import argparse, os, sys, glob, re from frontend.frontend import draw_gradio_ui from frontend.ui_functions import resize_image parser = argparse.ArgumentParser() parser.add_argument("--outdir", type=str, nargs="?", help="dir to write results to", default=None) parser.add_argument("--outdir_txt2img", type=str, nargs="?", help="dir to write txt2img results to (overrides --outdir)", default=None) parser.add_argument("--outdir_img2img", type=str, nargs="?", help="dir to write img2img results to (overrides --outdir)", default=None) parser.add_argument("--save-metadata", action='store_true', help="Whether to embed the generation parameters in the sample images", default=False) parser.add_argument("--skip-grid", action='store_true', help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", default=False) parser.add_argument("--skip-save", action='store_true', help="do not save indiviual samples. For speed measurements.", default=False) parser.add_argument("--grid-format", type=str, help="png for lossless png files; jpg:quality for lossy jpeg; webp:quality for lossy webp, or webp:-compression for lossless webp", default="jpg:95") parser.add_argument("--n_rows", type=int, default=-1, help="rows in the grid; use -1 for autodetect and 0 for n_rows to be same as batch_size (default: -1)",) parser.add_argument("--config", type=str, default="configs/stable-diffusion/v1-inference.yaml", help="path to config which constructs model",) parser.add_argument("--ckpt", type=str, default="models/ldm/stable-diffusion-v1/model.ckpt", help="path to checkpoint of model",) parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast") parser.add_argument("--optimized", action='store_true', help="load the model onto the device piecemeal instead of all at once to reduce VRAM usage at the cost of performance") parser.add_argument("--optimized-turbo", action='store_true', help="alternative optimization mode that does not save as much VRAM but runs siginificantly faster") parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN')) # i disagree with where you're putting it but since all guidefags are doing it this way, there you go parser.add_argument("--realesrgan-dir", type=str, help="RealESRGAN directory", default=('./src/realesrgan' if os.path.exists('./src/realesrgan') else './RealESRGAN')) parser.add_argument("--realesrgan-model", type=str, help="Upscaling model for RealESRGAN", default=('RealESRGAN_x4plus')) parser.add_argument("--no-verify-input", action='store_true', help="do not verify input to check if it's too long", default=False) parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats", default=False) parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware accleration in browser)", default=False) parser.add_argument("--share", action='store_true', help="Should share your server on gradio.app, this allows you to use the UI from your mobile app", default=False) parser.add_argument("--share-password", type=str, help="Sharing is open by default, use this to set a password. Username: webui", default=None) parser.add_argument("--defaults", type=str, help="path to configuration file providing UI defaults, uses same format as cli parameter", default='configs/webui/webui.yaml') parser.add_argument("--gpu", type=int, help="choose which GPU to use if you have multiple", default=int(os.environ.get('CUDA_VISIBLE_DEVICES', 0))) parser.add_argument("--extra-models-cpu", action='store_true', help="run extra models (GFGPAN/ESRGAN) on cpu", default=False) parser.add_argument("--esrgan-cpu", action='store_true', help="run ESRGAN on cpu", default=False) parser.add_argument("--gfpgan-cpu", action='store_true', help="run GFPGAN on cpu", default=False) parser.add_argument("--cli", type=str, help="don't launch web server, take Python function kwargs from this file.", default=None) opt = parser.parse_args() # this should force GFPGAN and RealESRGAN onto the selected gpu as well os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"] = str(opt.gpu) import gradio as gr import k_diffusion as K import math import mimetypes import numpy as np import pynvml import random import threading, asyncio import time import torch import torch.nn as nn import yaml import glob from typing import List, Union from pathlib import Path from contextlib import contextmanager, nullcontext from einops import rearrange, repeat from itertools import islice from omegaconf import OmegaConf from PIL import Image, ImageFont, ImageDraw, ImageFilter, ImageOps from PIL.PngImagePlugin import PngInfo from io import BytesIO import base64 import re from torch import autocast from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.plms import PLMSSampler from ldm.util import instantiate_from_config try: # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. from transformers import logging logging.set_verbosity_error() except: pass # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI mimetypes.init() mimetypes.add_type('application/javascript', '.js') # some of those options should not be changed at all because they would break the model, so I removed them from options. opt_C = 4 opt_f = 8 LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) invalid_filename_chars = '<>:"/\|?*\n' GFPGAN_dir = opt.gfpgan_dir RealESRGAN_dir = opt.realesrgan_dir if opt.optimized_turbo: opt.optimized = True # should probably be moved to a settings menu in the UI at some point grid_format = [s.lower() for s in opt.grid_format.split(':')] grid_lossless = False grid_quality = 100 if grid_format[0] == 'png': grid_ext = 'png' grid_format = 'png' elif grid_format[0] in ['jpg', 'jpeg']: grid_quality = int(grid_format[1]) if len(grid_format) > 1 else 100 grid_ext = 'jpg' grid_format = 'jpeg' elif grid_format[0] == 'webp': grid_quality = int(grid_format[1]) if len(grid_format) > 1 else 100 grid_ext = 'webp' grid_format = 'webp' if grid_quality < 0: # e.g. webp:-100 for lossless mode grid_lossless = True grid_quality = abs(grid_quality) def chunk(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model.cuda() model.eval() return model def load_sd_from_config(ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] return sd def crash(e, s): global model global device print(s, '\n', e) del model del device print('exiting...calling os._exit(0)') t = threading.Timer(0.25, os._exit, args=[0]) t.start() class MemUsageMonitor(threading.Thread): stop_flag = False max_usage = 0 total = -1 def __init__(self, name): threading.Thread.