ -0,0 +1,32 @@
|
||||
import os
|
||||
import json
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.datasets.utils import download_url
|
||||
|
||||
from PIL import Image
|
||||
|
||||
class nocaps_eval(Dataset):
|
||||
def __init__(self, transform, image_root, ann_root, split):
|
||||
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nocaps_val.json',
|
||||
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nocaps_test.json'}
|
||||
filenames = {'val':'nocaps_val.json','test':'nocaps_test.json'}
|
||||
|
||||
download_url(urls[split],ann_root)
|
||||
|
||||
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
||||
self.transform = transform
|
||||
self.image_root = image_root
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
image_path = os.path.join(self.image_root,ann['image'])
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
image = self.transform(image)
|
||||
|
||||
return image, int(ann['img_id'])
|
59
ldm/data/pretrain_dataset.py
Normal file
59
ldm/data/pretrain_dataset.py
Normal file
@ -0,0 +1,59 @@
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from PIL import Image
|
||||
from PIL import ImageFile
|
||||
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
||||
Image.MAX_IMAGE_PIXELS = None
|
||||
|
||||
from data.utils import pre_caption
|
||||
import os,glob
|
||||
|
||||
class pretrain_dataset(Dataset):
|
||||
def __init__(self, ann_file, laion_path, transform):
|
||||
|
||||
self.ann_pretrain = []
|
||||
for f in ann_file:
|
||||
print('loading '+f)
|
||||
ann = json.load(open(f,'r'))
|
||||
self.ann_pretrain += ann
|
||||
|
||||
self.laion_path = laion_path
|
||||
if self.laion_path:
|
||||
self.laion_files = glob.glob(os.path.join(laion_path,'*.json'))
|
||||
|
||||
print('loading '+self.laion_files[0])
|
||||
with open(self.laion_files[0],'r') as f:
|
||||
self.ann_laion = json.load(f)
|
||||
|
||||
self.annotation = self.ann_pretrain + self.ann_laion
|
||||
else:
|
||||
self.annotation = self.ann_pretrain
|
||||
|
||||
self.transform = transform
|
||||
|
||||
|
||||
def reload_laion(self, epoch):
|
||||
n = epoch%len(self.laion_files)
|
||||
print('loading '+self.laion_files[n])
|
||||
with open(self.laion_files[n],'r') as f:
|
||||
self.ann_laion = json.load(f)
|
||||
|
||||
self.annotation = self.ann_pretrain + self.ann_laion
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
image = Image.open(ann['image']).convert('RGB')
|
||||
image = self.transform(image)
|
||||
caption = pre_caption(ann['caption'],30)
|
||||
|
||||
return image, caption
|
112
ldm/data/utils.py
Normal file
112
ldm/data/utils.py
Normal file
@ -0,0 +1,112 @@
|
||||
import re
|
||||
import json
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
import utils
|
||||
|
||||
def pre_caption(caption,max_words=50):
|
||||
caption = re.sub(
|
||||
r"([.!\"()*#:;~])",
|
||||
' ',
|
||||
caption.lower(),
|
||||
)
|
||||
caption = re.sub(
|
||||
r"\s{2,}",
|
||||
' ',
|
||||
caption,
|
||||
)
|
||||
caption = caption.rstrip('\n')
|
||||
caption = caption.strip(' ')
|
||||
|
||||
#truncate caption
|
||||
caption_words = caption.split(' ')
|
||||
if len(caption_words)>max_words:
|
||||
caption = ' '.join(caption_words[:max_words])
|
||||
|
||||
return caption
|
||||
|
||||
def pre_question(question,max_ques_words=50):
|
||||
question = re.sub(
|
||||
r"([.!\"()*#:;~])",
|
||||
'',
|
||||
question.lower(),
|
||||
)
|
||||
question = question.rstrip(' ')
|
||||
|
||||
#truncate question
|
||||
question_words = question.split(' ')
|
||||
if len(question_words)>max_ques_words:
|
||||
question = ' '.join(question_words[:max_ques_words])
|
||||
|
||||
return question
|
||||
|
||||
|
||||
def save_result(result, result_dir, filename, remove_duplicate=''):
|
||||
result_file = os.path.join(result_dir, '%s_rank%d.json'%(filename,utils.get_rank()))
|
||||
final_result_file = os.path.join(result_dir, '%s.json'%filename)
|
||||
|
||||
json.dump(result,open(result_file,'w'))
|
||||
|
||||
dist.barrier()
|
||||
|
||||
if utils.is_main_process():
|
||||
# combine results from all processes
|
||||
result = []
|
||||
|
||||
for rank in range(utils.get_world_size()):
|
||||
result_file = os.path.join(result_dir, '%s_rank%d.json'%(filename,rank))
|
||||
res = json.load(open(result_file,'r'))
|
||||
result += res
|
||||
|
||||
if remove_duplicate:
|
||||
result_new = []
|
||||
id_list = []
|
||||
for res in result:
|
||||
if res[remove_duplicate] not in id_list:
|
||||
id_list.append(res[remove_duplicate])
|
||||
result_new.append(res)
|
||||
result = result_new
|
||||
|
||||
json.dump(result,open(final_result_file,'w'))
|
||||
print('result file saved to %s'%final_result_file)
|
||||
|
||||
return final_result_file
|
||||
|
||||
|
||||
|
||||
from pycocotools.coco import COCO
|
||||
from pycocoevalcap.eval import COCOEvalCap
|
||||
from torchvision.datasets.utils import download_url
|
||||
|
||||
def coco_caption_eval(coco_gt_root, results_file, split):
|
||||
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json',
|
||||
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json'}
|
||||
filenames = {'val':'coco_karpathy_val_gt.json','test':'coco_karpathy_test_gt.json'}
|
||||
|
||||
download_url(urls[split],coco_gt_root)
|
||||
annotation_file = os.path.join(coco_gt_root,filenames[split])
|
||||
|
||||
# create coco object and coco_result object
|
||||
coco = COCO(annotation_file)
|
||||
coco_result = coco.loadRes(results_file)
|
||||
|
||||
# create coco_eval object by taking coco and coco_result
|
||||
coco_eval = COCOEvalCap(coco, coco_result)
|
||||
|
||||
# evaluate on a subset of images by setting
|
||||
# coco_eval.params['image_id'] = coco_result.getImgIds()
|
||||
# please remove this line when evaluating the full validation set
|
||||
# coco_eval.params['image_id'] = coco_result.getImgIds()
|
||||
|
||||
# evaluate results
|
||||
# SPICE will take a few minutes the first time, but speeds up due to caching
|
||||
coco_eval.evaluate()
|
||||
|
||||
# print output evaluation scores
|
||||
for metric, score in coco_eval.eval.items():
|
||||
print(f'{metric}: {score:.3f}')
|
||||
|
||||
return coco_eval
|
110
ldm/data/video_dataset.py
Normal file
110
ldm/data/video_dataset.py
Normal file
@ -0,0 +1,110 @@
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.datasets.utils import download_url
|
||||
|
||||
from PIL import Image
|
||||
import torch
|
||||
import numpy as np
|
||||
import random
|
||||
import decord
|
||||
from decord import VideoReader
|
||||
import json
|
||||
import os
|
||||
from data.utils import pre_caption
|
||||
|
||||
decord.bridge.set_bridge("torch")
|
||||
|
||||
class ImageNorm(object):
|
||||
"""Apply Normalization to Image Pixels on GPU
|
||||
"""
|
||||
def __init__(self, mean, std):
|
||||
self.mean = torch.tensor(mean).view(1, 3, 1, 1)
|
||||
self.std = torch.tensor(std).view(1, 3, 1, 1)
|
||||
|
||||
def __call__(self, img):
|
||||
|
||||
if torch.max(img) > 1 and self.mean.max() <= 1:
|
||||
img.div_(255.)
|
||||
return img.sub_(self.mean).div_(self.std)
|
||||
|
||||
def load_jsonl(filename):
|
||||
with open(filename, "r") as f:
|
||||
return [json.loads(l.strip("\n")) for l in f.readlines()]
|
||||
|
||||
|
||||
class VideoDataset(Dataset):
|
||||
|
||||
def __init__(self, video_root, ann_root, num_frm=4, frm_sampling_strategy="rand", max_img_size=384, video_fmt='.mp4'):
|
||||
'''
|
||||
image_root (string): Root directory of video
|
||||
ann_root (string): directory to store the annotation file
|
||||
'''
|
||||
url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/msrvtt_test.jsonl'
|
||||
filename = 'msrvtt_test.jsonl'
|
||||
|
||||
download_url(url,ann_root)
|
||||
self.annotation = load_jsonl(os.path.join(ann_root,filename))
|
||||
|
||||
self.num_frm = num_frm
|
||||
self.frm_sampling_strategy = frm_sampling_strategy
|
||||
self.max_img_size = max_img_size
|
||||
self.video_root = video_root
|
||||
self.video_fmt = video_fmt
|
||||
self.img_norm = ImageNorm(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
|
||||
|
||||
self.text = [pre_caption(ann['caption'],40) for ann in self.annotation]
|
||||
self.txt2video = [i for i in range(len(self.annotation))]
|
||||
self.video2txt = self.txt2video
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
video_path = os.path.join(self.video_root, ann['clip_name'] + self.video_fmt)
|
||||
|
||||
vid_frm_array = self._load_video_from_path_decord(video_path, height=self.max_img_size, width=self.max_img_size)
|
||||
|
||||
video = self.img_norm(vid_frm_array.float())
|
||||
|
||||
return video, ann['clip_name']
|
||||
|
||||
|
||||
|
||||
def _load_video_from_path_decord(self, video_path, height=None, width=None, start_time=None, end_time=None, fps=-1):
|
||||
try:
|
||||
if not height or not width:
|
||||
vr = VideoReader(video_path)
|
||||
else:
|
||||
vr = VideoReader(video_path, width=width, height=height)
|
||||
|
||||
vlen = len(vr)
|
||||
|
||||
if start_time or end_time:
|
||||
assert fps > 0, 'must provide video fps if specifying start and end time.'
|
||||
|
||||
start_idx = min(int(start_time * fps), vlen)
|
||||
end_idx = min(int(end_time * fps), vlen)
|
||||
else:
|
||||
start_idx, end_idx = 0, vlen
|
||||
|
||||
if self.frm_sampling_strategy == 'uniform':
|
||||
frame_indices = np.arange(start_idx, end_idx, vlen / self.num_frm, dtype=int)
|
||||
elif self.frm_sampling_strategy == 'rand':
|
||||
frame_indices = sorted(random.sample(range(vlen), self.num_frm))
|
||||
elif self.frm_sampling_strategy == 'headtail':
|
||||
frame_indices_head = sorted(random.sample(range(vlen // 2), self.num_frm // 2))
|
||||
frame_indices_tail = sorted(random.sample(range(vlen // 2, vlen), self.num_frm // 2))
|
||||
frame_indices = frame_indices_head + frame_indices_tail
|
||||
else:
|
||||
raise NotImplementedError('Invalid sampling strategy {} '.format(self.frm_sampling_strategy))
|
||||
|
||||
raw_sample_frms = vr.get_batch(frame_indices)
|
||||
except Exception as e:
|
||||
return None
|
||||
|
||||
raw_sample_frms = raw_sample_frms.permute(0, 3, 1, 2)
|
||||
|
||||
return raw_sample_frms
|
88
ldm/data/vqa_dataset.py
Normal file
88
ldm/data/vqa_dataset.py
Normal file
@ -0,0 +1,88 @@
|
||||
import os
|
||||
import json
|
||||
import random
|
||||
from PIL import Image
|
||||
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
from data.utils import pre_question
|
||||
|
||||
from torchvision.datasets.utils import download_url
|
||||
|
||||
class vqa_dataset(Dataset):
|
||||
def __init__(self, transform, ann_root, vqa_root, vg_root, train_files=[], split="train"):
|
||||
self.split = split
|
||||
|
||||
self.transform = transform
|
||||
self.vqa_root = vqa_root
|
||||
self.vg_root = vg_root
|
||||
|
||||
if split=='train':
|
||||
urls = {'vqa_train':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_train.json',
|
||||
'vqa_val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_val.json',
|
||||
'vg_qa':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vg_qa.json'}
|
||||
|
||||
self.annotation = []
|
||||
for f in train_files:
|
||||
download_url(urls[f],ann_root)
|
||||
self.annotation += json.load(open(os.path.join(ann_root,'%s.json'%f),'r'))
|
||||
else:
|
||||
download_url('https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_test.json',ann_root)
|
||||
self.annotation = json.load(open(os.path.join(ann_root,'vqa_test.json'),'r'))
|
||||
|
||||
download_url('https://storage.googleapis.com/sfr-vision-language-research/datasets/answer_list.json',ann_root)
|
||||
self.answer_list = json.load(open(os.path.join(ann_root,'answer_list.json'),'r'))
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
if ann['dataset']=='vqa':
|
||||
image_path = os.path.join(self.vqa_root,ann['image'])
|
||||
elif ann['dataset']=='vg':
|
||||
image_path = os.path.join(self.vg_root,ann['image'])
|
||||
|
||||
image = Image.open(image_path).convert('RGB')
|
||||
image = self.transform(image)
|
||||
|
||||
if self.split == 'test':
|
||||
question = pre_question(ann['question'])
|
||||
question_id = ann['question_id']
|
||||
return image, question, question_id
|
||||
|
||||
|
||||
elif self.split=='train':
|
||||
|
||||
question = pre_question(ann['question'])
|
||||
|
||||
if ann['dataset']=='vqa':
|
||||
answer_weight = {}
|
||||
for answer in ann['answer']:
|
||||
if answer in answer_weight.keys():
|
||||
answer_weight[answer] += 1/len(ann['answer'])
|
||||
else:
|
||||
answer_weight[answer] = 1/len(ann['answer'])
|
||||
|
||||
answers = list(answer_weight.keys())
|
||||
weights = list(answer_weight.values())
|
||||
|
||||
elif ann['dataset']=='vg':
|
||||
answers = [ann['answer']]
|
||||
weights = [0.2]
|
||||
|
||||
return image, question, answers, weights
|
||||
|
||||
|
||||
def vqa_collate_fn(batch):
|
||||
image_list, question_list, answer_list, weight_list, n = [], [], [], [], []
|
||||
for image, question, answer, weights in batch:
|
||||
image_list.append(image)
|
||||
question_list.append(question)
|
||||
weight_list += weights
|
||||
answer_list += answer
|
||||
n.append(len(answer))
|
||||
return torch.stack(image_list,dim=0), question_list, answer_list, torch.Tensor(weight_list), n
|
0
ldm/models/__init__.py
Normal file
0
ldm/models/__init__.py
Normal file
238
ldm/models/blip.py
Normal file
238
ldm/models/blip.py
Normal file
@ -0,0 +1,238 @@
|
||||
'''
|
||||
* Copyright (c) 2022, salesforce.com, inc.
|
||||
* All rights reserved.
