""" * Copyright (c) 2022, salesforce.com, inc. * All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause * By Junnan Li """ import warnings warnings.filterwarnings("ignore") from .vit import VisionTransformer, interpolate_pos_embed from .med import BertConfig, BertModel, BertLMHeadModel from transformers import BertTokenizer import torch from torch import nn # import torch.nn.functional as F import os from urllib.parse import urlparse from timm.models.hub import download_cached_file class BLIP_Base(nn.Module): def __init__( self, med_config="configs/blip/med_config.json", image_size=224, vit="base", vit_grad_ckpt=False, vit_ckpt_layer=0, ): """ Args: med_config (str): path for the mixture of encoder-decoder model's configuration file image_size (int): input image size vit (str): model size of vision transformer """ super().__init__() self.visual_encoder, vision_width = create_vit( vit, image_size, vit_grad_ckpt, vit_ckpt_layer ) self.tokenizer = init_tokenizer() med_config = BertConfig.from_json_file(med_config) med_config.encoder_width = vision_width self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) def forward(self, image, caption, mode): assert mode in [ "image", "text", "multimodal", ], "mode parameter must be image, text, or multimodal" text = self.tokenizer(caption, return_tensors="pt").to(image.device) if mode == "image": # return image features image_embeds = self.visual_encoder(image) return image_embeds elif mode == "text": # return text features text_output = self.text_encoder( text.input_ids, attention_mask=text.attention_mask, return_dict=True, mode="text", ) return text_output.last_hidden_state elif mode == "multimodal": # return multimodel features image_embeds = self.visual_encoder(image) image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( image.device ) text.input_ids[:, 0] = self.tokenizer.enc_token_id output = self.text_encoder( text.input_ids, attention_mask=text.attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, ) return output.last_hidden_state class BLIP_Decoder(nn.Module): def __init__( self, med_config="configs/blip/med_config.json", image_size=384, vit="base", vit_grad_ckpt=False, vit_ckpt_layer=0, prompt="a picture of ", ): """ Args: med_config (str): path for the mixture of encoder-decoder model's configuration file image_size (int): input image size vit (str): model size of vision transformer """ super().__init__() self.visual_encoder, vision_width = create_vit( vit, image_size, vit_grad_ckpt, vit_ckpt_layer ) self.tokenizer = init_tokenizer() med_config = BertConfig.from_json_file(med_config) med_config.encoder_width = vision_width self.text_decoder = BertLMHeadModel(config=med_config) self.prompt = prompt self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1 def forward(self, image, caption): image_embeds = self.visual_encoder(image) image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( image.device ) text = self.tokenizer( caption, padding="longest", truncation=True, max_length=40, return_tensors="pt", ).to(image.device) text.input_ids[:, 0] = self.tokenizer.bos_token_id decoder_targets = text.input_ids.masked_fill( text.input_ids == self.tokenizer.pad_token_id, -100 ) decoder_targets[:, : self.prompt_length] = -100 decoder_output = self.text_decoder( text.input_ids, attention_mask=text.attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, labels=decoder_targets, return_dict=True, ) loss_lm = decoder_output.loss return loss_lm def generate( self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0, ): image_embeds = self.visual_encoder(image) if not sample: image_embeds = image_embeds.repeat_interleave(num_beams, dim=0) image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( image.device ) model_kwargs = { "encoder_hidden_states": image_embeds, "encoder_attention_mask": image_atts, } prompt = [self.prompt] * image.size(0) input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to( image.device ) input_ids[:, 0] = self.tokenizer.bos_token_id input_ids = input_ids[:, :-1] if sample: # nucleus sampling outputs = self.text_decoder.generate( input_ids=input_ids, max_length=max_length, min_length=min_length, do_sample=True, top_p=top_p, num_return_sequences=1, eos_token_id=self.tokenizer.sep_token_id, pad_token_id=self.tokenizer.pad_token_id, repetition_penalty=1.1, **model_kwargs ) else: # beam search outputs = self.text_decoder.generate( input_ids=input_ids, max_length=max_length, min_length=min_length, num_beams=num_beams, eos_token_id=self.tokenizer.sep_token_id, pad_token_id=self.tokenizer.pad_token_id, repetition_penalty=repetition_penalty, **model_kwargs ) captions = [] for output in outputs: caption = self.tokenizer.decode(output, skip_special_tokens=True) captions.append(caption[len(self.prompt) :]) return captions def blip_decoder(pretrained="", **kwargs): model = BLIP_Decoder(**kwargs) if pretrained: model, msg = load_checkpoint(model, pretrained) assert len(msg.missing_keys) == 0 return model def blip_feature_extractor(pretrained="", **kwargs): model = BLIP_Base(**kwargs) if pretrained: model, msg = load_checkpoint(model, pretrained) assert len(msg.missing_keys) == 0 return model def init_tokenizer(): tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") tokenizer.add_special_tokens({"bos_token": "[DEC]"}) tokenizer.add_special_tokens({"additional_special_tokens": ["[ENC]"]}) tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0] return tokenizer def create_vit( vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0 ): assert vit in ["base", "large"], "vit parameter must be base or large" if vit == "base": vision_width = 768 visual_encoder = VisionTransformer( img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, drop_path_rate=0 or drop_path_rate, ) elif vit == "large": vision_width = 1024 visual_encoder = VisionTransformer( img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, drop_path_rate=0.1 or drop_path_rate, ) return visual_encoder, vision_width def is_url(url_or_filename): parsed = urlparse(url_or_filename) return parsed.scheme in ("http", "https") def load_checkpoint(model, url_or_filename): if is_url(url_or_filename): cached_file = download_cached_file( url_or_filename, check_hash=False, progress=True ) checkpoint = torch.load(cached_file, map_location="cpu") elif os.path.isfile(url_or_filename): checkpoint = torch.load(url_or_filename, map_location="cpu") else: raise RuntimeError("checkpoint url or path is invalid") state_dict = checkpoint["model"] state_dict["visual_encoder.pos_embed"] = interpolate_pos_embed( state_dict["visual_encoder.pos_embed"], model.visual_encoder ) if "visual_encoder_m.pos_embed" in model.state_dict().keys(): state_dict["visual_encoder_m.pos_embed"] = interpolate_pos_embed( state_dict["visual_encoder_m.pos_embed"], model.visual_encoder_m ) for key in model.state_dict().keys(): if key in state_dict.keys(): if state_dict[key].shape != model.state_dict()[key].shape: del state_dict[key] msg = model.load_state_dict(state_dict, strict=False) print("load checkpoint from %s" % url_or_filename) return model, msg