__init__(self) self.name = name def run(self): try: pynvml.nvmlInit() except: print(f"[{self.name}] Unable to initialize NVIDIA management. No memory stats. \n") return print(f"[{self.name}] Recording max memory usage...\n") handle = pynvml.nvmlDeviceGetHandleByIndex(opt.gpu) self.total = pynvml.nvmlDeviceGetMemoryInfo(handle).total while not self.stop_flag: m = pynvml.nvmlDeviceGetMemoryInfo(handle) self.max_usage = max(self.max_usage, m.used) # print(self.max_usage) time.sleep(0.1) print(f"[{self.name}] Stopped recording.\n") pynvml.nvmlShutdown() def read(self): return self.max_usage, self.total def stop(self): self.stop_flag = True def read_and_stop(self): self.stop_flag = True return self.max_usage, self.total class CFGDenoiser(nn.Module): def __init__(self, model): super().__init__() self.inner_model = model def forward(self, x, sigma, uncond, cond, cond_scale): x_in = torch.cat([x] * 2) sigma_in = torch.cat([sigma] * 2) cond_in = torch.cat([uncond, cond]) uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) return uncond + (cond - uncond) * cond_scale class KDiffusionSampler: def __init__(self, m, sampler): self.model = m self.model_wrap = K.external.CompVisDenoiser(m) self.schedule = sampler def get_sampler_name(self): return self.schedule def sample(self, S, conditioning, batch_size, shape, verbose, unconditional_guidance_scale, unconditional_conditioning, eta, x_T): sigmas = self.model_wrap.get_sigmas(S) x = x_T * sigmas[0] model_wrap_cfg = CFGDenoiser(self.model_wrap) samples_ddim = K.sampling.__dict__[f'sample_{self.schedule}'](model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale}, disable=False) return samples_ddim, None def create_random_tensors(shape, seeds): xs = [] for seed in seeds: torch.manual_seed(seed) # randn results depend on device; gpu and cpu get different results for same seed; # the way I see it, it's better to do this on CPU, so that everyone gets same result; # but the original script had it like this so i do not dare change it for now because # it will break everyone's seeds. xs.append(torch.randn(shape, device=device)) x = torch.stack(xs) return x def torch_gc(): torch.cuda.empty_cache() torch.cuda.ipc_collect() def load_GFPGAN(): model_name = 'GFPGANv1.3' model_path = os.path.join(GFPGAN_dir, 'experiments/pretrained_models', model_name + '.pth') if not os.path.isfile(model_path): raise Exception("GFPGAN model not found at path "+model_path) sys.path.append(os.path.abspath(GFPGAN_dir)) from gfpgan import GFPGANer instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None) if opt.gfpgan_cpu or opt.extra_models_cpu: instance.device = torch.device('cpu') else: instance.device = torch.device('cuda') # another way to set gpu device return instance def load_RealESRGAN(model_name: str): from basicsr.archs.rrdbnet_arch import RRDBNet RealESRGAN_models = { 'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4), 'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) } model_path = os.path.join(RealESRGAN_dir, 'experiments/pretrained_models', model_name + '.pth') if not os.path.isfile(model_path): raise Exception(model_name+".pth not found at path "+model_path) sys.path.append(os.path.abspath(RealESRGAN_dir)) from realesrgan import RealESRGANer if opt.esrgan_cpu or opt.extra_models_cpu: instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=False) instance.model.name = model_name instance.device = torch.device('cpu') instance.device = torch.device('cpu') instance.model.to('cpu') else: instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=not opt.no_half) instance.model.name = model_name instance.device = torch.device('cuda') # another way to set gpu device return instance GFPGAN = None if os.path.exists(GFPGAN_dir): try: GFPGAN = load_GFPGAN() print("Loaded GFPGAN") except Exception: import traceback print("Error loading GFPGAN:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) RealESRGAN = None def try_loading_RealESRGAN(model_name: str): global RealESRGAN if os.path.exists(RealESRGAN_dir): try: RealESRGAN = load_RealESRGAN(model_name) # TODO: Should try to load both models before giving up print("Loaded RealESRGAN with model "+RealESRGAN.model.name) except Exception: import traceback print("Error loading RealESRGAN:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) try_loading_RealESRGAN('RealESRGAN_x4plus') if opt.optimized: sd = load_sd_from_config(opt.ckpt) li, lo = [], [] for key, v_ in sd.items(): sp = key.split('.') if(sp[0]) == 'model': if('input_blocks' in sp): li.append(key) elif('middle_block' in sp): li.append(key) elif('time_embed' in sp): li.append(key) else: lo.append(key) for key in li: sd['model1.' + key[6:]] = sd.pop(key) for key in lo: sd['model2.' + key[6:]] = sd.pop(key) config = OmegaConf.load("optimizedSD/v1-inference.yaml") device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model = instantiate_from_config(config.modelUNet) _, _ = model.load_state_dict(sd, strict=False) model.cuda() model.eval() model.turbo = opt.optimized_turbo modelCS = instantiate_from_config(config.modelCondStage) _, _ = modelCS.load_state_dict(sd, strict=False) modelCS.cond_stage_model.device = device modelCS.eval() modelFS = instantiate_from_config(config.modelFirstStage) _, _ = modelFS.load_state_dict(sd, strict=False) modelFS.eval() del sd if not opt.no_half: model = model.half() modelCS = modelCS.half() modelFS = modelFS.half() else: config = OmegaConf.load(opt.config) model = load_model_from_config(config, opt.ckpt) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model = (model if opt.no_half else model.half()).to(device) def load_embeddings(fp): if fp is not None and hasattr(model, "embedding_manager"): model.embedding_manager.load(fp.name) def get_font(fontsize): fonts = ["arial.ttf", "DejaVuSans.ttf"] for font_name in fonts: try: return ImageFont.truetype(font_name, fontsize) except OSError: pass # ImageFont.load_default() is practically unusable as it only supports # latin1, so raise an exception instead if no usable font was found raise Exception(f"No usable font found (tried {', '.join(fonts)})") def image_grid(imgs, batch_size, force_n_rows=None, captions=None): if force_n_rows is not None: rows = force_n_rows elif opt.n_rows > 0: rows = opt.n_rows elif opt.n_rows == 0: rows = batch_size else: rows = math.sqrt(len(imgs)) rows = round(rows) cols = math.ceil(len(imgs) / rows) w, h = imgs[0].size grid = Image.new('RGB', size=(cols * w, rows * h), color='black') fnt = get_font(30) for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) if captions: d = ImageDraw.Draw( grid ) size = d.textbbox( (0,0), captions[i], font=fnt, stroke_width=2, align="center" ) d.multiline_text((i % cols * w + w/2, i // cols * h + h - size[3]), captions[i], font=fnt, fill=(255,255,255), stroke_width=2, stroke_fill=(0,0,0), anchor="mm", align="center") return grid def seed_to_int(s): if type(s) is int: return s if s is None or s == '': return random.randint(0, 2**32 - 1) n = abs(int(s) if s.isdigit() else random.Random(s).randint(0, 2**32 - 1)) while n >= 2**32: n = n >> 32 return n def draw_prompt_matrix(im, width, height, all_prompts): def wrap(text, d, font, line_length): lines = [''] for word in text.split(): line = f'{lines[-1]} {word}'.strip() if d.textlength(line, font=font) <= line_length: lines[-1] = line else: lines.append(word) return '\n'.join(lines) def draw_texts(pos, x, y, texts, sizes): for i, (text, size) in enumerate(zip(texts, sizes)): active = pos & (1 << i) != 0 if not active: text = '\u0336'.join(text) + '\u0336' d.multiline_text((x, y + size[1] / 2), text, font=fnt, fill=color_active if active else color_inactive, anchor="mm", align="center") y += size[1] + line_spacing fontsize = (width + height) // 25 line_spacing = fontsize // 2 fnt = get_font(fontsize) color_active = (0, 0, 0) color_inactive = (153, 153, 153) pad_top = height // 4 pad_left = width * 3 // 4 if len(all_prompts) > 2 else 0 cols = im.width // width rows = im.height // height prompts = all_prompts[1:] result = Image.new("RGB", (im.width + pad_left, im.height + pad_top), "white") result.paste(im, (pad_left, pad_top)) d = ImageDraw.Draw(result) boundary = math.ceil(len(prompts) / 2) prompts_horiz = [wrap(x, d, fnt, width) for x in prompts[:boundary]] prompts_vert = [wrap(x, d, fnt, pad_left) for x in prompts[boundary:]] sizes_hor = [(x[2] - x[0], x[3] - x[1]) for x in [d.multiline_textbbox((0, 0), x, font=fnt) for x in prompts_horiz]] sizes_ver = [(x[2] - x[0], x[3] - x[1]) for x in [d.multiline_textbbox((0, 0), x, font=fnt) for x in prompts_vert]] hor_text_height = sum([x[1] + line_spacing for x in sizes_hor]) - line_spacing ver_text_height = sum([x[1] + line_spacing for x in sizes_ver]) - line_spacing for col in range(cols): x = pad_left + width * col + width / 2 y = pad_top / 2 - hor_text_height / 2 draw_texts(col, x, y, prompts_horiz, sizes_hor) for row in range(rows): x = pad_left / 2 y = pad_top + height * row + height / 2 - ver_text_height / 2 draw_texts(row, x, y, prompts_vert, sizes_ver) return result def check_prompt_length(prompt, comments): """this function tests if prompt is too long, and if so, adds a message to comments""" tokenizer = (model if not opt.optimized else modelCS).cond_stage_model.tokenizer max_length = (model if not opt.optimized else modelCS).cond_stage_model.max_length info = (model if not opt.optimized else modelCS).cond_stage_model.tokenizer([prompt], truncation=True, max_length=max_length, return_overflowing_tokens=True, padding="max_length", return_tensors="pt") ovf = info['overflowing_tokens'][0] overflowing_count = ovf.shape[0] if overflowing_count == 0: return vocab = {v: k for k, v in tokenizer.get_vocab().items()} overflowing_words = [vocab.get(int(x), "") for x in ovf] overflowing_text = tokenizer.convert_tokens_to_string(''.join(overflowing_words)) comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") def save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode): filename_i = os.path.join(sample_path_i, filename) if not jpg_sample: if opt.save_metadata: metadata = PngInfo() metadata.add_text("SD:prompt", prompts[i]) metadata.add_text("SD:seed", str(seeds[i])) metadata.add_text("SD:width", str(width)) metadata.add_text("SD:height", str(height)) metadata.add_text("SD:steps", str(steps)) metadata.add_text("SD:cfg_scale", str(cfg_scale)) metadata.add_text("SD:normalize_prompt_weights", str(normalize_prompt_weights)) if init_img is not None: metadata.add_text("SD:denoising_strength", str(denoising_strength)) metadata.add_text("SD:GFPGAN", str(use_GFPGAN and GFPGAN is not None)) image.save(f"{filename_i}.png", pnginfo=metadata) else: image.save(f"{filename_i}.png") else: image.save(f"{filename_i}.jpg", 'jpeg', quality=100, optimize=True) if write_info_files: # toggles differ for txt2img vs. img2img: offset = 0 if init_img is None else 2 toggles = [] if prompt_matrix: toggles.append(0) if normalize_prompt_weights: toggles.append(1) if init_img is not None: if uses_loopback: toggles.append(2) if uses_random_seed_loopback: toggles.append(3) if not skip_save: toggles.append(2 + offset) if not skip_grid: toggles.append(3 + offset) if sort_samples: toggles.append(4 + offset) if write_info_files: toggles.append(5 + offset) if use_GFPGAN: toggles.append(6 + offset) info_dict = dict( target="txt2img" if init_img is None else "img2img", prompt=prompts[i], ddim_steps=steps, toggles=toggles, sampler_name=sampler_name, ddim_eta=ddim_eta, n_iter=n_iter, batch_size=batch_size, cfg_scale=cfg_scale, seed=seeds[i], width=width, height=height ) if init_img is not None: # Not yet any use for these, but they bloat up the files: #info_dict["init_img"] = init_img #info_dict["init_mask"] = init_mask info_dict["denoising_strength"] = denoising_strength info_dict["resize_mode"] = resize_mode with open(f"{filename_i}.yaml", "w", encoding="utf8") as f: yaml.dump(info_dict, f, allow_unicode=True) def get_next_sequence_number(path, prefix=''): """ Determines and returns the next sequence number to use when saving an image in the specified directory. If a prefix is given, only consider files whose names start with that prefix, and strip the prefix from filenames before extracting their sequence number. The sequence starts at 0. """ result = -1 for p in Path(path).iterdir(): if p.name.endswith(('.png', '.jpg')) and p.name.startswith(prefix): tmp = p.name[len(prefix):] try: result = max(int(tmp.split('-')[0]), result) except ValueError: pass return result + 1 def oxlamon_matrix(prompt, seed, batch_size): pattern = re.compile(r'(,\s){2,}') class PromptItem: def __init__(self, text, parts, item): self.text = text self.parts = parts if item: self.parts.append( item ) def clean(txt): return re.sub(pattern, ', ', txt) def repliter( txt ): for data in re.finditer( ".*?\\((.*?)\\).*", txt ): if data: r = data.span(1) for item in data.group(1).split("|"): yield (clean(txt[:r[0]-1] + item.strip() + txt[r[1]+1:]), item.strip()) break def iterlist( items ): outitems = [] for item in items: for newitem, newpart in repliter(item.text): outitems.append( PromptItem(newitem, item.parts.copy(), newpart) ) return outitems def getmatrix( prompt ): dataitems = [ PromptItem( prompt[1:].strip(), [], None ) ] while True: newdataitems = iterlist( dataitems ) if len( newdataitems ) == 0: return dataitems dataitems = newdataitems def classToArrays( items ): texts = [] parts = [] for item in items: texts.append( item.text ) parts.append( "\n".join(item.parts) ) return texts, parts all_prompts, prompt_matrix_parts = classToArrays(getmatrix( prompt )) n_iter = math.ceil(len(all_prompts) / batch_size) all_seeds = len(all_prompts) * [seed] return all_seeds, n_iter, prompt_matrix_parts, all_prompts, None def process_images( outpath, func_init, func_sample, prompt, seed, sampler_name, skip_grid, skip_save, batch_size, n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, use_RealESRGAN, realesrgan_model_name, fp, ddim_eta=0.0, do_not_save_grid=False, normalize_prompt_weights=True, init_img=None, init_mask=None, keep_mask=False, mask_blur_strength=3, denoising_strength=0.75, resize_mode=None, uses_loopback=False, uses_random_seed_loopback=False, sort_samples=True, write_info_files=True, jpg_sample=False): """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" assert prompt is not None torch_gc() # start time after garbage collection (or before?) start_time = time.time() mem_mon = MemUsageMonitor('MemMon') mem_mon.start() if hasattr(model, "embedding_manager"): load_embeddings(fp) os.makedirs(outpath, exist_ok=True) sample_path = os.path.join(outpath, "samples") os.makedirs(sample_path, exist_ok=True) if not ("|" in prompt) and prompt.startswith("@"): prompt = prompt[1:] comments = [] prompt_matrix_parts = [] if prompt_matrix: if prompt.startswith("@"): all_seeds, n_iter, prompt_matrix_parts, all_prompts, frows = oxlamon_matrix(prompt, seed, batch_size) else: all_prompts = [] prompt_matrix_parts = prompt.split("|") combination_count = 2 ** (len(prompt_matrix_parts) - 1) for combination_num in range(combination_count): current = prompt_matrix_parts[0] for n, text in enumerate(prompt_matrix_parts[1:]): if combination_num & (2 ** n) > 0: current += ("" if text.strip().startswith(",") else ", ") + text all_prompts.append(current) n_iter = math.ceil(len(all_prompts) / batch_size) all_seeds = len(all_prompts) * [seed] print(f"Prompt matrix will create {len(all_prompts)} images using a total of {n_iter} batches.") else: if not opt.no_verify_input: try: check_prompt_length(prompt, comments) except: import traceback print("Error verifying input:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) all_prompts = batch_size * n_iter * [prompt] all_seeds = [seed + x for x in range(len(all_prompts))] precision_scope = autocast if opt.precision == "autocast" else nullcontext output_images = [] stats = [] with torch.no_grad(), precision_scope("cuda"), (model.ema_scope() if not opt.optimized else nullcontext()): init_data = func_init() tic = time.time() for n in range(n_iter): print(f"Iteration: {n+1}/{n_iter}") prompts = all_prompts[n * batch_size:(n + 1) * batch_size] seeds = all_seeds[n * batch_size:(n + 1) * batch_size] if opt.optimized: modelCS.to(device) uc = (model if not opt.optimized else modelCS).get_learned_conditioning(len(prompts) * [""]) if isinstance(prompts, tuple): prompts = list(prompts) # split the prompt if it has : for weighting # TODO for speed it might help to have this occur when all_prompts filled?? subprompts,weights = split_weighted_subprompts(prompts[0]) # get total weight for normalizing, this gets weird if large negative values used totalPromptWeight = sum(weights) # sub-prompt weighting used if more than 1 if len(subprompts) > 1: c = torch.zeros_like(uc) # i dont know if this is correct.. but it works for i in range(0,len(subprompts)): # normalize each prompt and add it weight = weights[i] if normalize_prompt_weights: weight = weight / totalPromptWeight #print(f"{subprompts[i]} {weight*100.0}%") # note if alpha negative, it functions same as torch.sub c = torch.add(c, (model if not opt.optimized else modelCS).get_learned_conditioning(subprompts[i]), alpha=weight) else: # just behave like usual c = (model if not opt.optimized else modelCS).get_learned_conditioning(prompts) shape = [opt_C, height // opt_f, width // opt_f] if opt.optimized: mem = torch.cuda.memory_allocated()/1e6 modelCS.to("cpu") while(torch.cuda.memory_allocated()/1e6 >= mem): time.sleep(1) # we manually generate all input