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
* By Junnan Li
|
||||
'''
|
||||
import warnings
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
from .vit import VisionTransformer, interpolate_pos_embed
|
||||
from .med import BertConfig, BertModel, BertLMHeadModel
|
||||
from transformers import BertTokenizer
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
#import torch.nn.functional as F
|
||||
|
||||
import os
|
||||
from urllib.parse import urlparse
|
||||
from timm.models.hub import download_cached_file
|
||||
|
||||
class BLIP_Base(nn.Module):
|
||||
def __init__(self,
|
||||
med_config = 'configs/blip/med_config.json',
|
||||
image_size = 224,
|
||||
vit = 'base',
|
||||
vit_grad_ckpt = False,
|
||||
vit_ckpt_layer = 0,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
||||
image_size (int): input image size
|
||||
vit (str): model size of vision transformer
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
|
||||
self.tokenizer = init_tokenizer()
|
||||
med_config = BertConfig.from_json_file(med_config)
|
||||
med_config.encoder_width = vision_width
|
||||
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
||||
|
||||
|
||||
def forward(self, image, caption, mode):
|
||||
|
||||
assert mode in ['image', 'text', 'multimodal'], "mode parameter must be image, text, or multimodal"
|
||||
text = self.tokenizer(caption, return_tensors="pt").to(image.device)
|
||||
|
||||
if mode=='image':
|
||||
# return image features
|
||||
image_embeds = self.visual_encoder(image)
|
||||
return image_embeds
|
||||
|
||||
elif mode=='text':
|
||||
# return text features
|
||||
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
|
||||
return_dict = True, mode = 'text')
|
||||
return text_output.last_hidden_state
|
||||
|
||||
elif mode=='multimodal':
|
||||
# return multimodel features
|
||||
image_embeds = self.visual_encoder(image)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
|
||||
text.input_ids[:,0] = self.tokenizer.enc_token_id
|
||||
output = self.text_encoder(text.input_ids,
|
||||
attention_mask = text.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
return_dict = True,
|
||||
)
|
||||
return output.last_hidden_state
|
||||
|
||||
|
||||
|
||||
class BLIP_Decoder(nn.Module):
|
||||
def __init__(self,
|
||||
med_config = 'configs/blip/med_config.json',
|
||||
image_size = 384,
|
||||
vit = 'base',
|
||||
vit_grad_ckpt = False,
|
||||
vit_ckpt_layer = 0,
|
||||
prompt = 'a picture of ',
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
||||
image_size (int): input image size
|
||||
vit (str): model size of vision transformer
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
|
||||
self.tokenizer = init_tokenizer()
|
||||
med_config = BertConfig.from_json_file(med_config)
|
||||
med_config.encoder_width = vision_width
|
||||
self.text_decoder = BertLMHeadModel(config=med_config)
|
||||
|
||||
self.prompt = prompt
|
||||
self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1
|
||||
|
||||
|
||||
def forward(self, image, caption):
|
||||
|
||||
image_embeds = self.visual_encoder(image)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
|
||||
text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device)
|
||||
|
||||
text.input_ids[:,0] = self.tokenizer.bos_token_id
|
||||
|
||||
decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100)
|
||||
decoder_targets[:,:self.prompt_length] = -100
|
||||
|
||||
decoder_output = self.text_decoder(text.input_ids,
|
||||
attention_mask = text.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
labels = decoder_targets,
|
||||
return_dict = True,
|
||||
)
|
||||
loss_lm = decoder_output.loss
|
||||
|
||||
return loss_lm
|
||||
|
||||
def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0):
|
||||
image_embeds = self.visual_encoder(image)
|
||||
|
||||
if not sample:
|
||||
image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
|
||||
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts}
|
||||
|
||||
prompt = [self.prompt] * image.size(0)
|
||||
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device)
|
||||
input_ids[:,0] = self.tokenizer.bos_token_id
|
||||
input_ids = input_ids[:, :-1]
|
||||
|
||||
if sample:
|
||||
#nucleus sampling
|
||||
outputs = self.text_decoder.generate(input_ids=input_ids,
|
||||
max_length=max_length,
|
||||
min_length=min_length,
|
||||
do_sample=True,
|
||||
top_p=top_p,
|
||||
num_return_sequences=1,
|
||||
eos_token_id=self.tokenizer.sep_token_id,
|
||||
pad_token_id=self.tokenizer.pad_token_id,
|
||||
repetition_penalty=1.1,
|
||||
**model_kwargs)
|
||||
else:
|
||||
#beam search
|
||||
outputs = self.text_decoder.generate(input_ids=input_ids,
|
||||
max_length=max_length,
|
||||
min_length=min_length,
|
||||
num_beams=num_beams,
|
||||
eos_token_id=self.tokenizer.sep_token_id,
|
||||
pad_token_id=self.tokenizer.pad_token_id,
|
||||
repetition_penalty=repetition_penalty,
|
||||
**model_kwargs)
|
||||
|
||||
captions = []
|
||||
for output in outputs:
|
||||
caption = self.tokenizer.decode(output, skip_special_tokens=True)
|
||||
captions.append(caption[len(self.prompt):])
|
||||
return captions
|
||||
|
||||
|
||||
def blip_decoder(pretrained='',**kwargs):
|
||||
model = BLIP_Decoder(**kwargs)
|
||||
if pretrained:
|
||||
model,msg = load_checkpoint(model,pretrained)
|
||||
assert(len(msg.missing_keys)==0)
|
||||
return model
|
||||
|
||||
def blip_feature_extractor(pretrained='',**kwargs):
|
||||
model = BLIP_Base(**kwargs)
|
||||
if pretrained:
|
||||
model,msg = load_checkpoint(model,pretrained)
|
||||
assert(len(msg.missing_keys)==0)
|
||||
return model
|
||||
|
||||
def init_tokenizer():
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
tokenizer.add_special_tokens({'bos_token':'[DEC]'})
|
||||
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})
|
||||
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
|
||||
return tokenizer
|
||||
|
||||
|
||||
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
|
||||
|
||||
assert vit in ['base', 'large'], "vit parameter must be base or large"
|
||||
if vit=='base':
|
||||
vision_width = 768
|
||||
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12,
|
||||
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
|
||||
drop_path_rate=0 or drop_path_rate
|
||||
)
|
||||
elif vit=='large':
|
||||
vision_width = 1024
|
||||
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24,
|
||||
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
|
||||
drop_path_rate=0.1 or drop_path_rate
|
||||
)
|
||||
return visual_encoder, vision_width
|
||||
|
||||
def is_url(url_or_filename):
|
||||
parsed = urlparse(url_or_filename)
|
||||
return parsed.scheme in ("http", "https")
|
||||
|
||||
def load_checkpoint(model,url_or_filename):
|
||||
if is_url(url_or_filename):
|
||||
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
||||
checkpoint = torch.load(cached_file, map_location='cpu')
|
||||
elif os.path.isfile(url_or_filename):
|
||||
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
||||
else:
|
||||
raise RuntimeError('checkpoint url or path is invalid')
|
||||
|
||||
state_dict = checkpoint['model']
|
||||
|
||||
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
|
||||
if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
|
||||
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
|
||||
model.visual_encoder_m)
|
||||
for key in model.state_dict().keys():
|
||||
if key in state_dict.keys():
|
||||
if state_dict[key].shape!=model.state_dict()[key].shape:
|
||||
del state_dict[key]
|
||||
|
||||
msg = model.load_state_dict(state_dict,strict=False)
|
||||
print('load checkpoint from %s'%url_or_filename)
|
||||
return model,msg
|
||||
|
76
ldm/models/blip_itm.py
Normal file
76
ldm/models/blip_itm.py
Normal file
@ -0,0 +1,76 @@
|
||||
from models.med import BertConfig, BertModel
|
||||
from transformers import BertTokenizer
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from models.blip import create_vit, init_tokenizer, load_checkpoint
|
||||
|
||||
class BLIP_ITM(nn.Module):
|
||||
def __init__(self,
|
||||
med_config = 'configs/med_config.json',
|
||||
image_size = 384,
|
||||
vit = 'base',
|
||||
vit_grad_ckpt = False,
|
||||
vit_ckpt_layer = 0,
|
||||
embed_dim = 256,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
||||
image_size (int): input image size
|
||||
vit (str): model size of vision transformer
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
|
||||
self.tokenizer = init_tokenizer()
|
||||
med_config = BertConfig.from_json_file(med_config)
|
||||
med_config.encoder_width = vision_width
|
||||
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
||||
|
||||
text_width = self.text_encoder.config.hidden_size
|
||||
|
||||
self.vision_proj = nn.Linear(vision_width, embed_dim)
|
||||
self.text_proj = nn.Linear(text_width, embed_dim)
|
||||
|
||||
self.itm_head = nn.Linear(text_width, 2)
|
||||
|
||||
|
||||
def forward(self, image, caption, match_head='itm'):
|
||||
|
||||
image_embeds = self.visual_encoder(image)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
|
||||
text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
|
||||
return_tensors="pt").to(image.device)
|
||||
|
||||
|
||||
if match_head=='itm':
|
||||
output = self.text_encoder(text.input_ids,
|
||||
attention_mask = text.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
return_dict = True,
|
||||
)
|
||||
itm_output = self.itm_head(output.last_hidden_state[:,0,:])
|
||||
return itm_output
|
||||
|
||||
elif match_head=='itc':
|
||||
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
|
||||
return_dict = True, mode = 'text')
|
||||
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
|
||||
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
|
||||
|
||||
sim = image_feat @ text_feat.t()
|
||||
return sim
|
||||
|
||||
|
||||
def blip_itm(pretrained='',**kwargs):
|
||||
model = BLIP_ITM(**kwargs)
|
||||
if pretrained:
|
||||
model,msg = load_checkpoint(model,pretrained)
|
||||
assert(len(msg.missing_keys)==0)
|
||||
return model
|
||||
|
103
ldm/models/blip_nlvr.py
Normal file
103
ldm/models/blip_nlvr.py
Normal file
@ -0,0 +1,103 @@
|
||||
from models.med import BertConfig
|
||||
from models.nlvr_encoder import BertModel
|
||||
from models.vit import interpolate_pos_embed
|
||||
from models.blip import create_vit, init_tokenizer, is_url
|
||||
|
||||
from timm.models.hub import download_cached_file
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from transformers import BertTokenizer
|
||||
import numpy as np
|
||||
|
||||
class BLIP_NLVR(nn.Module):
|
||||
def __init__(self,
|
||||
med_config = 'configs/med_config.json',
|
||||
image_size = 480,
|
||||
vit = 'base',
|
||||
vit_grad_ckpt = False,
|
||||
vit_ckpt_layer = 0,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
||||
image_size (int): input image size
|
||||
vit (str): model size of vision transformer
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
|
||||
self.tokenizer = init_tokenizer()
|
||||
med_config = BertConfig.from_json_file(med_config)
|
||||
med_config.encoder_width = vision_width
|
||||
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
||||
|
||||
self.cls_head = nn.Sequential(
|
||||
nn.Linear(self.text_encoder.config.hidden_size, self.text_encoder.config.hidden_size),
|
||||
nn.ReLU(),
|
||||
nn.Linear(self.text_encoder.config.hidden_size, 2)
|
||||
)
|
||||
|
||||
def forward(self, image, text, targets, train=True):
|
||||
|
||||
image_embeds = self.visual_encoder(image)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
image0_embeds, image1_embeds = torch.split(image_embeds,targets.size(0))
|
||||
|
||||
text = self.tokenizer(text, padding='longest', return_tensors="pt").to(image.device)
|
||||
text.input_ids[:,0] = self.tokenizer.enc_token_id
|
||||
|
||||
output = self.text_encoder(text.input_ids,
|
||||
attention_mask = text.attention_mask,
|
||||
encoder_hidden_states = [image0_embeds,image1_embeds],
|
||||
encoder_attention_mask = [image_atts[:image0_embeds.size(0)],
|
||||
image_atts[image0_embeds.size(0):]],
|
||||
return_dict = True,
|
||||
)
|
||||
hidden_state = output.last_hidden_state[:,0,:]
|
||||
prediction = self.cls_head(hidden_state)
|
||||
|
||||
if train:
|
||||
loss = F.cross_entropy(prediction, targets)
|
||||
return loss
|
||||
else:
|
||||
return prediction
|
||||
|
||||
def blip_nlvr(pretrained='',**kwargs):
|
||||
model = BLIP_NLVR(**kwargs)
|
||||
if pretrained:
|
||||
model,msg = load_checkpoint(model,pretrained)
|
||||
print("missing keys:")
|
||||
print(msg.missing_keys)
|
||||
return model
|
||||
|
||||
|
||||
def load_checkpoint(model,url_or_filename):
|
||||
if is_url(url_or_filename):
|
||||
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
||||
checkpoint = torch.load(cached_file, map_location='cpu')
|
||||
elif os.path.isfile(url_or_filename):
|
||||
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
||||
else:
|
||||
raise RuntimeError('checkpoint url or path is invalid')
|
||||
state_dict = checkpoint['model']
|
||||
|
||||
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
|
||||
|
||||
for key in list(state_dict.keys()):
|
||||
if 'crossattention.self.' in key:
|
||||
new_key0 = key.replace('self','self0')
|
||||
new_key1 = key.replace('self','self1')
|
||||
state_dict[new_key0] = state_dict[key]
|
||||
state_dict[new_key1] = state_dict[key]
|
||||
elif 'crossattention.output.dense.' in key:
|
||||
new_key0 = key.replace('dense','dense0')
|
||||
new_key1 = key.replace('dense','dense1')
|
||||
state_dict[new_key0] = state_dict[key]
|
||||
state_dict[new_key1] = state_dict[key]
|
||||
|
||||
msg = model.load_state_dict(state_dict,strict=False)
|
||||
print('load checkpoint from %s'%url_or_filename)
|
||||
return model,msg
|
||||
|
339
ldm/models/blip_pretrain.py
Normal file
339
ldm/models/blip_pretrain.py
Normal file
@ -0,0 +1,339 @@
|
||||
'''
|
||||
* Copyright (c) 2022, salesforce.com, inc.
|
||||
* All rights reserved.
