import numpy as np def perlin(x, y, seed=0): # permutation table np.random.seed(seed) p = np.arange(256, dtype=int) np.random.shuffle(p) p = np.stack([p, p]).flatten() # coordinates of the top-left xi, yi = x.astype(int), y.astype(int) # internal coordinates xf, yf = x - xi, y - yi # fade factors u, v = fade(xf), fade(yf) # noise components n00 = gradient(p[p[xi] + yi], xf, yf) n01 = gradient(p[p[xi] + yi + 1], xf, yf - 1) n11 = gradient(p[p[xi + 1] + yi + 1], xf - 1, yf - 1) n10 = gradient(p[p[xi + 1] + yi], xf - 1, yf) # combine noises x1 = lerp(n00, n10, u) x2 = lerp(n01, n11, u) # FIX1: I was using n10 instead of n01 return lerp(x1, x2, v) # FIX2: I also had to reverse x1 and x2 here def lerp(a, b, x): "linear interpolation" return a + x * (b - a) def fade(t): "6t^5 - 15t^4 + 10t^3" return 6 * t**5 - 15 * t**4 + 10 * t**3 def gradient(h, x, y): "grad converts h to the right gradient vector and return the dot product with (x,y)" vectors = np.array([[0, 1], [0, -1], [1, 0], [-1, 0]]) g = vectors[h % 4] return g[:, :, 0] * x + g[:, :, 1] * y lin = np.linspace(0, 5, 100, endpoint=False) x, y = np.meshgrid(lin, lin) def perlinNoise(height, width, octavesx=5, octavesy=5, seed=None): linx = np.linspace(0, octavesx, width, endpoint=False) liny = np.linspace(0, octavesy, height, endpoint=False) x, y = np.meshgrid(linx, liny) return perlin(x, y, seed=seed)