noises because each one should have a specific seed x = create_random_tensors([opt_C, height // opt_f, width // opt_f], seeds=seeds) samples_ddim = func_sample(init_data=init_data, x=x, conditioning=c, unconditional_conditioning=uc, sampler_name=sampler_name) if opt.optimized: modelFS.to(device) x_samples_ddim = (model if not opt.optimized else modelFS).decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) for i, x_sample in enumerate(x_samples_ddim): sanitized_prompt = prompts[i].replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars}) if sort_samples: sanitized_prompt = sanitized_prompt[:128] #200 is too long sample_path_i = os.path.join(sample_path, sanitized_prompt) os.makedirs(sample_path_i, exist_ok=True) base_count = get_next_sequence_number(sample_path_i) filename = f"{base_count:05}-{steps}_{sampler_name}_{seeds[i]}" else: sample_path_i = sample_path base_count = get_next_sequence_number(sample_path_i) sanitized_prompt = sanitized_prompt filename = f"{base_count:05}-{steps}_{sampler_name}_{seeds[i]}_{sanitized_prompt}"[:128] #same as before x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') x_sample = x_sample.astype(np.uint8) original_sample = x_sample original_filename = filename if use_GFPGAN and GFPGAN is not None and not use_RealESRGAN: torch_gc() cropped_faces, restored_faces, restored_img = GFPGAN.enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True) gfpgan_sample = restored_img[:,:,::-1] image = Image.fromarray(gfpgan_sample) gfpgan_filename = original_filename + '-gfpgan' save_sample(image, sample_path_i, gfpgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode) x_sample = original_sample if use_RealESRGAN and RealESRGAN is not None and not use_GFPGAN: torch_gc() if RealESRGAN.model.name != realesrgan_model_name: try_loading_RealESRGAN(realesrgan_model_name) output, img_mode = RealESRGAN.enhance(x_sample[:,:,::-1]) esrgan_filename = original_filename + '-esrgan4x' esrgan_sample = output[:,:,::-1] image = Image.fromarray(esrgan_sample) save_sample(image, sample_path_i, esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode) x_sample = original_sample if use_RealESRGAN and RealESRGAN is not None and use_GFPGAN and GFPGAN is not None: torch_gc() cropped_faces, restored_faces, restored_img = GFPGAN.enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True) gfpgan_sample = restored_img[:,:,::-1] if RealESRGAN.model.name != realesrgan_model_name: try_loading_RealESRGAN(realesrgan_model_name) output, img_mode = RealESRGAN.enhance(gfpgan_sample[:,:,::-1]) esrgan_filename = original_filename + '-gfpgan-esrgan4x' esrgan_sample = output[:,:,::-1] image = Image.fromarray(esrgan_sample) save_sample(image, sample_path_i, esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode) x_sample = original_sample image = Image.fromarray(x_sample) if init_mask: #init_mask = init_mask if keep_mask else ImageOps.invert(init_mask) init_mask = init_mask.filter(ImageFilter.GaussianBlur(mask_blur_strength)) init_mask = init_mask.convert('L') init_img = init_img.convert('RGB') image = image.convert('RGB') if use_RealESRGAN and RealESRGAN is not None: if RealESRGAN.model.name != realesrgan_model_name: try_loading_RealESRGAN(realesrgan_model_name) output, img_mode = RealESRGAN.enhance(np.array(init_img, dtype=np.uint8)) init_img = Image.fromarray(output) init_img = init_img.convert('RGB') output, img_mode = RealESRGAN.enhance(np.array(init_mask, dtype=np.uint8)) init_mask = Image.fromarray(output) init_mask = init_mask.convert('L') image = Image.composite(init_img, image, init_mask) if not skip_save: save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode) output_images.append(image) if (prompt_matrix or not skip_grid) and not do_not_save_grid: if prompt_matrix: if prompt.startswith("@"): grid = image_grid(output_images, batch_size, force_n_rows=frows, captions=prompt_matrix_parts) else: grid = image_grid(output_images, batch_size, force_n_rows=1 << ((len(prompt_matrix_parts)-1)//2)) try: grid = draw_prompt_matrix(grid, width, height, prompt_matrix_parts) except: import traceback print("Error creating prompt_matrix text:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) else: grid = image_grid(output_images, batch_size) if grid and (batch_size > 1 or n_iter > 1): output_images.insert(0, grid) grid_count = get_next_sequence_number(outpath, 'grid-') grid_file = f"grid-{grid_count:05}-{seed}_{prompts[i].replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]}.{grid_ext}" grid.save(os.path.join(outpath, grid_file), grid_format, quality=grid_quality, lossless=grid_lossless, optimize=True) if opt.optimized: mem = torch.cuda.memory_allocated()/1e6 modelFS.to("cpu") while(torch.cuda.memory_allocated()/1e6 >= mem): time.sleep(1) toc = time.time() mem_max_used, mem_total = mem_mon.read_and_stop() time_diff = time.time()-start_time info = f""" {prompt} Steps: {steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', Denoising strength: '+str(denoising_strength) if init_img is not None else ''}{', GFPGAN' if use_GFPGAN and GFPGAN is not None else ''}{', '+realesrgan_model_name if use_RealESRGAN and RealESRGAN is not None else ''}{', Prompt Matrix Mode.' if prompt_matrix else ''}""".strip() stats = f''' Took { round(time_diff, 2) }s total ({ round(time_diff/(len(all_prompts)),2) }s per image) Peak memory usage: { -(mem_max_used // -1_048_576) } MiB / { -(mem_total // -1_048_576) } MiB / { round(mem_max_used/mem_total*100, 3) }%''' for comment in comments: info += "\n\n" + comment #mem_mon.stop() #del mem_mon torch_gc() return output_images, seed, info, stats def txt2img(prompt: str, ddim_steps: int, sampler_name: str, toggles: List[int], realesrgan_model_name: str, ddim_eta: float, n_iter: int, batch_size: int, cfg_scale: float, seed: Union[int, str, None], height: int, width: int, fp): outpath = opt.outdir_txt2img or opt.outdir or "outputs/txt2img-samples" err = False seed = seed_to_int(seed) prompt_matrix = 0 in toggles normalize_prompt_weights = 1 in toggles skip_save = 2 not in toggles skip_grid = 3 not in toggles sort_samples = 4 in toggles write_info_files = 5 in toggles jpg_sample = 6 in toggles use_GFPGAN = 7 in toggles use_RealESRGAN = 8 in toggles if sampler_name == 'PLMS': sampler = PLMSSampler(model) elif sampler_name == 'DDIM': sampler = DDIMSampler(model) elif sampler_name == 'k_dpm_2_a': sampler = KDiffusionSampler(model,'dpm_2_ancestral') elif sampler_name == 'k_dpm_2': sampler = KDiffusionSampler(model,'dpm_2') elif sampler_name == 'k_euler_a': sampler = KDiffusionSampler(model,'euler_ancestral') elif sampler_name == 'k_euler': sampler = KDiffusionSampler(model,'euler') elif sampler_name == 'k_heun': sampler = KDiffusionSampler(model,'heun') elif sampler_name == 'k_lms': sampler = KDiffusionSampler(model,'lms') else: raise Exception("Unknown sampler: " + sampler_name) def init(): pass def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name): samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=unconditional_conditioning, eta=ddim_eta, x_T=x) return samples_ddim try: output_images, seed, info, stats = process_images( outpath=outpath, func_init=init, func_sample=sample, prompt=prompt, seed=seed, sampler_name=sampler_name, skip_save=skip_save, skip_grid=skip_grid, batch_size=batch_size, n_iter=n_iter, steps=ddim_steps, cfg_scale=cfg_scale, width=width, height=height, prompt_matrix=prompt_matrix, use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, realesrgan_model_name=realesrgan_model_name, fp=fp, ddim_eta=ddim_eta, normalize_prompt_weights=normalize_prompt_weights, sort_samples=sort_samples, write_info_files=write_info_files, jpg_sample=jpg_sample, ) del sampler return output_images, seed, info, stats except RuntimeError as e: err = e err_msg = f'CRASHED:


Please wait while the program restarts.' stats = err_msg return [], seed, 'err', stats finally: if err: crash(err, '!!Runtime error (txt2img)!!') class Flagging(gr.FlaggingCallback): def setup(self, components, flagging_dir: str): pass def flag(self, flag_data, flag_option=None, flag_index=None, username=None): import csv os.makedirs("log/images", exist_ok=True) # those must match the "txt2img" function !! + images, seed, comment, stats !! NOTE: changes to UI output must be reflected here too prompt, ddim_steps, sampler_name, toggles, ddim_eta, n_iter, batch_size, cfg_scale, seed, height, width, fp, images, seed, comment, stats = flag_data filenames = [] with open("log/log.csv", "a", encoding="utf8", newline='') as file: import time import base64 at_start = file.tell() == 0 writer = csv.writer(file) if at_start: writer.writerow(["sep=,"]) writer.writerow(["prompt", "seed", "width", "height", "sampler", "toggles", "n_iter", "n_samples", "cfg_scale", "steps", "filename"]) filename_base = str(int(time.time() * 1000)) for i, filedata in enumerate(images): filename = "log/images/"+filename_base + ("" if len(images) == 1 else "-"+str(i+1)) + ".png" if filedata.startswith("data:image/png;base64,"): filedata = filedata[len("data:image/png;base64,"):] with open(filename, "wb") as imgfile: imgfile.write(base64.decodebytes(filedata.encode('utf-8'))) filenames.append(filename) writer.writerow([prompt, seed, width, height, sampler_name, toggles, n_iter, batch_size, cfg_scale, ddim_steps, filenames[0]]) print("Logged:", filenames[0]) def img2img(prompt: str, image_editor_mode: str, init_info, mask_mode: str, mask_blur_strength: int, ddim_steps: int, sampler_name: str, toggles: List[int], realesrgan_model_name: str, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int, resize_mode: int, fp): outpath = opt.outdir_img2img or opt.outdir or "outputs/img2img-samples" err = False seed = seed_to_int(seed) prompt_matrix = 0 in toggles normalize_prompt_weights = 1 in toggles loopback = 2 in toggles random_seed_loopback = 3 in toggles skip_save = 4 not in toggles skip_grid = 5 not in toggles sort_samples = 6 in toggles write_info_files = 7 in toggles jpg_sample = 8 in toggles use_GFPGAN = 9 in toggles use_RealESRGAN = 10 in toggles if sampler_name == 'DDIM': sampler = DDIMSampler(model) elif sampler_name == 'k_dpm_2_a': sampler = KDiffusionSampler(model,'dpm_2_ancestral') elif sampler_name == 'k_dpm_2': sampler = KDiffusionSampler(model,'dpm_2') elif sampler_name == 'k_euler_a': sampler = KDiffusionSampler(model,'euler_ancestral') elif sampler_name == 'k_euler': sampler = KDiffusionSampler(model,'euler') elif sampler_name == 'k_heun': sampler = KDiffusionSampler(model,'heun') elif sampler_name == 'k_lms': sampler = KDiffusionSampler(model,'lms') else: raise Exception("Unknown sampler: " + sampler_name) if image_editor_mode == 'Mask': init_img = init_info["image"] init_img = init_img.convert("RGB") init_img = resize_image(resize_mode, init_img, width, height) init_mask = init_info["mask"] init_mask = init_mask.convert("RGB") init_mask = resize_image(resize_mode, init_mask, width, height) keep_mask = mask_mode == 0 init_mask = init_mask if keep_mask else ImageOps.invert(init_mask) else: init_img = init_info init_mask = None keep_mask = False assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' t_enc = int(denoising_strength * ddim_steps) def init(): image = init_img.convert("RGB") image = resize_image(resize_mode, image, width, height) image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) if opt.optimized: modelFS.to(device) init_image = 2. * image - 1. init_image = init_image.to(device) init_image = repeat(init_image, '1 ... -> b ...', b=batch_size) init_latent = (model if not opt.optimized else modelFS).get_first_stage_encoding((model if not opt.optimized else modelFS).encode_first_stage(init_image)) # move to latent space if opt.optimized: mem = torch.cuda.memory_allocated()/1e6 modelFS.to("cpu") while(torch.cuda.memory_allocated()/1e6 >= mem): time.sleep(1) return init_latent, def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name): if sampler_name != 'DDIM': x0, = init_data sigmas = sampler.model_wrap.get_sigmas(ddim_steps) noise = x * sigmas[ddim_steps - t_enc - 1] xi = x0 + noise sigma_sched = sigmas[ddim_steps - t_enc - 1:] model_wrap_cfg = CFGDenoiser(sampler.model_wrap) samples_ddim = K.sampling.