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
* By Junnan Li
|
||||
'''
|
||||
from models.med import BertConfig, BertModel, BertLMHeadModel
|
||||
from transformers import BertTokenizer
|
||||
import transformers
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from models.blip import create_vit, init_tokenizer, load_checkpoint
|
||||
|
||||
class BLIP_Pretrain(nn.Module):
|
||||
def __init__(self,
|
||||
med_config = 'configs/bert_config.json',
|
||||
image_size = 224,
|
||||
vit = 'base',
|
||||
vit_grad_ckpt = False,
|
||||
vit_ckpt_layer = 0,
|
||||
embed_dim = 256,
|
||||
queue_size = 57600,
|
||||
momentum = 0.995,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
||||
image_size (int): input image size
|
||||
vit (str): model size of vision transformer
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, 0)
|
||||
|
||||
if vit=='base':
|
||||
checkpoint = torch.hub.load_state_dict_from_url(
|
||||
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
|
||||
map_location="cpu", check_hash=True)
|
||||
state_dict = checkpoint["model"]
|
||||
msg = self.visual_encoder.load_state_dict(state_dict,strict=False)
|
||||
elif vit=='large':
|
||||
from timm.models.helpers import load_custom_pretrained
|
||||
from timm.models.vision_transformer import default_cfgs
|
||||
load_custom_pretrained(self.visual_encoder,default_cfgs['vit_large_patch16_224_in21k'])
|
||||
|
||||
self.tokenizer = init_tokenizer()
|
||||
encoder_config = BertConfig.from_json_file(med_config)
|
||||
encoder_config.encoder_width = vision_width
|
||||
self.text_encoder = BertModel.from_pretrained('bert-base-uncased',config=encoder_config, add_pooling_layer=False)
|
||||
self.text_encoder.resize_token_embeddings(len(self.tokenizer))
|
||||
|
||||
text_width = self.text_encoder.config.hidden_size
|
||||
|
||||
self.vision_proj = nn.Linear(vision_width, embed_dim)
|
||||
self.text_proj = nn.Linear(text_width, embed_dim)
|
||||
|
||||
self.itm_head = nn.Linear(text_width, 2)
|
||||
|
||||
# create momentum encoders
|
||||
self.visual_encoder_m, vision_width = create_vit(vit,image_size)
|
||||
self.vision_proj_m = nn.Linear(vision_width, embed_dim)
|
||||
self.text_encoder_m = BertModel(config=encoder_config, add_pooling_layer=False)
|
||||
self.text_proj_m = nn.Linear(text_width, embed_dim)
|
||||
|
||||
self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
|
||||
[self.vision_proj,self.vision_proj_m],
|
||||
[self.text_encoder,self.text_encoder_m],
|
||||
[self.text_proj,self.text_proj_m],
|
||||
]
|
||||
self.copy_params()
|
||||
|
||||
# create the queue
|
||||
self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
|
||||
self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
|
||||
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
|
||||
|
||||
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
|
||||
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
|
||||
|
||||
self.queue_size = queue_size
|
||||
self.momentum = momentum
|
||||
self.temp = nn.Parameter(0.07*torch.ones([]))
|
||||
|
||||
# create the decoder
|
||||
decoder_config = BertConfig.from_json_file(med_config)
|
||||
decoder_config.encoder_width = vision_width
|
||||
self.text_decoder = BertLMHeadModel.from_pretrained('bert-base-uncased',config=decoder_config)
|
||||
self.text_decoder.resize_token_embeddings(len(self.tokenizer))
|
||||
tie_encoder_decoder_weights(self.text_encoder,self.text_decoder.bert,'','/attention')
|
||||
|
||||
|
||||
def forward(self, image, caption, alpha):
|
||||
with torch.no_grad():
|
||||
self.temp.clamp_(0.001,0.5)
|
||||
|
||||
image_embeds = self.visual_encoder(image)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
|
||||
|
||||
text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=30,
|
||||
return_tensors="pt").to(image.device)
|
||||
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
|
||||
return_dict = True, mode = 'text')
|
||||
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
|
||||
|
||||
# get momentum features
|
||||
with torch.no_grad():
|
||||
self._momentum_update()
|
||||
image_embeds_m = self.visual_encoder_m(image)
|
||||
image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
|
||||
image_feat_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
|
||||
|
||||
text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,
|
||||
return_dict = True, mode = 'text')
|
||||
text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
|
||||
text_feat_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
|
||||
|
||||
sim_i2t_m = image_feat_m @ text_feat_all / self.temp
|
||||
sim_t2i_m = text_feat_m @ image_feat_all / self.temp
|
||||
|
||||
sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
|
||||
sim_targets.fill_diagonal_(1)
|
||||
|
||||
sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
|
||||
sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
|
||||
|
||||
sim_i2t = image_feat @ text_feat_all / self.temp
|
||||
sim_t2i = text_feat @ image_feat_all / self.temp
|
||||
|
||||
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
|
||||
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
|
||||
|
||||
loss_ita = (loss_i2t+loss_t2i)/2
|
||||
|
||||
self._dequeue_and_enqueue(image_feat_m, text_feat_m)
|
||||
|
||||
###============== Image-text Matching ===================###
|
||||
encoder_input_ids = text.input_ids.clone()
|
||||
encoder_input_ids[:,0] = self.tokenizer.enc_token_id
|
||||
|
||||
# forward the positve image-text pair
|
||||
bs = image.size(0)
|
||||
output_pos = self.text_encoder(encoder_input_ids,
|
||||
attention_mask = text.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
return_dict = True,
|
||||
)
|
||||
with torch.no_grad():
|
||||
weights_t2i = F.softmax(sim_t2i[:,:bs],dim=1)+1e-4
|
||||
weights_t2i.fill_diagonal_(0)
|
||||
weights_i2t = F.softmax(sim_i2t[:,:bs],dim=1)+1e-4
|
||||
weights_i2t.fill_diagonal_(0)
|
||||
|
||||
# select a negative image for each text
|
||||
image_embeds_neg = []
|
||||
for b in range(bs):
|
||||
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
|
||||
image_embeds_neg.append(image_embeds[neg_idx])
|
||||
image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
|
||||
|
||||
# select a negative text for each image
|
||||
text_ids_neg = []
|
||||
text_atts_neg = []
|
||||
for b in range(bs):
|
||||
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
|
||||
text_ids_neg.append(encoder_input_ids[neg_idx])
|
||||
text_atts_neg.append(text.attention_mask[neg_idx])
|
||||
|
||||
text_ids_neg = torch.stack(text_ids_neg,dim=0)
|
||||
text_atts_neg = torch.stack(text_atts_neg,dim=0)
|
||||
|
||||
text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)
|
||||
text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
|
||||
|
||||
image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
|
||||
image_atts_all = torch.cat([image_atts,image_atts],dim=0)
|
||||
|
||||
output_neg = self.text_encoder(text_ids_all,
|
||||
attention_mask = text_atts_all,
|
||||
encoder_hidden_states = image_embeds_all,
|
||||
encoder_attention_mask = image_atts_all,
|
||||
return_dict = True,
|
||||
)
|
||||
|
||||
vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
|
||||
vl_output = self.itm_head(vl_embeddings)
|
||||
|
||||
itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
|
||||
dim=0).to(image.device)
|
||||
loss_itm = F.cross_entropy(vl_output, itm_labels)
|
||||
|
||||
##================= LM ========================##
|
||||
decoder_input_ids = text.input_ids.clone()
|
||||
decoder_input_ids[:,0] = self.tokenizer.bos_token_id
|
||||
decoder_targets = decoder_input_ids.masked_fill(decoder_input_ids == self.tokenizer.pad_token_id, -100)
|
||||
|
||||
decoder_output = self.text_decoder(decoder_input_ids,
|
||||
attention_mask = text.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
labels = decoder_targets,
|
||||
return_dict = True,
|
||||
)
|
||||
|
||||
loss_lm = decoder_output.loss
|
||||
return loss_ita, loss_itm, loss_lm
|
||||
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def copy_params(self):
|
||||
for model_pair in self.model_pairs:
|
||||
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
|
||||
param_m.data.copy_(param.data) # initialize
|
||||
param_m.requires_grad = False # not update by gradient
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def _momentum_update(self):
|
||||
for model_pair in self.model_pairs:
|
||||
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
|
||||
param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def _dequeue_and_enqueue(self, image_feat, text_feat):
|
||||
# gather keys before updating queue
|
||||
image_feats = concat_all_gather(image_feat)
|
||||
text_feats = concat_all_gather(text_feat)
|
||||
|
||||
batch_size = image_feats.shape[0]
|
||||
|
||||
ptr = int(self.queue_ptr)
|
||||
assert self.queue_size % batch_size == 0 # for simplicity
|
||||
|
||||
# replace the keys at ptr (dequeue and enqueue)
|
||||
self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
|
||||
self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
|
||||
ptr = (ptr + batch_size) % self.queue_size # move pointer
|
||||
|
||||
self.queue_ptr[0] = ptr
|
||||
|
||||
|
||||
def blip_pretrain(**kwargs):
|
||||
model = BLIP_Pretrain(**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def concat_all_gather(tensor):
|
||||
"""
|
||||
Performs all_gather operation on the provided tensors.
|
||||
*** Warning ***: torch.distributed.all_gather has no gradient.
|
||||
"""
|
||||
tensors_gather = [torch.ones_like(tensor)
|
||||
for _ in range(torch.distributed.get_world_size())]
|
||||
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
|
||||
|
||||
output = torch.cat(tensors_gather, dim=0)
|
||||
return output
|
||||
|
||||
|
||||
from typing import List
|
||||
def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str):
|
||||
uninitialized_encoder_weights: List[str] = []
|
||||
if decoder.__class__ != encoder.__class__:
|
||||
logger.info(
|
||||
f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
|
||||
)
|
||||
|
||||
def tie_encoder_to_decoder_recursively(
|
||||
decoder_pointer: nn.Module,
|
||||
encoder_pointer: nn.Module,
|
||||
module_name: str,
|
||||
uninitialized_encoder_weights: List[str],
|
||||
skip_key: str,
|
||||
depth=0,
|
||||
):
|
||||
assert isinstance(decoder_pointer, nn.Module) and isinstance(
|
||||
encoder_pointer, nn.Module
|
||||
), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
|
||||
if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
|
||||
assert hasattr(encoder_pointer, "weight")
|
||||
encoder_pointer.weight = decoder_pointer.weight
|
||||
if hasattr(decoder_pointer, "bias"):
|
||||
assert hasattr(encoder_pointer, "bias")
|
||||
encoder_pointer.bias = decoder_pointer.bias
|
||||
print(module_name+' is tied')
|
||||
return
|
||||
|
||||
encoder_modules = encoder_pointer._modules
|
||||
decoder_modules = decoder_pointer._modules
|
||||
if len(decoder_modules) > 0:
|
||||
assert (
|
||||
len(encoder_modules) > 0
|
||||
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
|
||||
|
||||
all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
|
||||
encoder_layer_pos = 0
|
||||
for name, module in decoder_modules.items():
|
||||
if name.isdigit():
|
||||
encoder_name = str(int(name) + encoder_layer_pos)
|
||||
decoder_name = name
|
||||
if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
|
||||
encoder_modules
|
||||
) != len(decoder_modules):
|
||||
# this can happen if the name corresponds to the position in a list module list of layers
|
||||
# in this case the decoder has added a cross-attention that the encoder does not have
|
||||
# thus skip this step and subtract one layer pos from encoder
|
||||
encoder_layer_pos -= 1
|
||||
continue
|
||||
elif name not in encoder_modules:
|
||||
continue
|
||||
elif depth > 500:
|
||||
raise ValueError(
|
||||
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
|
||||
)
|
||||
else:
|
||||
decoder_name = encoder_name = name
|
||||
tie_encoder_to_decoder_recursively(
|
||||
decoder_modules[decoder_name],
|
||||
encoder_modules[encoder_name],
|
||||
module_name + "/" + name,
|
||||
uninitialized_encoder_weights,
|
||||
skip_key,
|
||||
depth=depth + 1,
|
||||
)
|
||||
all_encoder_weights.remove(module_name + "/" + encoder_name)
|
||||
|
||||
uninitialized_encoder_weights += list(all_encoder_weights)
|
||||
|
||||
# tie weights recursively
|
||||
tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key)
|
319
ldm/models/blip_retrieval.py
Normal file
319
ldm/models/blip_retrieval.py
Normal file
@ -0,0 +1,319 @@
|
||||
from models.med import BertConfig, BertModel
|
||||
from transformers import BertTokenizer
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from models.blip import create_vit, init_tokenizer, load_checkpoint
|
||||
|
||||
class BLIP_Retrieval(nn.Module):
|
||||
def __init__(self,
|
||||
med_config = 'configs/med_config.json',
|
||||
image_size = 384,
|
||||
vit = 'base',
|
||||
vit_grad_ckpt = False,
|
||||
vit_ckpt_layer = 0,
|
||||
embed_dim = 256,
|
||||
queue_size = 57600,
|
||||
momentum = 0.995,
|
||||
negative_all_rank = False,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
||||
image_size (int): input image size
|
||||
vit (str): model size of vision transformer
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
|
||||
self.tokenizer = init_tokenizer()
|
||||
med_config = BertConfig.from_json_file(med_config)
|
||||
med_config.encoder_width = vision_width
|
||||
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
||||
|
||||
text_width = self.text_encoder.config.hidden_size
|
||||
|
||||
self.vision_proj = nn.Linear(vision_width, embed_dim)
|
||||
self.text_proj = nn.Linear(text_width, embed_dim)
|
||||
|
||||
self.itm_head = nn.Linear(text_width, 2)
|
||||
|
||||
# create momentum encoders
|
||||
self.visual_encoder_m, vision_width = create_vit(vit,image_size)
|
||||
self.vision_proj_m = nn.Linear(vision_width, embed_dim)
|
||||
self.text_encoder_m = BertModel(config=med_config, add_pooling_layer=False)
|
||||
self.text_proj_m = nn.Linear(text_width, embed_dim)
|
||||
|
||||
self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
|
||||
[self.vision_proj,self.vision_proj_m],
|
||||
[self.text_encoder,self.text_encoder_m],
|
||||
[self.text_proj,self.text_proj_m],
|
||||
]
|
||||
self.copy_params()
|
||||
|
||||
# create the queue
|
||||
self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
|
||||
self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
|
||||
self.register_buffer("idx_queue", torch.full((1,queue_size),-100))
|
||||
self.register_buffer("ptr_queue", torch.zeros(1, dtype=torch.long))
|
||||
|
||||
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
|
||||
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
|
||||
|
||||
self.queue_size = queue_size
|
||||
self.momentum = momentum
|
||||
self.temp = nn.Parameter(0.07*torch.ones([]))
|
||||
|
||||
self.negative_all_rank = negative_all_rank
|
||||
|
||||
|
||||
def forward(self, image, caption, alpha, idx):
|
||||
with torch.no_grad():
|
||||
self.temp.clamp_(0.001,0.5)
|
||||
|
||||
image_embeds = self.visual_encoder(image)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
|
||||
|
||||
text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
|
||||
return_tensors="pt").to(image.device)
|
||||
|
||||
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
|
||||
return_dict = True, mode = 'text')
|
||||
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
|
||||
|
||||
###============== Image-text Contrastive Learning ===================###
|
||||
idx = idx.view(-1,1)
|
||||
idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()],dim=1)
|
||||
pos_idx = torch.eq(idx, idx_all).float()
|
||||
sim_targets = pos_idx / pos_idx.sum(1,keepdim=True)
|
||||
|
||||
# get momentum features
|
||||
with torch.no_grad():
|
||||
self._momentum_update()
|
||||
image_embeds_m = self.visual_encoder_m(image)
|
||||
image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
|
||||
image_feat_m_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
|
||||
|
||||
text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,
|
||||
return_dict = True, mode = 'text')
|
||||
text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
|
||||
text_feat_m_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
|
||||
|
||||
sim_i2t_m = image_feat_m @ text_feat_m_all / self.temp
|
||||
sim_t2i_m = text_feat_m @ image_feat_m_all / self.temp
|
||||
|
||||
sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
|
||||
sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
|
||||
|
||||
sim_i2t = image_feat @ text_feat_m_all / self.temp
|
||||
sim_t2i = text_feat @ image_feat_m_all / self.temp
|
||||
|
||||
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
|
||||
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
|
||||
|
||||
loss_ita = (loss_i2t+loss_t2i)/2
|
||||
|
||||
idxs = concat_all_gather(idx)
|
||||
self._dequeue_and_enqueue(image_feat_m, text_feat_m, idxs)
|
||||
|
||||
###============== Image-text Matching ===================###
|
||||
encoder_input_ids = text.input_ids.clone()
|
||||
encoder_input_ids[:,0] = self.tokenizer.enc_token_id
|
||||
|
||||
# forward the positve image-text pair
|
||||
bs = image.size(0)
|
||||
output_pos = self.text_encoder(encoder_input_ids,
|
||||
attention_mask = text.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
return_dict = True,
|
||||
)
|
||||
|
||||
|
||||
if self.negative_all_rank:
|
||||
# compute sample similarity
|
||||
with torch.no_grad():
|
||||
mask = torch.eq(idx, idxs.t())
|
||||
|
||||
image_feat_world = concat_all_gather(image_feat)
|
||||
text_feat_world = concat_all_gather(text_feat)
|
||||
|
||||
sim_i2t = image_feat @ text_feat_world.t() / self.temp
|
||||
sim_t2i = text_feat @ image_feat_world.t() / self.temp
|
||||
|
||||
weights_i2t = F.softmax(sim_i2t,dim=1)
|
||||
weights_i2t.masked_fill_(mask, 0)
|
||||
|
||||
weights_t2i = F.softmax(sim_t2i,dim=1)
|
||||
weights_t2i.masked_fill_(mask, 0)
|
||||
|
||||
image_embeds_world = all_gather_with_grad(image_embeds)
|
||||
|
||||
# select a negative image (from all ranks) for each text
|
||||
image_embeds_neg = []
|
||||
for b in range(bs):
|
||||
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
|
||||
image_embeds_neg.append(image_embeds_world[neg_idx])
|
||||
image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
|
||||
|
||||
# select a negative text (from all ranks) for each image
|
||||
input_ids_world = concat_all_gather(encoder_input_ids)
|
||||
att_mask_world = concat_all_gather(text.attention_mask)
|
||||
|
||||
text_ids_neg = []
|
||||
text_atts_neg = []
|
||||
for b in range(bs):
|
||||
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
|
||||
text_ids_neg.append(input_ids_world[neg_idx])
|
||||
text_atts_neg.append(att_mask_world[neg_idx])
|
||||
|
||||
else:
|
||||
with torch.no_grad():
|
||||
mask = torch.eq(idx, idx.t())
|
||||
|
||||
sim_i2t = image_feat @ text_feat.t() / self.temp
|
||||
sim_t2i = text_feat @ image_feat.t() / self.temp
|
||||
|
||||
weights_i2t = F.softmax(sim_i2t,dim=1)
|
||||
weights_i2t.masked_fill_(mask, 0)
|
||||
|
||||
weights_t2i = F.softmax(sim_t2i,dim=1)
|
||||
weights_t2i.masked_fill_(mask, 0)
|
||||
|
||||
# select a negative image (from same rank) for each text
|
||||
image_embeds_neg = []
|
||||
for b in range(bs):
|
||||
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
|
||||
image_embeds_neg.append(image_embeds[neg_idx])
|
||||
image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
|
||||
|
||||
# select a negative text (from same rank) for each image
|
||||
text_ids_neg = []
|
||||
text_atts_neg = []
|
||||
for b in range(bs):
|
||||
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
|
||||
text_ids_neg.append(encoder_input_ids[neg_idx])
|
||||
text_atts_neg.append(text.attention_mask[neg_idx])
|
||||
|
||||
text_ids_neg = torch.stack(text_ids_neg,dim=0)
|
||||
text_atts_neg = torch.stack(text_atts_neg,dim=0)
|
||||
|
||||
text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)
|
||||
text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
|
||||
|
||||
image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
|
||||
image_atts_all = torch.cat([image_atts,image_atts],dim=0)
|
||||
|
||||
output_neg = self.text_encoder(text_ids_all,
|
||||
attention_mask = text_atts_all,
|
||||
encoder_hidden_states = image_embeds_all,
|
||||
encoder_attention_mask = image_atts_all,
|
||||
return_dict = True,
|
||||
)
|
||||
|
||||
|
||||
vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
|
||||
vl_output = self.itm_head(vl_embeddings)
|
||||
|
||||
itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
|
||||
dim=0).to(image.device)
|
||||
loss_itm = F.cross_entropy(vl_output, itm_labels)
|
||||
|
||||
return loss_ita, loss_itm
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def copy_params(self):
|
||||
for model_pair in self.model_pairs:
|
||||
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
|
||||
param_m.data.copy_(param.data) # initialize
|
||||
param_m.requires_grad = False # not update by gradient
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def _momentum_update(self):
|
||||
for model_pair in self.model_pairs:
|
||||
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
|
||||
param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def _dequeue_and_enqueue(self, image_feat, text_feat, idxs):
|
||||
# gather keys before updating queue
|
||||
image_feats = concat_all_gather(image_feat)
|
||||
text_feats = concat_all_gather(text_feat)
|
||||
|
||||
|
||||
batch_size = image_feats.shape[0]
|
||||
|
||||
ptr = int(self.ptr_queue)
|
||||
assert self.queue_size % batch_size == 0 # for simplicity
|
||||
|
||||
# replace the keys at ptr (dequeue and enqueue)
|
||||
self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
|
||||
self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
|
||||
self.idx_queue[:, ptr:ptr + batch_size] = idxs.T
|
||||
ptr = (ptr + batch_size) % self.queue_size # move pointer
|
||||
|
||||
self.ptr_queue[0] = ptr
|
||||
|
||||
|
||||
def blip_retrieval(pretrained='',**kwargs):
|
||||
model = BLIP_Retrieval(**kwargs)
|
||||
if pretrained:
|
||||
model,msg = load_checkpoint(model,pretrained)
|
||||
print("missing keys:")
|
||||
print(msg.missing_keys)
|
||||
return model
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def concat_all_gather(tensor):
|
||||
"""
|
||||
Performs all_gather operation on the provided tensors.
