# Web based UI for Stable Diffusion by [sd-webui](https://github.com/sd-webui) ## [Visit sd-webui's Discord Server](https://discord.gg/gyXNe4NySY) [![Discord Server](https://user-images.githubusercontent.com/5977640/190528254-9b5b4423-47ee-4f24-b4f9-fd13fba37518.png)](https://discord.gg/gyXNe4NySY) ## Installation instructions for [Windows](https://sd-webui.github.io/stable-diffusion-webui/docs/1.installation.html), [Linux](https://sd-webui.github.io/stable-diffusion-webui/docs/1.linux-installation.html) ### Want to ask a question or request a feature? Come to our [Discord Server](https://discord.gg/gyXNe4NySY) or use [Discussions](https://github.com/sd-webui/stable-diffusion-webui/discussions). ## Documentation [Documentaion is located here](https://sd-webui.github.io/stable-diffusion-webui/) ## Want to contribute? Check the [Contribution Guide](CONTRIBUTING.md) [sd-webui](https://github.com/sd-webui) is * ![hlky's avatar](https://avatars.githubusercontent.com/u/106811348?s=40&v=4) [hlky](https://github.com/hlky) * ![ZeroCool940711's avatar](https://avatars.githubusercontent.com/u/5977640?s=40&v=4)[ZeroCool940711](https://github.com/ZeroCool940711) * ![codedealer's avatar](https://avatars.githubusercontent.com/u/4258136?s=40&v=4)[codedealer](https://github.com/codedealer) ## Gradio ### Features ### Screenshots ## Streamlit ### Features ### Screenshots -------------- *Stable Diffusion was made possible thanks to a collaboration with [Stability AI](https://stability.ai/) and [Runway](https://runwayml.com/) and builds upon our previous work:* [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://ommer-lab.com/research/latent-diffusion-models/)
[Robin Rombach](https://github.com/rromb)\*, [Andreas Blattmann](https://github.com/ablattmann)\*, [Dominik Lorenz](https://github.com/qp-qp)\, [Patrick Esser](https://github.com/pesser), [Björn Ommer](https://hci.iwr.uni-heidelberg.de/Staff/bommer)
**CVPR '22 Oral** which is available on [GitHub](https://github.com/CompVis/latent-diffusion). PDF at [arXiv](https://arxiv.org/abs/2112.10752). Please also visit our [Project page](https://ommer-lab.com/research/latent-diffusion-models/). [Stable Diffusion](#stable-diffusion-v1) is a latent text-to-image diffusion model. Thanks to a generous compute donation from [Stability AI](https://stability.ai/) and support from [LAION](https://laion.ai/), we were able to train a Latent Diffusion Model on 512x512 images from a subset of the [LAION-5B](https://laion.ai/blog/laion-5b/) database. Similar to Google's [Imagen](https://arxiv.org/abs/2205.11487), this model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts. With its 860M UNet and 123M text encoder, the model is relatively lightweight and runs on a GPU with at least 10GB VRAM. See [this section](#stable-diffusion-v1) below and the [model card](https://huggingface.co/CompVis/stable-diffusion). Stable Diffusion v1 refers to a specific configuration of the model architecture that uses a downsampling-factor 8 autoencoder with an 860M UNet and CLIP ViT-L/14 text encoder for the diffusion model. The model was pretrained on 256x256 images and then finetuned on 512x512 images. *Note: Stable Diffusion v1 is a general text-to-image diffusion model and therefore mirrors biases and (mis-)conceptions that are present in its training data. Details on the training procedure and data, as well as the intended use of the model can be found in the corresponding [model card](https://huggingface.co/CompVis/stable-diffusion). - Our codebase for the diffusion models builds heavily on [OpenAI's ADM codebase](https://github.com/openai/guided-diffusion) and [https://github.com/lucidrains/denoising-diffusion-pytorch](https://github.com/lucidrains/denoising-diffusion-pytorch). Thanks for open-sourcing! - The implementation of the transformer encoder is from [x-transformers](https://github.com/lucidrains/x-transformers) by [lucidrains](https://github.com/lucidrains?tab=repositories). BibTeX ``` @misc{rombach2021highresolution, title={High-Resolution Image Synthesis with Latent Diffusion Models}, author={Robin Rombach and Andreas Blattmann and Dominik Lorenz and Patrick Esser and Björn Ommer}, year={2021}, eprint={2112.10752}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```