__dict__[f'sample_{sampler.get_sampler_name()}'](model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': cfg_scale}, disable=False) else: x0, = init_data sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=0.0, verbose=False) z_enc = sampler.stochastic_encode(x0, torch.tensor([t_enc]*batch_size).to(device)) # decode it samples_ddim = sampler.decode(z_enc, conditioning, t_enc, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=unconditional_conditioning,) return samples_ddim try: if loopback: output_images, info = None, None history = [] initial_seed = None for i in range(n_iter): output_images, seed, info, stats = process_images( outpath=outpath, func_init=init, func_sample=sample, prompt=prompt, seed=seed, sampler_name=sampler_name, skip_save=skip_save, skip_grid=skip_grid, batch_size=1, n_iter=1, steps=ddim_steps, cfg_scale=cfg_scale, width=width, height=height, prompt_matrix=prompt_matrix, use_GFPGAN=use_GFPGAN, use_RealESRGAN=False, # Forcefully disable upscaling when using loopback realesrgan_model_name=realesrgan_model_name, fp=fp, do_not_save_grid=True, normalize_prompt_weights=normalize_prompt_weights, init_img=init_img, init_mask=init_mask, keep_mask=keep_mask, mask_blur_strength=mask_blur_strength, denoising_strength=denoising_strength, resize_mode=resize_mode, uses_loopback=loopback, uses_random_seed_loopback=random_seed_loopback, sort_samples=sort_samples, write_info_files=write_info_files, jpg_sample=jpg_sample, ) if initial_seed is None: initial_seed = seed init_img = output_images[0] if not random_seed_loopback: seed = seed + 1 else: seed = seed_to_int(None) denoising_strength = max(denoising_strength * 0.95, 0.1) history.append(init_img) if not skip_grid: grid_count = get_next_sequence_number(outpath, 'grid-') grid = image_grid(history, batch_size, force_n_rows=1) grid_file = f"grid-{grid_count:05}-{seed}_{prompt.replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]}.{grid_ext}" grid.save(os.path.join(outpath, grid_file), grid_format, quality=grid_quality, lossless=grid_lossless, optimize=True) output_images = history seed = initial_seed else: output_images, seed, info, stats = process_images( outpath=outpath, func_init=init, func_sample=sample, prompt=prompt, seed=seed, sampler_name=sampler_name, skip_save=skip_save, skip_grid=skip_grid, batch_size=batch_size, n_iter=n_iter, steps=ddim_steps, cfg_scale=cfg_scale, width=width, height=height, prompt_matrix=prompt_matrix, use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, realesrgan_model_name=realesrgan_model_name, fp=fp, normalize_prompt_weights=normalize_prompt_weights, init_img=init_img, init_mask=init_mask, keep_mask=keep_mask, mask_blur_strength=mask_blur_strength, denoising_strength=denoising_strength, resize_mode=resize_mode, uses_loopback=loopback, sort_samples=sort_samples, write_info_files=write_info_files, jpg_sample=jpg_sample, ) del sampler return output_images, seed, info, stats except RuntimeError as e: err = e err_msg = f'CRASHED:


Please wait while the program restarts.' stats = err_msg return [], seed, 'err', stats finally: if err: crash(err, '!!Runtime error (img2img)!!') # grabs all text up to the first occurrence of ':' as sub-prompt # takes the value following ':' as weight # if ':' has no value defined, defaults to 1.0 # repeats until no text remaining # TODO this could probably be done with less code def split_weighted_subprompts(text): print(text) remaining = len(text) prompts = [] weights = [] while remaining > 0: if ":" in text: idx = text.index(":") # first occurrence from start # grab up to index as sub-prompt prompt = text[:idx] remaining -= idx # remove from main text text = text[idx+1:] # find value for weight, assume it is followed by a space or comma idx = len(text) # default is read to end of text if " " in text: idx = min(idx,text.index(" ")) # want the closer idx if "," in text: idx = min(idx,text.index(",")) # want the closer idx if idx != 0: try: weight = float(text[:idx]) except: # couldn't treat as float print(f"Warning: '{text[:idx]}' is not a value, are you missing a space or comma after a value?") weight = 1.0 else: # no value found weight = 1.0 # remove from main text remaining -= idx text = text[idx+1:] # append the sub-prompt and its weight prompts.append(prompt) weights.append(weight) else: # no : found if len(text) > 0: # there is still text though # take remainder as weight 1 prompts.append(text) weights.append(1.0) remaining = 0 return prompts, weights def run_GFPGAN(image, strength): image = image.convert("RGB") cropped_faces, restored_faces, restored_img = GFPGAN.enhance(np.array(image, dtype=np.uint8), has_aligned=False, only_center_face=False, paste_back=True) res = Image.fromarray(restored_img) if strength < 1.0: res = Image.blend(image, res, strength) return res def run_RealESRGAN(image, model_name: str): if RealESRGAN.model.name != model_name: try_loading_RealESRGAN(model_name) image = image.convert("RGB") output, img_mode = RealESRGAN.enhance(np.array(image, dtype=np.uint8)) res = Image.fromarray(output) return res if opt.defaults is not None and os.path.isfile(opt.defaults): try: with open(opt.defaults, "r", encoding="utf8") as f: user_defaults = yaml.safe_load(f) except (OSError, yaml.YAMLError) as e: print(f"Error loading defaults file {opt.defaults}:", e, file=sys.stderr) print("Falling back to program defaults.", file=sys.stderr) user_defaults = {} else: user_defaults = {} # make sure these indicies line up at the top of txt2img() txt2img_toggles = [ 'Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', 'Normalize Prompt Weights (ensure sum of weights add up to 1.0)', 'Save individual images', 'Save grid', 'Sort samples by prompt', 'Write sample info files', 'jpg samples', ] if GFPGAN is not None: txt2img_toggles.append('Fix faces using