|
||||
*** Warning ***: torch.distributed.all_gather has no gradient.
|
||||
"""
|
||||
tensors_gather = [torch.ones_like(tensor)
|
||||
for _ in range(torch.distributed.get_world_size())]
|
||||
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
|
||||
|
||||
output = torch.cat(tensors_gather, dim=0)
|
||||
return output
|
||||
|
||||
|
||||
class GatherLayer(torch.autograd.Function):
|
||||
"""
|
||||
Gather tensors from all workers with support for backward propagation:
|
||||
This implementation does not cut the gradients as torch.distributed.all_gather does.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x):
|
||||
output = [torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())]
|
||||
torch.distributed.all_gather(output, x)
|
||||
return tuple(output)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, *grads):
|
||||
all_gradients = torch.stack(grads)
|
||||
torch.distributed.all_reduce(all_gradients)
|
||||
return all_gradients[torch.distributed.get_rank()]
|
||||
|
||||
|
||||
def all_gather_with_grad(tensors):
|
||||
"""
|
||||
Performs all_gather operation on the provided tensors.
|
||||
Graph remains connected for backward grad computation.
|
||||
"""
|
||||
# Queue the gathered tensors
|
||||
world_size = torch.distributed.get_world_size()
|
||||
# There is no need for reduction in the single-proc case
|
||||
if world_size == 1:
|
||||
return tensors
|
||||
|
||||
tensor_all = GatherLayer.apply(tensors)
|
||||
|
||||
return torch.cat(tensor_all, dim=0)
|
186
ldm/models/blip_vqa.py
Normal file
186
ldm/models/blip_vqa.py
Normal file
@ -0,0 +1,186 @@
|
||||
from models.med import BertConfig, BertModel, BertLMHeadModel
|
||||
from models.blip import create_vit, init_tokenizer, load_checkpoint
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from transformers import BertTokenizer
|
||||
import numpy as np
|
||||
|
||||
class BLIP_VQA(nn.Module):
|
||||
def __init__(self,
|
||||
med_config = 'configs/med_config.json',
|
||||
image_size = 480,
|
||||
vit = 'base',
|
||||
vit_grad_ckpt = False,
|
||||
vit_ckpt_layer = 0,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
||||
image_size (int): input image size
|
||||
vit (str): model size of vision transformer
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.visual_encoder, vision_width = create_vit(vit, image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
|
||||
self.tokenizer = init_tokenizer()
|
||||
|
||||
encoder_config = BertConfig.from_json_file(med_config)
|
||||
encoder_config.encoder_width = vision_width
|
||||
self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False)
|
||||
|
||||
decoder_config = BertConfig.from_json_file(med_config)
|
||||
self.text_decoder = BertLMHeadModel(config=decoder_config)
|
||||
|
||||
|
||||
def forward(self, image, question, answer=None, n=None, weights=None, train=True, inference='rank', k_test=128):
|
||||
|
||||
image_embeds = self.visual_encoder(image)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
|
||||
question = self.tokenizer(question, padding='longest', truncation=True, max_length=35,
|
||||
return_tensors="pt").to(image.device)
|
||||
question.input_ids[:,0] = self.tokenizer.enc_token_id
|
||||
|
||||
if train:
|
||||
'''
|
||||
n: number of answers for each question
|
||||
weights: weight for each answer
|
||||
'''
|
||||
answer = self.tokenizer(answer, padding='longest', return_tensors="pt").to(image.device)
|
||||
answer.input_ids[:,0] = self.tokenizer.bos_token_id
|
||||
answer_targets = answer.input_ids.masked_fill(answer.input_ids == self.tokenizer.pad_token_id, -100)
|
||||
|
||||
question_output = self.text_encoder(question.input_ids,
|
||||
attention_mask = question.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
return_dict = True)
|
||||
|
||||
question_states = []
|
||||
question_atts = []
|
||||
for b, n in enumerate(n):
|
||||
question_states += [question_output.last_hidden_state[b]]*n
|
||||
question_atts += [question.attention_mask[b]]*n
|
||||
question_states = torch.stack(question_states,0)
|
||||
question_atts = torch.stack(question_atts,0)
|
||||
|
||||
answer_output = self.text_decoder(answer.input_ids,
|
||||
attention_mask = answer.attention_mask,
|
||||
encoder_hidden_states = question_states,
|
||||
encoder_attention_mask = question_atts,
|
||||
labels = answer_targets,
|
||||
return_dict = True,
|
||||
reduction = 'none',
|
||||
)
|
||||
|
||||
loss = weights * answer_output.loss
|
||||
loss = loss.sum()/image.size(0)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
else:
|
||||
question_output = self.text_encoder(question.input_ids,
|
||||
attention_mask = question.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
return_dict = True)
|
||||
|
||||
if inference=='generate':
|
||||
num_beams = 3
|
||||
question_states = question_output.last_hidden_state.repeat_interleave(num_beams,dim=0)
|
||||
question_atts = torch.ones(question_states.size()[:-1],dtype=torch.long).to(question_states.device)
|
||||
model_kwargs = {"encoder_hidden_states": question_states, "encoder_attention_mask":question_atts}
|
||||
|
||||
bos_ids = torch.full((image.size(0),1),fill_value=self.tokenizer.bos_token_id,device=image.device)
|
||||
|
||||
outputs = self.text_decoder.generate(input_ids=bos_ids,
|
||||
max_length=10,
|
||||
min_length=1,
|
||||
num_beams=num_beams,
|
||||
eos_token_id=self.tokenizer.sep_token_id,
|
||||
pad_token_id=self.tokenizer.pad_token_id,
|
||||
**model_kwargs)
|
||||
|
||||
answers = []
|
||||
for output in outputs:
|
||||
answer = self.tokenizer.decode(output, skip_special_tokens=True)
|
||||
answers.append(answer)
|
||||
return answers
|
||||
|
||||
elif inference=='rank':
|
||||
max_ids = self.rank_answer(question_output.last_hidden_state, question.attention_mask,
|
||||
answer.input_ids, answer.attention_mask, k_test)
|
||||
return max_ids
|
||||
|
||||
|
||||
|
||||
def rank_answer(self, question_states, question_atts, answer_ids, answer_atts, k):
|
||||
|
||||
num_ques = question_states.size(0)
|
||||
start_ids = answer_ids[0,0].repeat(num_ques,1) # bos token
|
||||
|
||||
start_output = self.text_decoder(start_ids,
|
||||
encoder_hidden_states = question_states,
|
||||
encoder_attention_mask = question_atts,
|
||||
return_dict = True,
|
||||
reduction = 'none')
|
||||
logits = start_output.logits[:,0,:] # first token's logit
|
||||
|
||||
# topk_probs: top-k probability
|
||||
# topk_ids: [num_question, k]
|
||||
answer_first_token = answer_ids[:,1]
|
||||
prob_first_token = F.softmax(logits,dim=1).index_select(dim=1, index=answer_first_token)
|
||||
topk_probs, topk_ids = prob_first_token.topk(k,dim=1)
|
||||
|
||||
# answer input: [num_question*k, answer_len]
|
||||
input_ids = []
|
||||
input_atts = []
|
||||
for b, topk_id in enumerate(topk_ids):
|
||||
input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
|
||||
input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
|
||||
input_ids = torch.cat(input_ids,dim=0)
|
||||
input_atts = torch.cat(input_atts,dim=0)
|
||||
|
||||
targets_ids = input_ids.masked_fill(input_ids == self.tokenizer.pad_token_id, -100)
|
||||
|
||||
# repeat encoder's output for top-k answers
|
||||
question_states = tile(question_states, 0, k)
|
||||
question_atts = tile(question_atts, 0, k)
|
||||
|
||||
output = self.text_decoder(input_ids,
|
||||
attention_mask = input_atts,
|
||||
encoder_hidden_states = question_states,
|
||||
encoder_attention_mask = question_atts,
|
||||
labels = targets_ids,
|
||||
return_dict = True,
|
||||
reduction = 'none')
|
||||
|
||||
log_probs_sum = -output.loss
|
||||
log_probs_sum = log_probs_sum.view(num_ques,k)
|
||||
|
||||
max_topk_ids = log_probs_sum.argmax(dim=1)
|
||||
max_ids = topk_ids[max_topk_ids>=0,max_topk_ids]
|
||||
|
||||
return max_ids
|
||||
|
||||
|
||||
def blip_vqa(pretrained='',**kwargs):
|
||||
model = BLIP_VQA(**kwargs)
|
||||
if pretrained:
|
||||
model,msg = load_checkpoint(model,pretrained)
|
||||
# assert(len(msg.missing_keys)==0)
|
||||
return model
|
||||
|
||||
|
||||
def tile(x, dim, n_tile):
|
||||
init_dim = x.size(dim)
|
||||
repeat_idx = [1] * x.dim()
|
||||
repeat_idx[dim] = n_tile
|
||||
x = x.repeat(*(repeat_idx))
|
||||
order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]))
|
||||
return torch.index_select(x, dim, order_index.to(x.device))
|
||||
|
||||
|
955
ldm/models/med.py
Normal file
955
ldm/models/med.py
Normal file
@ -0,0 +1,955 @@
|
||||
'''
|
||||
* Copyright (c) 2022, salesforce.com, inc.
|
||||
* All rights reserved.
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
* By Junnan Li
|
||||
* Based on huggingface code base
|
||||
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
|
||||
'''
|
||||
|
||||
import math
|
||||
import os
|
||||
import warnings
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor, device, dtype, nn
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
import torch.nn.functional as F
|
||||
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.file_utils import (
|
||||
ModelOutput,
|
||||
)
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPastAndCrossAttentions,
|
||||
BaseModelOutputWithPoolingAndCrossAttentions,
|
||||
CausalLMOutputWithCrossAttentions,
|
||||
MaskedLMOutput,
|
||||
MultipleChoiceModelOutput,
|
||||
NextSentencePredictorOutput,
|
||||
QuestionAnsweringModelOutput,
|
||||
SequenceClassifierOutput,
|
||||
TokenClassifierOutput,
|
||||
)
|
||||
from transformers.modeling_utils import (
|
||||
PreTrainedModel,
|
||||
apply_chunking_to_forward,
|
||||
find_pruneable_heads_and_indices,
|
||||
prune_linear_layer,
|
||||
)
|
||||
from transformers.utils import logging
|
||||
from transformers.models.bert.configuration_bert import BertConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class BertEmbeddings(nn.Module):
|
||||
"""Construct the embeddings from word and position embeddings."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
||||
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
||||
|
||||
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
||||
# any TensorFlow checkpoint file
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
||||
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
||||
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
||||
|
||||
self.config = config
|
||||
|
||||
def forward(
|
||||
self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
||||
):
|
||||
if input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
else:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
|
||||
seq_length = input_shape[1]
|
||||
|
||||
if position_ids is None:
|
||||
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.word_embeddings(input_ids)
|
||||
|
||||
embeddings = inputs_embeds
|
||||
|
||||
if self.position_embedding_type == "absolute":
|
||||
position_embeddings = self.position_embeddings(position_ids)
|
||||
embeddings += position_embeddings
|
||||
embeddings = self.LayerNorm(embeddings)
|
||||
embeddings = self.dropout(embeddings)
|
||||
return embeddings
|
||||
|
||||
|
||||
class BertSelfAttention(nn.Module):
|
||||
def __init__(self, config, is_cross_attention):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
||||
raise ValueError(
|
||||
"The hidden size (%d) is not a multiple of the number of attention "
|
||||
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
||||
)
|
||||
|
||||
self.num_attention_heads = config.num_attention_heads
|
||||
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
||||
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||||
|
||||
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
||||
if is_cross_attention:
|
||||
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
||||
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
||||
else:
|
||||
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
||||
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
||||
|
||||
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
||||
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
||||
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
||||
self.max_position_embeddings = config.max_position_embeddings
|
||||
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
||||
self.save_attention = False
|
||||
|
||||
def save_attn_gradients(self, attn_gradients):
|
||||
self.attn_gradients = attn_gradients
|
||||
|
||||
def get_attn_gradients(self):
|
||||
return self.attn_gradients
|
||||
|
||||
def save_attention_map(self, attention_map):
|
||||
self.attention_map = attention_map
|
||||
|
||||
def get_attention_map(self):
|
||||
return self.attention_map
|
||||
|
||||
def transpose_for_scores(self, x):
|
||||
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
||||
x = x.view(*new_x_shape)
|
||||
return x.permute(0, 2, 1, 3)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_value=None,
|
||||
output_attentions=False,
|
||||
):
|
||||
mixed_query_layer = self.query(hidden_states)
|
||||
|
||||
# If this is instantiated as a cross-attention module, the keys
|
||||
# and values come from an encoder; the attention mask needs to be
|
||||
# such that the encoder's padding tokens are not attended to.
|
||||
is_cross_attention = encoder_hidden_states is not None
|
||||
|
||||
if is_cross_attention:
|
||||
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
||||
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
||||
attention_mask = encoder_attention_mask
|
||||
elif past_key_value is not None:
|
||||
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||||
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||||
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
||||
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
||||
else:
|
||||
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||||
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||||
|
||||
query_layer = self.transpose_for_scores(mixed_query_layer)
|
||||
|
||||
past_key_value = (key_layer, value_layer)
|
||||
|
||||
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||||
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
||||
|
||||
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
||||
seq_length = hidden_states.size()[1]
|
||||
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
||||
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
||||
distance = position_ids_l - position_ids_r
|
||||
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
||||
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
||||
|
||||
if self.position_embedding_type == "relative_key":
|
||||
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
||||
attention_scores = attention_scores + relative_position_scores
|
||||
elif self.position_embedding_type == "relative_key_query":
|
||||
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
||||
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
||||
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
||||
|
||||
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
||||
if attention_mask is not None:
|
||||
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
||||
attention_scores = attention_scores + attention_mask
|
||||
|
||||
# Normalize the attention scores to probabilities.
|
||||
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
||||
|
||||
if is_cross_attention and self.save_attention:
|
||||
self.save_attention_map(attention_probs)
|
||||
attention_probs.register_hook(self.save_attn_gradients)
|
||||
|
||||
# This is actually dropping out entire tokens to attend to, which might
|
||||
# seem a bit unusual, but is taken from the original Transformer paper.
|
||||
attention_probs_dropped = self.dropout(attention_probs)
|
||||
|
||||
# Mask heads if we want to
|
||||
if head_mask is not None:
|
||||
attention_probs_dropped = attention_probs_dropped * head_mask
|
||||
|
||||
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
||||
|
||||
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||||
context_layer = context_layer.view(*new_context_layer_shape)
|
||||
|
||||
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
||||
|
||||
outputs = outputs + (past_key_value,)
|
||||
return outputs
|
||||
|
||||
|
||||
class BertSelfOutput(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
def forward(self, hidden_states, input_tensor):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertAttention(nn.Module):
|
||||
def __init__(self, config, is_cross_attention=False):
|
||||
super().__init__()
|
||||
self.self = BertSelfAttention(config, is_cross_attention)
|
||||
self.output = BertSelfOutput(config)
|
||||
self.pruned_heads = set()
|
||||
|
||||
def prune_heads(self, heads):
|
||||
if len(heads) == 0:
|
||||
return
|
||||
heads, index = find_pruneable_heads_and_indices(
|
||||
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
||||
)
|
||||
|
||||
# Prune linear layers
|
||||
self.self.query = prune_linear_layer(self.self.query, index)
|
||||
self.self.key = prune_linear_layer(self.self.key, index)
|
||||
self.self.value = prune_linear_layer(self.self.value, index)
|
||||
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
||||
|
||||
# Update hyper params and store pruned heads
|
||||
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
||||
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
||||
self.pruned_heads = self.pruned_heads.union(heads)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_value=None,
|
||||
output_attentions=False,
|
||||
):
|
||||
self_outputs = self.self(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
attention_output = self.output(self_outputs[0], hidden_states)
|
||||
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
||||
return outputs
|
||||
|
||||
|
||||
class BertIntermediate(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
||||
if isinstance(config.hidden_act, str):
|
||||
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||||
else:
|
||||
self.intermediate_act_fn = config.hidden_act
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.intermediate_act_fn(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertOutput(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
def forward(self, hidden_states, input_tensor):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertLayer(nn.Module):
|
||||
def __init__(self, config, layer_num):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||||
self.seq_len_dim = 1
|
||||
self.attention = BertAttention(config)
|
||||
self.layer_num = layer_num
|
||||
if self.config.add_cross_attention:
|
||||
self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
|
||||
self.intermediate = BertIntermediate(config)
|
||||
self.output = BertOutput(config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_value=None,
|
||||
output_attentions=False,
|
||||
mode=None,
|
||||
):
|
||||
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
||||
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
||||
self_attention_outputs = self.attention(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
output_attentions=output_attentions,
|
||||
past_key_value=self_attn_past_key_value,
|
||||
)
|
||||
attention_output = self_attention_outputs[0]
|
||||
|
||||
outputs = self_attention_outputs[1:-1]
|
||||
present_key_value = self_attention_outputs[-1]
|
||||
|
||||
if mode=='multimodal':
|
||||
assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
|
||||
|
||||
cross_attention_outputs = self.crossattention(
|
||||
attention_output,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
attention_output = cross_attention_outputs[0]
|
||||
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
||||
layer_output = apply_chunking_to_forward(
|
||||
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
||||
)
|
||||
outputs = (layer_output,) + outputs
|
||||
|
||||
outputs = outputs + (present_key_value,)
|
||||
|
||||
return outputs
|
||||
|
||||
def feed_forward_chunk(self, attention_output):
|
||||
intermediate_output = self.intermediate(attention_output)
|
||||
layer_output = self.output(intermediate_output, attention_output)
|
||||
return layer_output
|
||||
|
||||
|
||||
class BertEncoder(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_values=None,
|
||||
use_cache=None,
|
||||
output_attentions=False,
|
||||
output_hidden_states=False,
|
||||
return_dict=True,
|
||||
mode='multimodal',
|
||||
):
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
||||
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
for i in range(self.config.num_hidden_layers):
|
||||
layer_module = self.layer[i]
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||||
past_key_value = past_key_values[i] if past_key_values is not None else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
if use_cache:
|
||||
logger.warn(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
return module(*inputs, past_key_value, output_attentions)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(layer_module),
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
mode=mode,
|
||||
)
|
||||
else:
|
||||
layer_outputs = layer_module(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
mode=mode,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[-1],)
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
v
|
||||
for v in [
|
||||
hidden_states,
|
||||
next_decoder_cache,
|
||||
all_hidden_states,
|
||||
all_self_attentions,
|
||||
all_cross_attentions,
|
||||
]
|
||||
if v is not None
|
||||
)
|
||||
return BaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_decoder_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
cross_attentions=all_cross_attentions,
|
||||
)
|
||||
|
||||
|
||||
class BertPooler(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
self.activation = nn.Tanh()
|
||||
|
||||
def forward(self, hidden_states):
|
||||
# We "pool" the model by simply taking the hidden state corresponding
|
||||
# to the first token.
|
||||
first_token_tensor = hidden_states[:, 0]
|
||||
pooled_output = self.dense(first_token_tensor)
|
||||
pooled_output = self.activation(pooled_output)
|
||||
return pooled_output
|
||||
|
||||
|
||||
class BertPredictionHeadTransform(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
if isinstance(config.hidden_act, str):
|
||||
self.transform_act_fn = ACT2FN[config.hidden_act]
|
||||
else:
|
||||
self.transform_act_fn = config.hidden_act
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.transform_act_fn(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertLMPredictionHead(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.transform = BertPredictionHeadTransform(config)
|
||||
|
||||
# The output weights are the same as the input embeddings, but there is
|
||||
# an output-only bias for each token.
|
||||
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
||||
|
||||
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
||||
self.decoder.bias = self.bias
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.transform(hidden_states)
|
||||
hidden_states = self.decoder(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertOnlyMLMHead(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.predictions = BertLMPredictionHead(config)
|
||||
|
||||
def forward(self, sequence_output):
|
||||
prediction_scores = self.predictions(sequence_output)
|
||||
return prediction_scores
|
||||
|
||||
|
||||
class BertPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = BertConfig
|
||||
base_model_prefix = "bert"
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
||||
|
||||
def _init_weights(self, module):
|
||||
""" Initialize the weights """
|
||||
if isinstance(module, (nn.Linear, nn.Embedding)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
if isinstance(module, nn.Linear) and module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
|
||||
|
||||
class BertModel(BertPreTrainedModel):
|
||||
"""
|
||||
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
||||
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
||||
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
||||
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
||||
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
||||
input to the forward pass.
|
||||
"""
|
||||
|
||||
def __init__(self, config, add_pooling_layer=True):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
self.embeddings = BertEmbeddings(config)
|
||||
|
||||
self.encoder = BertEncoder(config)
|
||||
|
||||
self.pooler = BertPooler(config) if add_pooling_layer else None
|
||||
|
||||
self.init_weights()
|
||||
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings.word_embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embeddings.word_embeddings = value
|
||||
|
||||
def _prune_heads(self, heads_to_prune):
|
||||
"""
|
||||
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||||
class PreTrainedModel
|
||||
"""
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
|
||||
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
|
||||
"""
|
||||
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
||||
|
||||
Arguments:
|
||||
attention_mask (:obj:`torch.Tensor`):
|
||||
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
||||
input_shape (:obj:`Tuple[int]`):
|
||||
The shape of the input to the model.
|
||||
device: (:obj:`torch.device`):
|
||||
The device of the input to the model.
|
||||
|
||||
Returns:
|
||||
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
||||
"""
|
||||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||||
# ourselves in which case we just need to make it broadcastable to all heads.
|
||||
if attention_mask.dim() == 3:
|
||||
extended_attention_mask = attention_mask[:, None, :, :]
|
||||
elif attention_mask.dim() == 2:
|
||||
# Provided a padding mask of dimensions [batch_size, seq_length]
|
||||
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
||||
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
||||
if is_decoder:
|
||||
batch_size, seq_length = input_shape
|
||||
|
||||
seq_ids = torch.arange(seq_length, device=device)
|
||||
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
||||
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
|
||||
# causal and attention masks must have same type with pytorch version < 1.3
|
||||
causal_mask = causal_mask.to(attention_mask.dtype)
|
||||
|
||||
if causal_mask.shape[1] < attention_mask.shape[1]:
|
||||
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
||||
causal_mask = torch.cat(
|
||||
[
|
||||
torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
|
||||
causal_mask,
|
||||
],
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
||||
else:
|
||||
extended_attention_mask = attention_mask[:, None, None, :]
|
||||
else:
|
||||
raise ValueError(
|
||||
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
||||
input_shape, attention_mask.shape
|
||||
)
|
||||
)
|
||||
|
||||
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||||
# masked positions, this operation will create a tensor which is 0.0 for
|
||||
# positions we want to attend and -10000.0 for masked positions.
|
||||
# Since we are adding it to the raw scores before the softmax, this is
|
||||
# effectively the same as removing these entirely.
|
||||
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
||||
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
||||
return extended_attention_mask
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
encoder_embeds=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_values=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
is_decoder=False,
|
||||
mode='multimodal',
|
||||
):
|
||||
r"""
|
||||
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
the model is configured as a decoder.
|
||||
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
||||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||||
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
||||
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
||||
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
||||
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
||||
use_cache (:obj:`bool`, `optional`):
|
||||
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
||||
decoding (see :obj:`past_key_values`).
|
||||
"""
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if is_decoder:
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
else:
|
||||
use_cache = False
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
batch_size, seq_length = input_shape
|
||||
device = input_ids.device
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
batch_size, seq_length = input_shape
|
||||
device = inputs_embeds.device
|
||||
elif encoder_embeds is not None:
|
||||
input_shape = encoder_embeds.size()[:-1]
|
||||
batch_size, seq_length = input_shape
|
||||
device = encoder_embeds.device
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
|
||||
|
||||
# past_key_values_length
|
||||
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||||
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
||||
|
||||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||||
# ourselves in which case we just need to make it broadcastable to all heads.
|
||||
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
|
||||
device, is_decoder)
|
||||
|
||||
# If a 2D or 3D attention mask is provided for the cross-attention
|
||||
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
||||
if encoder_hidden_states is not None:
|
||||
if type(encoder_hidden_states) == list:
|
||||
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
||||
else:
|
||||
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
||||
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
||||
|
||||
if type(encoder_attention_mask) == list:
|
||||
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
||||
elif encoder_attention_mask is None:
|
||||
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
||||
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
||||
else:
|
||||
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
||||
else:
|
||||
encoder_extended_attention_mask = None
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_heads x N x N
|
||||
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||||
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||||
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||||
|
||||
if encoder_embeds is None:
|
||||
embedding_output = self.embeddings(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
inputs_embeds=inputs_embeds,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
else:
|
||||
embedding_output = encoder_embeds
|
||||
|
||||
encoder_outputs = self.encoder(
|
||||
embedding_output,
|
||||
attention_mask=extended_attention_mask,
|
||||
head_mask=head_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_extended_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
mode=mode,
|
||||
)
|
||||
sequence_output = encoder_outputs[0]
|
||||
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
||||
|
||||
if not return_dict:
|
||||
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
||||
|
||||
return BaseModelOutputWithPoolingAndCrossAttentions(
|
||||
last_hidden_state=sequence_output,
|
||||
pooler_output=pooled_output,
|
||||
past_key_values=encoder_outputs.past_key_values,
|
||||
hidden_states=encoder_outputs.hidden_states,
|
||||
attentions=encoder_outputs.attentions,
|
||||
cross_attentions=encoder_outputs.cross_attentions,
|
||||
)
|
||||
|
||||
|
||||
|
||||
class BertLMHeadModel(BertPreTrainedModel):
|
||||
|
||||
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
self.bert = BertModel(config, add_pooling_layer=False)
|
||||
self.cls = BertOnlyMLMHead(config)
|
||||
|
||||
self.init_weights()
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.cls.predictions.decoder
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.cls.predictions.decoder = new_embeddings
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
labels=None,
|
||||
past_key_values=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
return_logits=False,
|
||||
is_decoder=True,
|
||||
reduction='mean',
|
||||
mode='multimodal',
|
||||
):
|
||||
r"""
|
||||
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
the model is configured as a decoder.
|
||||
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
||||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||||
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
||||
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
||||
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
||||
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
||||
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
||||
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
||||
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
||||
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
||||
use_cache (:obj:`bool`, `optional`):
|
||||
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
||||
decoding (see :obj:`past_key_values`).