GFPGAN') if RealESRGAN is not None: txt2img_toggles.append('Upscale images using RealESRGAN') txt2img_defaults = { 'prompt': '', 'ddim_steps': 50, 'toggles': [1, 2, 3], 'sampler_name': 'k_lms', 'ddim_eta': 0.0, 'n_iter': 1, 'batch_size': 1, 'cfg_scale': 7.5, 'seed': '', 'height': 512, 'width': 512, 'fp': None, 'submit_on_enter': 'Yes' } if 'txt2img' in user_defaults: txt2img_defaults.update(user_defaults['txt2img']) txt2img_toggle_defaults = [txt2img_toggles[i] for i in txt2img_defaults['toggles']] sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg" sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None # make sure these indicies line up at the top of img2img() img2img_toggles = [ 'Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', 'Normalize Prompt Weights (ensure sum of weights add up to 1.0)', 'Loopback (use images from previous batch when creating next batch)', 'Random loopback seed', 'Save individual images', 'Save grid', 'Sort samples by prompt', 'Write sample info files', 'jpg samples', ] if GFPGAN is not None: img2img_toggles.append('Fix faces using GFPGAN') if RealESRGAN is not None: img2img_toggles.append('Upscale images using RealESRGAN') img2img_mask_modes = [ "Keep masked area", "Regenerate only masked area", ] img2img_resize_modes = [ "Just resize", "Crop and resize", "Resize and fill", ] img2img_defaults = { 'prompt': '', 'ddim_steps': 50, 'toggles': [1, 4, 5], 'sampler_name': 'k_lms', 'ddim_eta': 0.0, 'n_iter': 1, 'batch_size': 1, 'cfg_scale': 5.0, 'denoising_strength': 0.75, 'mask_mode': 0, 'resize_mode': 0, 'seed': '', 'height': 512, 'width': 512, 'fp': None, } if 'img2img' in user_defaults: img2img_defaults.update(user_defaults['img2img']) img2img_toggle_defaults = [img2img_toggles[i] for i in img2img_defaults['toggles']] img2img_image_mode = 'sketch' def change_image_editor_mode(choice, cropped_image, resize_mode, width, height): if choice == "Mask": return [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)] return [gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)] def update_image_mask(cropped_image, resize_mode, width, height): resized_cropped_image = resize_image(resize_mode, cropped_image, width, height) if cropped_image else None return gr.update(value=resized_cropped_image) def copy_img_to_input(img): try: image_data = re.sub('^data:image/.+;base64,', '', img) processed_image = Image.open(BytesIO(base64.b64decode(image_data))) tab_update = gr.update(selected='img2img_tab') img_update = gr.update(value=processed_image) return {img2img_image_mask: processed_image, img2img_image_editor: img_update, tabs: tab_update} except IndexError: return [None, None] def copy_img_to_upscale_esrgan(img): update = gr.update(selected='realesrgan_tab') image_data = re.sub('^data:image/.+;base64,', '', img) processed_image = Image.open(BytesIO(base64.b64decode(image_data))) return {realesrgan_source: processed_image, tabs: update} help_text = """ ## Mask/Crop * The masking/cropping is very temperamental. * It may take some time for the image to show when switching from Crop to Mask. * If the image doesn't appear after switching to Mask, switch back to Crop and then back again to Mask * If the mask appears distorted (the brush is weirdly shaped instead of round), switch back to Crop and then back again to Mask. ## Advanced Editor * For now the button needs to be clicked twice the first time. * Once you have edited your image, you _need_ to click the save button for the next step to work. * Clear the image from the crop editor (click the x) * Click "Get Image from Advanced Editor" to get the image you saved. If it doesn't work, try opening the editor and saving again. If it keeps not working, try switching modes again, switch tabs, clear the image or reload. """ def show_help(): return [gr.update(visible=False), gr.update(visible=True), gr.update(value=help_text)] def hide_help(): return [gr.update(visible=True), gr.update(visible=False), gr.update(value="")] demo = draw_gradio_ui(opt, user_defaults=user_defaults, txt2img=txt2img, img2img=img2img, txt2img_defaults=txt2img_defaults, txt2img_toggles=txt2img_toggles, txt2img_toggle_defaults=txt2img_toggle_defaults, show_embeddings=hasattr(model, "embedding_manager"), img2img_defaults=img2img_defaults, img2img_toggles=img2img_toggles, img2img_toggle_defaults=img2img_toggle_defaults, img2img_mask_modes=img2img_mask_modes, img2img_resize_modes=img2img_resize_modes, sample_img2img=sample_img2img, RealESRGAN=RealESRGAN, GFPGAN=GFPGAN, run_GFPGAN=run_GFPGAN, run_RealESRGAN=run_RealESRGAN ) class ServerLauncher(threading.Thread): def __init__(self, demo): threading.Thread.__init__(self) self.name = 'Gradio Server Thread' self.demo = demo def run(self): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) gradio_params = { 'show_error': True, 'server_name': '0.0.0.0', 'share': opt.share } if not opt.share: demo.queue(concurrency_count=1) if opt.share and opt.share_password: gradio_params['auth'] = ('webui', opt.share_password) self.demo.launch(**gradio_params) def stop(self): self.demo.close() # this tends to hang def launch_server(): server_thread = ServerLauncher(demo) server_thread.start() try: while server_thread.is_alive(): time.sleep(60) except (KeyboardInterrupt, OSError) as e: crash(e, 'Shutting down...') def run_headless(): with open(opt.cli, 'r', encoding='utf8') as f: kwargs = yaml.safe_load(f) target = kwargs.pop('target') if target == 'txt2img': target_func = txt2img elif target == 'img2img': target_func = img2img raise NotImplementedError() else: raise ValueError(f'Unknown target: {target}') prompts = kwargs.pop("prompt") prompts = prompts if type(prompts) is list else [prompts] for i, prompt_i in enumerate(prompts): print(f"===== Prompt {i+1}/{len(prompts)}: {prompt_i} =====") output_images, seed, info, stats = target_func(prompt=prompt_i, **kwargs) print(f'Seed: {seed}') print(info) print(stats) print() if __name__ == '__main__': if opt.cli is None: launch_server() else: run_headless()