|
||||
Returns:
|
||||
Example::
|
||||
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
||||
>>> import torch
|
||||
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
||||
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
||||
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
||||
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
>>> prediction_logits = outputs.logits
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
if labels is not None:
|
||||
use_cache = False
|
||||
|
||||
outputs = self.bert(
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
is_decoder=is_decoder,
|
||||
mode=mode,
|
||||
)
|
||||
|
||||
sequence_output = outputs[0]
|
||||
prediction_scores = self.cls(sequence_output)
|
||||
|
||||
if return_logits:
|
||||
return prediction_scores[:, :-1, :].contiguous()
|
||||
|
||||
lm_loss = None
|
||||
if labels is not None:
|
||||
# we are doing next-token prediction; shift prediction scores and input ids by one
|
||||
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
||||
labels = labels[:, 1:].contiguous()
|
||||
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
|
||||
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
if reduction=='none':
|
||||
lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1)
|
||||
|
||||
if not return_dict:
|
||||
output = (prediction_scores,) + outputs[2:]
|
||||
return ((lm_loss,) + output) if lm_loss is not None else output
|
||||
|
||||
return CausalLMOutputWithCrossAttentions(
|
||||
loss=lm_loss,
|
||||
logits=prediction_scores,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
cross_attentions=outputs.cross_attentions,
|
||||
)
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
|
||||
input_shape = input_ids.shape
|
||||
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
||||
if attention_mask is None:
|
||||
attention_mask = input_ids.new_ones(input_shape)
|
||||
|
||||
# cut decoder_input_ids if past is used
|
||||
if past is not None:
|
||||
input_ids = input_ids[:, -1:]
|
||||
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"past_key_values": past,
|
||||
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
||||
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
||||
"is_decoder": True,
|
||||
}
|
||||
|
||||
def _reorder_cache(self, past, beam_idx):
|
||||
reordered_past = ()
|
||||
for layer_past in past:
|
||||
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
||||
return reordered_past
|
843
ldm/models/nlvr_encoder.py
Normal file
843
ldm/models/nlvr_encoder.py
Normal file
@ -0,0 +1,843 @@
|
||||
import math
|
||||
import os
|
||||
import warnings
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor, device, dtype, nn
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
import torch.nn.functional as F
|
||||
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.file_utils import (
|
||||
ModelOutput,
|
||||
)
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPastAndCrossAttentions,
|
||||
BaseModelOutputWithPoolingAndCrossAttentions,
|
||||
CausalLMOutputWithCrossAttentions,
|
||||
MaskedLMOutput,
|
||||
MultipleChoiceModelOutput,
|
||||
NextSentencePredictorOutput,
|
||||
QuestionAnsweringModelOutput,
|
||||
SequenceClassifierOutput,
|
||||
TokenClassifierOutput,
|
||||
)
|
||||
from transformers.modeling_utils import (
|
||||
PreTrainedModel,
|
||||
apply_chunking_to_forward,
|
||||
find_pruneable_heads_and_indices,
|
||||
prune_linear_layer,
|
||||
)
|
||||
from transformers.utils import logging
|
||||
from transformers.models.bert.configuration_bert import BertConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class BertEmbeddings(nn.Module):
|
||||
"""Construct the embeddings from word and position embeddings."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
||||
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
||||
|
||||
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
||||
# any TensorFlow checkpoint file
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
||||
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
||||
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
||||
|
||||
self.config = config
|
||||
|
||||
def forward(
|
||||
self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
||||
):
|
||||
if input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
else:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
|
||||
seq_length = input_shape[1]
|
||||
|
||||
if position_ids is None:
|
||||
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.word_embeddings(input_ids)
|
||||
|
||||
embeddings = inputs_embeds
|
||||
|
||||
if self.position_embedding_type == "absolute":
|
||||
position_embeddings = self.position_embeddings(position_ids)
|
||||
embeddings += position_embeddings
|
||||
embeddings = self.LayerNorm(embeddings)
|
||||
embeddings = self.dropout(embeddings)
|
||||
return embeddings
|
||||
|
||||
|
||||
class BertSelfAttention(nn.Module):
|
||||
def __init__(self, config, is_cross_attention):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
||||
raise ValueError(
|
||||
"The hidden size (%d) is not a multiple of the number of attention "
|
||||
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
||||
)
|
||||
|
||||
self.num_attention_heads = config.num_attention_heads
|
||||
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
||||
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||||
|
||||
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
||||
if is_cross_attention:
|
||||
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
||||
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
||||
else:
|
||||
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
||||
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
||||
|
||||
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
||||
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
||||
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
||||
self.max_position_embeddings = config.max_position_embeddings
|
||||
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
||||
self.save_attention = False
|
||||
|
||||
def save_attn_gradients(self, attn_gradients):
|
||||
self.attn_gradients = attn_gradients
|
||||
|
||||
def get_attn_gradients(self):
|
||||
return self.attn_gradients
|
||||
|
||||
def save_attention_map(self, attention_map):
|
||||
self.attention_map = attention_map
|
||||
|
||||
def get_attention_map(self):
|
||||
return self.attention_map
|
||||
|
||||
def transpose_for_scores(self, x):
|
||||
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
||||
x = x.view(*new_x_shape)
|
||||
return x.permute(0, 2, 1, 3)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_value=None,
|
||||
output_attentions=False,
|
||||
):
|
||||
mixed_query_layer = self.query(hidden_states)
|
||||
|
||||
# If this is instantiated as a cross-attention module, the keys
|
||||
# and values come from an encoder; the attention mask needs to be
|
||||
# such that the encoder's padding tokens are not attended to.
|
||||
is_cross_attention = encoder_hidden_states is not None
|
||||
|
||||
if is_cross_attention:
|
||||
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
||||
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
||||
attention_mask = encoder_attention_mask
|
||||
elif past_key_value is not None:
|
||||
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||||
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||||
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
||||
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
||||
else:
|
||||
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||||
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||||
|
||||
query_layer = self.transpose_for_scores(mixed_query_layer)
|
||||
|
||||
past_key_value = (key_layer, value_layer)
|
||||
|
||||
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||||
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
||||
|
||||
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
||||
seq_length = hidden_states.size()[1]
|
||||
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
||||
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
||||
distance = position_ids_l - position_ids_r
|
||||
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
||||
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
||||
|
||||
if self.position_embedding_type == "relative_key":
|
||||
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
||||
attention_scores = attention_scores + relative_position_scores
|
||||
elif self.position_embedding_type == "relative_key_query":
|
||||
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
||||
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
||||
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
||||
|
||||
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
||||
if attention_mask is not None:
|
||||
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
||||
attention_scores = attention_scores + attention_mask
|
||||
|
||||
# Normalize the attention scores to probabilities.
|
||||
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
||||
|
||||
if is_cross_attention and self.save_attention:
|
||||
self.save_attention_map(attention_probs)
|
||||
attention_probs.register_hook(self.save_attn_gradients)
|
||||
|
||||
# This is actually dropping out entire tokens to attend to, which might
|
||||
# seem a bit unusual, but is taken from the original Transformer paper.
|
||||
attention_probs_dropped = self.dropout(attention_probs)
|
||||
|
||||
# Mask heads if we want to
|
||||
if head_mask is not None:
|
||||
attention_probs_dropped = attention_probs_dropped * head_mask
|
||||
|
||||
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
||||
|
||||
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||||
context_layer = context_layer.view(*new_context_layer_shape)
|
||||
|
||||
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
||||
|
||||
outputs = outputs + (past_key_value,)
|
||||
return outputs
|
||||
|
||||
|
||||
class BertSelfOutput(nn.Module):
|
||||
def __init__(self, config, twin=False, merge=False):
|
||||
super().__init__()
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
if twin:
|
||||
self.dense0 = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
self.dense1 = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
else:
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
if merge:
|
||||
self.act = ACT2FN[config.hidden_act]
|
||||
self.merge_layer = nn.Linear(config.hidden_size * 2, config.hidden_size)
|
||||
self.merge = True
|
||||
else:
|
||||
self.merge = False
|
||||
|
||||
def forward(self, hidden_states, input_tensor):
|
||||
if type(hidden_states) == list:
|
||||
hidden_states0 = self.dense0(hidden_states[0])
|
||||
hidden_states1 = self.dense1(hidden_states[1])
|
||||
if self.merge:
|
||||
#hidden_states = self.merge_layer(self.act(torch.cat([hidden_states0,hidden_states1],dim=-1)))
|
||||
hidden_states = self.merge_layer(torch.cat([hidden_states0,hidden_states1],dim=-1))
|
||||
else:
|
||||
hidden_states = (hidden_states0+hidden_states1)/2
|
||||
else:
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertAttention(nn.Module):
|
||||
def __init__(self, config, is_cross_attention=False, layer_num=-1):
|
||||
super().__init__()
|
||||
if is_cross_attention:
|
||||
self.self0 = BertSelfAttention(config, is_cross_attention)
|
||||
self.self1 = BertSelfAttention(config, is_cross_attention)
|
||||
else:
|
||||
self.self = BertSelfAttention(config, is_cross_attention)
|
||||
self.output = BertSelfOutput(config, twin=is_cross_attention, merge=(is_cross_attention and layer_num>=6))
|
||||
self.pruned_heads = set()
|
||||
|
||||
def prune_heads(self, heads):
|
||||
if len(heads) == 0:
|
||||
return
|
||||
heads, index = find_pruneable_heads_and_indices(
|
||||
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
||||
)
|
||||
|
||||
# Prune linear layers
|
||||
self.self.query = prune_linear_layer(self.self.query, index)
|
||||
self.self.key = prune_linear_layer(self.self.key, index)
|
||||
self.self.value = prune_linear_layer(self.self.value, index)
|
||||
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
||||
|
||||
# Update hyper params and store pruned heads
|
||||
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
||||
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
||||
self.pruned_heads = self.pruned_heads.union(heads)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_value=None,
|
||||
output_attentions=False,
|
||||
):
|
||||
if type(encoder_hidden_states)==list:
|
||||
self_outputs0 = self.self0(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
encoder_hidden_states[0],
|
||||
encoder_attention_mask[0],
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
self_outputs1 = self.self1(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
encoder_hidden_states[1],
|
||||
encoder_attention_mask[1],
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
attention_output = self.output([self_outputs0[0],self_outputs1[0]], hidden_states)
|
||||
|
||||
outputs = (attention_output,) + self_outputs0[1:] # add attentions if we output them
|
||||
else:
|
||||
self_outputs = self.self(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
attention_output = self.output(self_outputs[0], hidden_states)
|
||||
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
||||
return outputs
|
||||
|
||||
|
||||
class BertIntermediate(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
||||
if isinstance(config.hidden_act, str):
|
||||
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||||
else:
|
||||
self.intermediate_act_fn = config.hidden_act
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.intermediate_act_fn(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertOutput(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
def forward(self, hidden_states, input_tensor):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertLayer(nn.Module):
|
||||
def __init__(self, config, layer_num):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||||
self.seq_len_dim = 1
|
||||
self.attention = BertAttention(config)
|
||||
self.layer_num = layer_num
|
||||
if self.config.add_cross_attention:
|
||||
self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention, layer_num=layer_num)
|
||||
self.intermediate = BertIntermediate(config)
|
||||
self.output = BertOutput(config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_value=None,
|
||||
output_attentions=False,
|
||||
mode=None,
|
||||
):
|
||||
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
||||
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
||||
self_attention_outputs = self.attention(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
output_attentions=output_attentions,
|
||||
past_key_value=self_attn_past_key_value,
|
||||
)
|
||||
attention_output = self_attention_outputs[0]
|
||||
|
||||
outputs = self_attention_outputs[1:-1]
|
||||
present_key_value = self_attention_outputs[-1]
|
||||
|
||||
if mode=='multimodal':
|
||||
assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
|
||||
cross_attention_outputs = self.crossattention(
|
||||
attention_output,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
attention_output = cross_attention_outputs[0]
|
||||
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
||||
layer_output = apply_chunking_to_forward(
|
||||
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
||||
)
|
||||
outputs = (layer_output,) + outputs
|
||||
|
||||
outputs = outputs + (present_key_value,)
|
||||
|
||||
return outputs
|
||||
|
||||
def feed_forward_chunk(self, attention_output):
|
||||
intermediate_output = self.intermediate(attention_output)
|
||||
layer_output = self.output(intermediate_output, attention_output)
|
||||
return layer_output
|
||||
|
||||
|
||||
class BertEncoder(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_values=None,
|
||||
use_cache=None,
|
||||
output_attentions=False,
|
||||
output_hidden_states=False,
|
||||
return_dict=True,
|
||||
mode='multimodal',
|
||||
):
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
||||
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
for i in range(self.config.num_hidden_layers):
|
||||
layer_module = self.layer[i]
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||||
past_key_value = past_key_values[i] if past_key_values is not None else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
if use_cache:
|
||||
logger.warn(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
return module(*inputs, past_key_value, output_attentions)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(layer_module),
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
mode=mode,
|
||||
)
|
||||
else:
|
||||
layer_outputs = layer_module(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
mode=mode,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[-1],)
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
v
|
||||
for v in [
|
||||
hidden_states,
|
||||
next_decoder_cache,
|
||||
all_hidden_states,
|
||||
all_self_attentions,
|
||||
all_cross_attentions,
|
||||
]
|
||||
if v is not None
|
||||
)
|
||||
return BaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_decoder_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
cross_attentions=all_cross_attentions,
|
||||
)
|
||||
|
||||
|
||||
class BertPooler(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
self.activation = nn.Tanh()
|
||||
|
||||
def forward(self, hidden_states):
|
||||
# We "pool" the model by simply taking the hidden state corresponding
|
||||
# to the first token.
|
||||
first_token_tensor = hidden_states[:, 0]
|
||||
pooled_output = self.dense(first_token_tensor)
|
||||
pooled_output = self.activation(pooled_output)
|
||||
return pooled_output
|
||||
|
||||
|
||||
class BertPredictionHeadTransform(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
if isinstance(config.hidden_act, str):
|
||||
self.transform_act_fn = ACT2FN[config.hidden_act]
|
||||
else:
|
||||
self.transform_act_fn = config.hidden_act
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.transform_act_fn(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertLMPredictionHead(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.transform = BertPredictionHeadTransform(config)
|
||||
|
||||
# The output weights are the same as the input embeddings, but there is
|
||||
# an output-only bias for each token.
|
||||
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
||||
|
||||
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
||||
self.decoder.bias = self.bias
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.transform(hidden_states)
|
||||
hidden_states = self.decoder(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BertOnlyMLMHead(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.predictions = BertLMPredictionHead(config)
|
||||
|
||||
def forward(self, sequence_output):
|
||||
prediction_scores = self.predictions(sequence_output)
|
||||
return prediction_scores
|
||||
|
||||
|
||||
class BertPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = BertConfig
|
||||
base_model_prefix = "bert"
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
||||
|
||||
def _init_weights(self, module):
|
||||
""" Initialize the weights """
|
||||
if isinstance(module, (nn.Linear, nn.Embedding)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
if isinstance(module, nn.Linear) and module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
|
||||
|
||||
class BertModel(BertPreTrainedModel):
|
||||
"""
|
||||
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
||||
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
||||
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
||||
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
||||
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
||||
input to the forward pass.
|
||||
"""
|
||||
|
||||
def __init__(self, config, add_pooling_layer=True):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
self.embeddings = BertEmbeddings(config)
|
||||
|
||||
self.encoder = BertEncoder(config)
|
||||
|
||||
self.pooler = BertPooler(config) if add_pooling_layer else None
|
||||
|
||||
self.init_weights()
|
||||
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings.word_embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embeddings.word_embeddings = value
|
||||
|
||||
def _prune_heads(self, heads_to_prune):
|
||||
"""
|
||||
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||||
class PreTrainedModel
|
||||
"""
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
|
||||
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
|
||||
"""
|
||||
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
||||
|
||||
Arguments:
|
||||
attention_mask (:obj:`torch.Tensor`):
|
||||
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
||||
input_shape (:obj:`Tuple[int]`):
|
||||
The shape of the input to the model.
|
||||
device: (:obj:`torch.device`):
|
||||
The device of the input to the model.
|
||||
|
||||
Returns:
|
||||
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
||||
"""
|
||||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||||
# ourselves in which case we just need to make it broadcastable to all heads.
|
||||
if attention_mask.dim() == 3:
|
||||
extended_attention_mask = attention_mask[:, None, :, :]
|
||||
elif attention_mask.dim() == 2:
|
||||
# Provided a padding mask of dimensions [batch_size, seq_length]
|
||||
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
||||
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
||||
if is_decoder:
|
||||
batch_size, seq_length = input_shape
|
||||
|
||||
seq_ids = torch.arange(seq_length, device=device)
|
||||
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
||||
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
|
||||
# causal and attention masks must have same type with pytorch version < 1.3
|
||||
causal_mask = causal_mask.to(attention_mask.dtype)
|
||||
|
||||
if causal_mask.shape[1] < attention_mask.shape[1]:
|
||||
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
||||
causal_mask = torch.cat(
|
||||
[
|
||||
torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
|
||||
causal_mask,
|
||||
],
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
||||
else:
|
||||
extended_attention_mask = attention_mask[:, None, None, :]
|
||||
else:
|
||||
raise ValueError(
|
||||
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
||||
input_shape, attention_mask.shape
|
||||
)
|
||||
)
|
||||
|
||||
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||||
# masked positions, this operation will create a tensor which is 0.0 for
|
||||
# positions we want to attend and -10000.0 for masked positions.
|
||||
# Since we are adding it to the raw scores before the softmax, this is
|
||||
# effectively the same as removing these entirely.
|
||||
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
||||
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
||||
return extended_attention_mask
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
encoder_embeds=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_values=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
is_decoder=False,
|
||||
mode='multimodal',
|
||||
):
|
||||
r"""
|
||||
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
the model is configured as a decoder.
|
||||
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
||||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||||
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
||||
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
||||
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
||||
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
||||
use_cache (:obj:`bool`, `optional`):
|
||||
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
||||
decoding (see :obj:`past_key_values`).
|
||||
"""
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if is_decoder:
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
else:
|
||||
use_cache = False
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
batch_size, seq_length = input_shape
|
||||
device = input_ids.device
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
batch_size, seq_length = input_shape
|
||||
device = inputs_embeds.device
|
||||
elif encoder_embeds is not None:
|
||||
input_shape = encoder_embeds.size()[:-1]
|
||||
batch_size, seq_length = input_shape
|
||||
device = encoder_embeds.device
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
|
||||
|
||||
# past_key_values_length
|
||||
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||||
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
||||
|
||||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||||
# ourselves in which case we just need to make it broadcastable to all heads.
|
||||
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
|
||||
device, is_decoder)
|
||||
|
||||
# If a 2D or 3D attention mask is provided for the cross-attention
|
||||
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
||||
if encoder_hidden_states is not None:
|
||||
if type(encoder_hidden_states) == list:
|
||||
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
||||
else:
|
||||
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
||||
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
||||
|
||||
if type(encoder_attention_mask) == list:
|
||||
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
||||
elif encoder_attention_mask is None:
|
||||
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
||||
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
||||
else:
|
||||
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
||||
else:
|
||||
encoder_extended_attention_mask = None
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_heads x N x N
|
||||
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||||
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||||
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||||
|
||||
if encoder_embeds is None:
|
||||
embedding_output = self.embeddings(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
inputs_embeds=inputs_embeds,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
else:
|
||||
embedding_output = encoder_embeds
|
||||
|
||||
encoder_outputs = self.encoder(
|
||||
embedding_output,
|
||||
attention_mask=extended_attention_mask,
|
||||
head_mask=head_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_extended_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
mode=mode,
|
||||
)
|
||||
sequence_output = encoder_outputs[0]
|
||||
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
||||
|
||||
if not return_dict:
|
||||
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
||||
|
||||
return BaseModelOutputWithPoolingAndCrossAttentions(
|
||||
last_hidden_state=sequence_output,
|
||||
pooler_output=pooled_output,
|
||||
past_key_values=encoder_outputs.past_key_values,
|
||||
hidden_states=encoder_outputs.hidden_states,
|
||||
attentions=encoder_outputs.attentions,
|
||||
cross_attentions=encoder_outputs.cross_attentions,
|
||||
)
|
||||
|
305
ldm/models/vit.py
Normal file
305
ldm/models/vit.py
Normal file
@ -0,0 +1,305 @@
|
||||
'''
|
||||
* Copyright (c) 2022, salesforce.com, inc.
|
||||
* All rights reserved.
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
* By Junnan Li
|
||||
* Based on timm code base
|
||||
* https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
||||
'''
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from functools import partial
|
||||
|
||||
from timm.models.vision_transformer import _cfg, PatchEmbed
|
||||
from timm.models.registry import register_model
|
||||
from timm.models.layers import trunc_normal_, DropPath
|
||||
from timm.models.helpers import named_apply, adapt_input_conv
|
||||
|
||||
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
|
||||
|
||||
class Mlp(nn.Module):
|
||||
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
|
||||
"""
|
||||
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
||||
self.scale = qk_scale or head_dim ** -0.5
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
self.attn_gradients = None
|
||||
self.attention_map = None
|
||||
|
||||
def save_attn_gradients(self, attn_gradients):
|
||||
self.attn_gradients = attn_gradients
|
||||
|
||||
def get_attn_gradients(self):
|
||||
return self.attn_gradients
|
||||
|
||||
def save_attention_map(self, attention_map):
|
||||
self.attention_map = attention_map
|
||||
|
||||
def get_attention_map(self):
|
||||
return self.attention_map
|
||||
|
||||
def forward(self, x, register_hook=False):
|
||||
B, N, C = x.shape
|
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
if register_hook:
|
||||
self.save_attention_map(attn)
|
||||
attn.register_hook(self.save_attn_gradients)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
|
||||
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
||||
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False):
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
||||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
||||
|
||||
if use_grad_checkpointing:
|
||||
self.attn = checkpoint_wrapper(self.attn)
|
||||
self.mlp = checkpoint_wrapper(self.mlp)
|
||||
|
||||
def forward(self, x, register_hook=False):
|
||||
x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
class VisionTransformer(nn.Module):
|
||||
""" Vision Transformer
|
||||
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
|
||||
https://arxiv.org/abs/2010.11929
|
||||
"""
|
||||
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
||||
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
|
||||
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None,
|
||||
use_grad_checkpointing=False, ckpt_layer=0):
|
||||
"""
|
||||
Args:
|
||||
img_size (int, tuple): input image size
|
||||
patch_size (int, tuple): patch size
|
||||
in_chans (int): number of input channels
|
||||
num_classes (int): number of classes for classification head
|
||||
embed_dim (int): embedding dimension
|
||||
depth (int): depth of transformer
|
||||
num_heads (int): number of attention heads
|
||||
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
||||
qkv_bias (bool): enable bias for qkv if True
|
||||
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
||||
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
|
||||
drop_rate (float): dropout rate
|
||||
attn_drop_rate (float): attention dropout rate
|
||||
drop_path_rate (float): stochastic depth rate
|
||||
norm_layer: (nn.Module): normalization layer
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
||||
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
||||
|
||||
self.patch_embed = PatchEmbed(
|
||||
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
||||
|
||||
num_patches = self.patch_embed.num_patches
|
||||
|
||||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
||||
self.pos_drop = nn.Dropout(p=drop_rate)
|
||||
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||
self.blocks = nn.ModuleList([
|
||||
Block(
|
||||
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
||||
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
||||
use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer)
|
||||
)
|
||||
for i in range(depth)])
|
||||
self.norm = norm_layer(embed_dim)
|
||||
|
||||
trunc_normal_(self.pos_embed, std=.02)
|
||||
trunc_normal_(self.cls_token, std=.02)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
return {'pos_embed', 'cls_token'}
|
||||
|
||||
def forward(self, x, register_blk=-1):
|
||||
B = x.shape[0]
|
||||
x = self.patch_embed(x)
|
||||
|
||||
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
|
||||
x = x + self.pos_embed[:,:x.size(1),:]
|
||||
x = self.pos_drop(x)
|
||||
|
||||
for i,blk in enumerate(self.blocks):
|
||||
x = blk(x, register_blk==i)
|
||||
x = self.norm(x)
|
||||
|
||||
return x
|
||||
|
||||
@torch.jit.ignore()
|
||||
def load_pretrained(self, checkpoint_path, prefix=''):
|
||||
_load_weights(self, checkpoint_path, prefix)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
|
||||
""" Load weights from .npz checkpoints for official Google Brain Flax implementation
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
def _n2p(w, t=True):
|
||||
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
|
||||
w = w.flatten()
|
||||
if t:
|
||||
if w.ndim == 4:
|
||||
w = w.transpose([3, 2, 0, 1])
|
||||
elif w.ndim == 3:
|
||||
w = w.transpose([2, 0, 1])
|
||||
elif w.ndim == 2:
|
||||
w = w.transpose([1, 0])
|
||||
return torch.from_numpy(w)
|
||||
|
||||
w = np.load(checkpoint_path)
|
||||
if not prefix and 'opt/target/embedding/kernel' in w:
|
||||
prefix = 'opt/target/'
|
||||
|
||||
if hasattr(model.patch_embed, 'backbone'):
|
||||
# hybrid
|
||||
backbone = model.patch_embed.backbone
|
||||
stem_only = not hasattr(backbone, 'stem')
|
||||
stem = backbone if stem_only else backbone.stem
|
||||
stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
|
||||
stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
|
||||
stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
|
||||
if not stem_only:
|
||||
for i, stage in enumerate(backbone.stages):
|
||||
for j, block in enumerate(stage.blocks):
|
||||
bp = f'{prefix}block{i + 1}/unit{j + 1}/'
|
||||
for r in range(3):
|
||||
getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
|
||||
getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
|
||||
getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
|
||||
if block.downsample is not None:
|
||||
block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
|
||||
block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
|
||||
block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
|
||||
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
|
||||
else:
|
||||
embed_conv_w = adapt_input_conv(
|
||||
model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
|
||||
model.patch_embed.proj.weight.copy_(embed_conv_w)
|
||||
model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
|
||||
model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
|
||||
pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
|
||||
if pos_embed_w.shape != model.pos_embed.shape:
|
||||
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
|
||||
pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
|
||||
model.pos_embed.copy_(pos_embed_w)
|
||||
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
|
||||
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
|
||||
# if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
|
||||
# model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
|
||||
# model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
|
||||
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
|
||||
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
|
||||
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
|
||||
for i, block in enumerate(model.blocks.children()):
|
||||
block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
|
||||
mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
|
||||
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
|
||||
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
|
||||
block.attn.qkv.weight.copy_(torch.cat([
|
||||
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
|
||||
block.attn.qkv.bias.copy_(torch.cat([
|
||||
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
|
||||
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
|
||||
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
|
||||
for r in range(2):
|
||||
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
|
||||
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
|
||||
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
|
||||
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
|
||||
|
||||
|
||||
def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
|
||||
# interpolate position embedding
|
||||
embedding_size = pos_embed_checkpoint.shape[-1]
|
||||
num_patches = visual_encoder.patch_embed.num_patches
|
||||
num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
|
||||
# height (== width) for the checkpoint position embedding
|
||||
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
||||
# height (== width) for the new position embedding
|
||||
new_size = int(num_patches ** 0.5)
|
||||
|
||||
if orig_size!=new_size:
|
||||
# class_token and dist_token are kept unchanged
|
||||
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
||||
# only the position tokens are interpolated
|
||||
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
||||
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
||||
pos_tokens = torch.nn.functional.interpolate(
|
||||
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
||||
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
||||
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
||||
print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2))
|
||||
|
||||
return new_pos_embed
|
||||
else:
|
||||
return pos_embed_checkpoint
|
@ -40,7 +40,8 @@ def layout():
|
||||
,Waifu Diffusion v1.2 , ./models/custom , https://huggingface.co/hakurei/waifu-diffusion
|
||||
,Waifu Diffusion v1.2 Pruned , ./models/custom , https://huggingface.co/crumb/pruned-waifu-diffusion
|
||||
,TrinArt Stable Diffusion v2 , ./models/custom , https://huggingface.co/naclbit/trinart_stable_diffusion_v2
|
||||
,Stable Diffusion Concept Library , ./models/custom/sd-concepts-library , https://github.com/sd-webui/sd-concepts-library
|
||||
,Stable Diffusion Concept Library , ./models/custom/sd-concepts-library , https://github.com/sd-webui/sd-concepts-library
|
||||
,Blip Model , ./models/custom/blip , https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth
|
||||
"""
|
||||
colms = st.columns((1, 3, 5, 5))
|
||||
columns = ["№",'Model Name','Save Location','Download Link']
|
||||
|
175
scripts/clip_interrogator.py
Normal file
175
scripts/clip_interrogator.py
Normal file
@ -0,0 +1,175 @@
|
||||
|
||||
#@title Setup
|
||||
#!pip3 install ftfy regex tqdm transformers==4.15.0 timm==0.4.12 fairscale==0.4.4
|
||||
#!pip3 install git+https://github.com/openai/CLIP.git
|
||||
#!git clone https://github.com/pharmapsychotic/clip-interrogator.git
|
||||
#!git clone https://github.com/salesforce/BLIP
|
||||
#%cd /content/BLIP
|
||||
|
||||
import clip
|
||||
import gc
|
||||
#import numpy as np
|
||||
import os
|
||||
import pandas as pd
|
||||
import requests
|
||||
import torch
|
||||
#import torchvision.transforms as T
|
||||
#import torchvision.transforms.functional as TF
|
||||
|
||||
from IPython.display import display
|
||||
from PIL import Image
|
||||
#from torch import nn
|
||||
#from torch.nn import functional as F
|
||||
from torchvision import transforms
|
||||
from torchvision.transforms.functional import InterpolationMode
|
||||
from ldm.models.blip import blip_decoder
|
||||
|
||||
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
blip_image_eval_size = 384
|
||||
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth'
|
||||
blip_model = blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base')
|
||||
blip_model.eval()
|
||||
blip_model = blip_model.to(device)
|
||||
|
||||
def generate_caption(pil_image):
|
||||
gpu_image = transforms.Compose([
|
||||
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
||||
])(image).unsqueeze(0).to(device)
|
||||
|
||||
with torch.no_grad():
|
||||
caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5)
|
||||
return caption[0]
|
||||
|
||||
def load_list(filename):
|
||||
with open(filename, 'r', encoding='utf-8', errors='replace') as f:
|
||||
items = [line.strip() for line in f.readlines()]
|
||||
return items
|
||||
|
||||
def rank(model, image_features, text_array, top_count=1):
|
||||
top_count = min(top_count, len(text_array))
|
||||
text_tokens = clip.tokenize([text for text in text_array]).cuda()
|
||||
with torch.no_grad():
|
||||
text_features = model.encode_text(text_tokens).float()
|
||||
text_features /= text_features.norm(dim=-1, keepdim=True)
|
||||
|
||||
similarity = torch.zeros((1, len(text_array))).to(device)
|
||||
for i in range(image_features.shape[0]):
|
||||
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
|
||||
similarity /= image_features.shape[0]
|
||||
|
||||
top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1)
|
||||
return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)]
|
||||
|
||||
def interrogate(image, models):
|
||||
caption = generate_caption(image)
|
||||
if len(models) == 0:
|
||||
print(f"\n\n{caption}")
|
||||
return
|
||||
|
||||
table = []
|
||||
bests = [[('',0)]]*5
|
||||
for model_name in models:
|
||||
print(f"Interrogating with {model_name}...")
|
||||
model, preprocess = clip.load(model_name)
|
||||
model.cuda().eval()
|
||||
|
||||
images = preprocess(image).unsqueeze(0).cuda()
|
||||
with torch.no_grad():
|
||||
image_features = model.encode_image(images).float()
|
||||
image_features /= image_features.norm(dim=-1, keepdim=True)
|
||||
|
||||
ranks = [
|
||||
rank(model, image_features, mediums),
|
||||
rank(model, image_features, ["by "+artist for artist in artists]),
|
||||
rank(model, image_features, trending_list),
|
||||
rank(model, image_features, movements),
|
||||
rank(model, image_features, flavors, top_count=3)
|
||||
]
|
||||
|
||||
for i in range(len(ranks)):
|
||||
confidence_sum = 0
|
||||
for ci in range(len(ranks[i])):
|
||||
confidence_sum += ranks[i][ci][1]
|
||||
if confidence_sum > sum(bests[i][t][1] for t in range(len(bests[i]))):
|
||||
bests[i] = ranks[i]
|
||||
|
||||
row = [model_name]
|
||||
for r in ranks:
|
||||
row.append(', '.join([f"{x[0]} ({x[1]:0.1f}%)" for x in r]))
|
||||
|
||||
table.append(row)
|
||||
|
||||
del model
|
||||
gc.collect()
|
||||
display(pd.DataFrame(table, columns=["Model", "Medium", "Artist", "Trending", "Movement", "Flavors"]))
|
||||
|
||||
flaves = ', '.join([f"{x[0]}" for x in bests[4]])
|
||||
medium = bests[0][0][0]
|
||||
if caption.startswith(medium):
|
||||
print(f"\n\n{caption} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}")
|
||||
else:
|
||||
print(f"\n\n{caption}, {medium} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}")
|
||||
|
||||
data_path = "../clip-interrogator/data/"
|
||||
|
||||
artists = load_list(os.path.join(data_path, 'artists.txt'))
|
||||
flavors = load_list(os.path.join(data_path, 'flavors.txt'))
|
||||
mediums = load_list(os.path.join(data_path, 'mediums.txt'))
|
||||
movements = load_list(os.path.join(data_path, 'movements.txt'))
|
||||
|
||||
sites = ['Artstation', 'behance', 'cg society', 'cgsociety', 'deviantart', 'dribble', 'flickr', 'instagram', 'pexels', 'pinterest', 'pixabay', 'pixiv', 'polycount', 'reddit', 'shutterstock', 'tumblr', 'unsplash', 'zbrush central']
|
||||
trending_list = [site for site in sites]
|
||||
trending_list.extend(["trending on "+site for site in sites])
|
||||
trending_list.extend(["featured on "+site for site in sites])
|
||||
trending_list.extend([site+" contest winner" for site in sites])
|
||||
|
||||
#@title Interrogate!
|
||||
|
||||
#@markdown
|
||||
|
||||
#@markdown #####**Image:**
|
||||
|
||||
image_path_or_url = "https://i.redd.it/e2e8gimigjq91.jpg" #@param {type:"string"}
|
||||
|
||||
#@markdown
|
||||
|
||||
#@markdown #####**CLIP models:**
|
||||
|
||||
#@markdown For [StableDiffusion](https://stability.ai/blog/stable-diffusion-announcement) you can just use ViTL14<br>
|
||||
#@markdown For [DiscoDiffusion](https://colab.research.google.com/github/alembics/disco-diffusion/blob/main/Disco_Diffusion.ipynb) and
|
||||
#@markdown [JAX](https://colab.research.google.com/github/huemin-art/jax-guided-diffusion/blob/v2.7/Huemin_Jax_Diffusion_2_7.ipynb) enable all the same models here as you intend to use when generating your images
|
||||
|
||||
ViTB32 = True #@param{type:"boolean"}
|
||||
ViTB16 = True #@param{type:"boolean"}
|
||||
ViTL14 = False #@param{type:"boolean"}
|
||||
ViTL14_336px = False #@param{type:"boolean"}
|
||||
RN101 = False #@param{type:"boolean"}
|
||||
RN50 = True #@param{type:"boolean"}
|
||||
RN50x4 = False #@param{type:"boolean"}
|
||||
RN50x16 = False #@param{type:"boolean"}
|
||||
RN50x64 = False #@param{type:"boolean"}
|
||||
|
||||
models = []
|
||||
if ViTB32: models.append('ViT-B/32')
|
||||
if ViTB16: models.append('ViT-B/16')
|
||||
if ViTL14: models.append('ViT-L/14')
|
||||
if ViTL14_336px: models.append('ViT-L/14@336px')
|
||||
if RN101: models.append('RN101')
|
||||
if RN50: models.append('RN50')
|
||||
if RN50x4: models.append('RN50x4')
|
||||
if RN50x16: models.append('RN50x16')
|
||||
if RN50x64: models.append('RN50x64')
|
||||
|
||||
if str(image_path_or_url).startswith('http://') or str(image_path_or_url).startswith('https://'):
|
||||
image = Image.open(requests.get(image_path_or_url, stream=True).raw).convert('RGB')
|
||||
else:
|
||||
image = Image.open(image_path_or_url).convert('RGB')
|
||||
|
||||
thumb = image.copy()
|
||||
thumb.thumbnail([blip_image_eval_size, blip_image_eval_size])
|
||||
display(thumb)
|
||||
|
||||
interrogate(image, models=models)
|
@ -39,44 +39,230 @@ from sd_utils import *
|
||||
import streamlit_nested_layout
|
||||
|
||||
#streamlit components section
|
||||
from streamlit_server_state import server_state, server_state_lock
|
||||
|
||||
#other imports
|
||||
import hydralit_components as hc
|
||||
|
||||
import clip
|
||||
import gc
|
||||
import os
|
||||
import pandas as pd
|
||||
import requests
|
||||
import torch
|
||||
from IPython.display import display
|
||||
from PIL import Image
|
||||
#from torch import nn
|
||||
#from torch.nn import functional as F
|
||||
from torchvision import transforms
|
||||
from torchvision.transforms.functional import InterpolationMode
|
||||
from ldm.models.blip import blip_decoder
|
||||
|
||||
# end of imports
|
||||
#---------------------------------------------------------------------------------------------------------------
|
||||
|
||||
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
blip_image_eval_size = 384
|
||||
#blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth'
|
||||
|
||||
def generate_caption(pil_image):
|
||||
blip_model = blip_decoder(pretrained="models/blip/model__base_caption.pth", image_size=blip_image_eval_size, vit='base', med_config="configs/blip/med_config.json")
|
||||
blip_model.eval()
|
||||
blip_model = blip_model.to(device)
|
||||
|
||||
gpu_image = transforms.Compose([
|
||||
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
||||
])(image).unsqueeze(0).to(device)
|
||||
|
||||
with torch.no_grad():
|
||||
caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5)
|
||||
return caption[0]
|
||||
|
||||
def load_list(filename):
|
||||
with open(filename, 'r', encoding='utf-8', errors='replace') as f:
|
||||
items = [line.strip() for line in f.readlines()]
|
||||
return items
|
||||
|
||||
def rank(model, image_features, text_array, top_count=1):
|
||||
top_count = min(top_count, len(text_array))
|
||||
text_tokens = clip.tokenize([text for text in text_array]).cuda()
|
||||
with torch.no_grad():
|
||||
text_features = model.encode_text(text_tokens).float()
|
||||
text_features /= text_features.norm(dim=-1, keepdim=True)
|
||||
|
||||
similarity = torch.zeros((1, len(text_array))).to(device)
|
||||
for i in range(image_features.shape[0]):
|
||||
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
|
||||
similarity /= image_features.shape[0]
|
||||
|
||||
top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1)
|
||||
return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)]
|
||||
|
||||
def interrogate(image, models):
|
||||
caption = generate_caption(image)
|
||||
if len(models) == 0:
|
||||
print(f"\n\n{caption}")
|
||||
return
|
||||
|
||||
table = []
|
||||
bests = [[('',0)]]*5
|
||||
for model_name in models:
|
||||
print(f"Interrogating with {model_name}...")
|
||||
model, preprocess = clip.load(model_name)
|
||||
model.cuda().eval()
|
||||
|
||||
images = preprocess(image).unsqueeze(0).cuda()
|
||||
with torch.no_grad():
|
||||
image_features = model.encode_image(images).float()
|
||||
image_features /= image_features.norm(dim=-1, keepdim=True)
|
||||
|
||||
ranks = [
|
||||
rank(model, image_features, mediums),
|
||||
rank(model, image_features, ["by "+artist for artist in artists]),
|
||||
rank(model, image_features, trending_list),
|
||||
rank(model, image_features, movements),
|
||||
rank(model, image_features, flavors, top_count=3)
|
||||
]
|
||||
|
||||
for i in range(len(ranks)):
|
||||
confidence_sum = 0
|
||||
for ci in range(len(ranks[i])):
|
||||
confidence_sum += ranks[i][ci][1]
|
||||
if confidence_sum > sum(bests[i][t][1] for t in range(len(bests[i]))):
|
||||
bests[i] = ranks[i]
|
||||
|
||||
row = [model_name]
|
||||
for r in ranks:
|
||||
row.append(', '.join([f"{x[0]} ({x[1]:0.1f}%)" for x in r]))
|
||||
|
||||
table.append(row)
|
||||
|
||||
del model
|
||||
gc.collect()
|
||||
|
||||
display(pd.DataFrame(table, columns=["Model", "Medium", "Artist", "Trending", "Movement", "Flavors"]))
|
||||
|
||||
flaves = ', '.join([f"{x[0]}" for x in bests[4]])
|
||||
medium = bests[0][0][0]
|
||||
if caption.startswith(medium):
|
||||
print(f"\n\n{caption} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}")
|
||||
else:
|
||||
print(f"\n\n{caption}, {medium} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}")
|
||||
|
||||
#
|
||||
|
||||
def img2txt():
|
||||
data_path = "data/"
|
||||
|
||||
artists = load_list(os.path.join(data_path, 'artists.txt'))
|
||||
flavors = load_list(os.path.join(data_path, 'flavors.txt'))
|
||||
mediums = load_list(os.path.join(data_path, 'mediums.txt'))
|
||||
movements = load_list(os.path.join(data_path, 'movements.txt'))
|
||||
|
||||
sites = ['Artstation', 'behance', 'cg society', 'cgsociety', 'deviantart', 'dribble', 'flickr', 'instagram', 'pexels', 'pinterest', 'pixabay', 'pixiv', 'polycount', 'reddit', 'shutterstock', 'tumblr', 'unsplash', 'zbrush central']
|
||||
trending_list = [site for site in sites]
|
||||
trending_list.extend(["trending on "+site for site in sites])
|
||||
trending_list.extend(["featured on "+site for site in sites])
|
||||
trending_list.extend([site+" contest winner" for site in sites])
|
||||
|
||||
image_path_or_url = "https://i.redd.it/e2e8gimigjq91.jpg" #@param {type:"string"}
|
||||
|
||||
models = []
|
||||
|
||||
if st.session_state["ViTB32"]:
|
||||
models.append('ViT-B/32')
|
||||
if st.session_state['ViTB16']:
|
||||
models.append('ViT-B/16')
|
||||
if st.session_state["ViTL14"]:
|
||||
models.append('ViT-L/14')
|
||||
if st.session_state["ViTL14_336px"]:
|
||||
models.append('ViT-L/14@336px')
|
||||
if st.session_state["RN101"]:
|
||||
models.append('RN101')
|
||||
if st.session_state["RN50"]:
|
||||
models.append('RN50')
|
||||
if st.session_state["RN50x4"]:
|
||||
models.append('RN50x4')
|
||||
if st.session_state["RN50x16"]:
|
||||
models.append('RN50x16')
|
||||
if st.session_state["RN50x64"]:
|
||||
models.append('RN50x64')
|
||||
|
||||
if str(image_path_or_url).startswith('http://') or str(image_path_or_url).startswith('https://'):
|
||||
image = Image.open(requests.get(image_path_or_url, stream=True).raw).convert('RGB')
|
||||
else:
|
||||
image = Image.open(image_path_or_url).convert('RGB')
|
||||
|
||||
thumb = image.copy()
|
||||
thumb.thumbnail([blip_image_eval_size, blip_image_eval_size])
|
||||
#display(thumb)
|
||||
|
||||
interrogate(image, models=models)
|
||||
|
||||
#
|
||||
def layout():
|
||||
#set_page_title("Image-to-Text - Stable Diffusion WebUI")
|
||||
st.info("Under Construction. :construction_worker:")
|
||||
#st.info("Under Construction. :construction_worker:")
|
||||
|
||||
#theme_neutral = {'bgcolor': '#f9f9f9','title_color': 'black','content_color': 'black','icon_color': 'orange', 'icon': 'fa fa-question-circle'}
|
||||
#hc.info_card(title='Some heading GOOD', content='All good!', sentiment='good',bar_value=77)
|
||||
|
||||
#hc.nav_bar([{'icon': "far fa-copy", 'label':"Left End"}, {'id':'Copy','icon':"🐙",'label':"Copy"},
|
||||
#{'icon': "fa-solid fa-radar",'label':"Dropdown1",
|
||||
#' submenu':[{'id':' subid11','icon': "fa fa-paperclip", 'label':"Sub-item 1"},
|
||||
#{'id':'subid12','icon': "💀", 'label':"Sub-item 2"},
|
||||
#{'id':'subid13','icon': "fa fa-database", 'label':"Sub-item 3"}]}],
|
||||
#override_theme=theme_neutral, hide_streamlit_markers=False)
|
||||
|
||||
|
||||
#with st.form("img2txt-inputs"):
|
||||
#st.session_state["generation_mode"] = "txt2img"
|
||||
with st.form("img2txt-inputs"):
|
||||
st.session_state["generation_mode"] = "img2txt"
|
||||
|
||||
#input_col1, generate_col1 = st.columns([10,1])
|
||||
input_col1, generate_col1 = st.columns([10,1])
|
||||
|
||||
#with input_col1:
|
||||
##prompt = st.text_area("Input Text","")
|
||||
with input_col1:
|
||||
#prompt = st.text_area("Input Text","")
|
||||
#prompt = st.text_input("Input Text","", placeholder="A corgi wearing a top hat as an oil painting.")
|
||||
uploaded_image = st.file_uploader('Input Image')
|
||||
|
||||
## Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way.
|
||||
#generate_col1.write("")
|
||||
#generate_col1.write("")
|
||||
#generate_button = generate_col1.form_submit_button("Generate")
|
||||
# Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way.
|
||||
generate_col1.write("")
|
||||
generate_col1.write("")
|
||||
generate_button = generate_col1.form_submit_button("Generate")
|
||||
|
||||
st.session_state["text_result"] = st.empty()
|
||||
|
||||
## creating the page layout using columns
|
||||
#col1, col2, col3 = st.columns([1,2,1], gap="large")
|
||||
# creating the page layout using columns
|
||||
col1, col2, col3 = st.columns([1,2,1], gap="large")
|
||||
|
||||
with col1:
|
||||
"""
|
||||
CLIP models:
|
||||
For StableDiffusion you can just use ViTL14
|
||||
For DiscoDiffusion and JAX enable all the same models here as you intend to use when generating your images
|
||||
|
||||
ViTB32:
|
||||
ViTB16:
|
||||
ViTL14:
|
||||
ViTL14_336px:
|
||||
RN101:
|
||||
RN50:
|
||||
RN50x4:
|
||||
RN50x16:
|
||||
RN50x64:
|
||||
"""
|
||||
st.title("CLIP models")
|
||||
|
||||
st.session_state["ViTB32"] = st.checkbox("ViTB32", value=False, help="ViTB32 model.")
|
||||
|
||||
st.session_state["ViTB16"] = st.checkbox("ViTB16", value=False, help="ViTB16 model.")
|
||||
|
||||
st.session_state["ViTL14"] = st.checkbox("ViTL14", value=True, help="ViTL14 model.")
|
||||
|
||||
st.session_state["ViTL14_336px"] = st.checkbox("ViTL14_336px", value=False, help="ViTL14_336px model.")
|
||||
|
||||
st.session_state["RN101"] = st.checkbox("RN101", value=False, help="RN101 model.")
|
||||
|
||||
st.session_state["RN50"] = st.checkbox("RN50", value=False, help="RN50 model.")
|
||||
|
||||
st.session_state["RN50x4"] = st.checkbox("RN50x4", value=False, help="RN50x4 model.")
|
||||
|
||||
st.session_state["RN50x16"] = st.checkbox("RN50x16", value=False, help="RN50x16 model.")
|
||||
|
||||
st.session_state["RN50x64"] = st.checkbox("RN50x64", value=False, help="RN50x64 model.")
|
||||
|
||||
with col2:
|
||||
st.session_state["input_image_preview"] = st.empty()
|
||||
|
||||
with col3:
|
||||
st.session_state["text_message"] = st.empty()
|
||||
|
Loading…
Reference in New Issue
Block a user