import argparse, os, sys, glob, re import cv2 from perlin import perlinNoise from frontend.frontend import draw_gradio_ui from frontend.job_manager import JobManager, JobInfo from frontend.image_metadata import ImageMetadata from frontend.ui_functions import resize_image parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--ckpt", type=str, default="models/ldm/stable-diffusion-v1/model.ckpt", help="path to checkpoint of model",) parser.add_argument("--cli", type=str, help="don't launch web server, take Python function kwargs from this file.", default=None) parser.add_argument("--config", type=str, default="configs/stable-diffusion/v1-inference.yaml", help="path to config which constructs model",) parser.add_argument("--defaults", type=str, help="path to configuration file providing UI defaults, uses same format as cli parameter", default='configs/webui/webui.yaml') parser.add_argument("--esrgan-cpu", action='store_true', help="run ESRGAN on cpu", default=False) parser.add_argument("--esrgan-gpu", type=int, help="run ESRGAN on specific gpu (overrides --gpu)", default=0) parser.add_argument("--extra-models-cpu", action='store_true', help="run extra models (GFGPAN/ESRGAN) on cpu", default=False) parser.add_argument("--extra-models-gpu", action='store_true', help="run extra models (GFGPAN/ESRGAN) on gpu", default=False) parser.add_argument("--gfpgan-cpu", action='store_true', help="run GFPGAN on cpu", default=False) parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN')) # i disagree with where you're putting it but since all guidefags are doing it this way, there you go parser.add_argument("--gfpgan-gpu", type=int, help="run GFPGAN on specific gpu (overrides --gpu) ", default=0) parser.add_argument("--gpu", type=int, help="choose which GPU to use if you have multiple", default=0) parser.add_argument("--grid-format", type=str, help="png for lossless png files; jpg:quality for lossy jpeg; webp:quality for lossy webp, or webp:-compression for lossless webp", default="jpg:95") parser.add_argument("--inbrowser", action='store_true', help="automatically launch the interface in a new tab on the default browser", default=False) parser.add_argument("--ldsr-dir", type=str, help="LDSR directory", default=('./src/latent-diffusion' if os.path.exists('./src/latent-diffusion') else './LDSR')) parser.add_argument("--n_rows", type=int, default=-1, help="rows in the grid; use -1 for autodetect and 0 for n_rows to be same as batch_size (default: -1)",) parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats", default=False) parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware accleration in browser)", default=False) parser.add_argument("--no-verify-input", action='store_true', help="do not verify input to check if it's too long", default=False) parser.add_argument("--optimized-turbo", action='store_true', help="alternative optimization mode that does not save as much VRAM but runs siginificantly faster") parser.add_argument("--optimized", action='store_true', help="load the model onto the device piecemeal instead of all at once to reduce VRAM usage at the cost of performance") parser.add_argument("--outdir_img2img", type=str, nargs="?", help="dir to write img2img results to (overrides --outdir)", default=None) parser.add_argument("--outdir_imglab", type=str, nargs="?", help="dir to write imglab results to (overrides --outdir)", default=None) parser.add_argument("--outdir_txt2img", type=str, nargs="?", help="dir to write txt2img results to (overrides --outdir)", default=None) parser.add_argument("--outdir", type=str, nargs="?", help="dir to write results to", default=None) parser.add_argument("--filename_format", type=str, nargs="?", help="filenames format", default=None) parser.add_argument("--port", type=int, help="choose the port for the gradio webserver to use", default=7860) parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast") parser.add_argument("--realesrgan-dir", type=str, help="RealESRGAN directory", default=('./src/realesrgan' if os.path.exists('./src/realesrgan') else './RealESRGAN')) parser.add_argument("--realesrgan-model", type=str, help="Upscaling model for RealESRGAN", default=('RealESRGAN_x4plus')) parser.add_argument("--save-metadata", action='store_true', help="Store generation parameters in the output png. Drop saved png into Image Lab to read parameters", default=False) parser.add_argument("--share-password", type=str, help="Sharing is open by default, use this to set a password. Username: webui", default=None) parser.add_argument("--share", action='store_true', help="Should share your server on gradio.app, this allows you to use the UI from your mobile app", default=False) parser.add_argument("--skip-grid", action='store_true', help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", default=False) parser.add_argument("--skip-save", action='store_true', help="do not save indiviual samples. For speed measurements.", default=False) parser.add_argument('--no-job-manager', action='store_true', help="Don't use the experimental job manager on top of gradio", default=False) parser.add_argument("--max-jobs", type=int, help="Maximum number of concurrent 'generate' commands", default=1) parser.add_argument("--tiling", action='store_true', help="Generate tiling images", default=False) opt = parser.parse_args() #Should not be needed anymore #os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152 # all selected gpus, can probably be done nicer #if opt.extra_models_gpu: # gpus = set([opt.gpu, opt.esrgan_gpu, opt.gfpgan_gpu]) # os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(g) for g in set(gpus)) #else: # os.environ["CUDA_VISIBLE_DEVICES"] = str(opt.gpu) import gradio as gr import k_diffusion as K import math import mimetypes import numpy as np import pynvml import random import threading, asyncio import time import torch import torch.nn as nn import yaml import glob import copy from typing import List, Union, Dict, Callable, Any, Optional from pathlib import Path from collections import namedtuple from functools import partial # tell the user which GPU the code is actually using if os.getenv("SD_WEBUI_DEBUG", 'False').lower() in ('true', '1', 'y'): gpu_in_use = opt.gpu # prioritize --esrgan-gpu and --gfpgan-gpu over --gpu, as stated in the option info if opt.esrgan_gpu != opt.gpu: gpu_in_use = opt.esrgan_gpu elif opt.gfpgan_gpu != opt.gpu: gpu_in_use = opt.gfpgan_gpu print("Starting on GPU {selected_gpu_name}".format(selected_gpu_name=torch.cuda.get_device_name(gpu_in_use))) from contextlib import contextmanager, nullcontext from einops import rearrange, repeat from itertools import islice from omegaconf import OmegaConf from PIL import Image, ImageFont, ImageDraw, ImageFilter, ImageOps, ImageChops from io import BytesIO import base64 import re from torch import autocast from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.plms import PLMSSampler from ldm.util import instantiate_from_config # add global options to models def patch_conv(**patch): cls = torch.nn.Conv2d init = cls.__init__ def __init__(self, *args, **kwargs): return init(self, *args, **kwargs, **patch) cls.__init__ = __init__ if opt.tiling: patch_conv(padding_mode='circular') print("patched for tiling") try: # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. from transformers import logging logging.set_verbosity_error() except: pass from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from transformers import AutoFeatureExtractor # load safety model safety_model_id = "CompVis/stable-diffusion-safety-checker" safety_feature_extractor = None safety_checker = None # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI mimetypes.init() mimetypes.add_type('application/javascript', '.js') # some of those options should not be changed at all because they would break the model, so I removed them from options. opt_C = 4 opt_f = 8 LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) invalid_filename_chars = '<>:"/\|?*\n' GFPGAN_dir = opt.gfpgan_dir RealESRGAN_dir = opt.realesrgan_dir LDSR_dir = opt.ldsr_dir if opt.optimized_turbo: opt.optimized = True if opt.no_job_manager: job_manager = None else: job_manager = JobManager(opt.max_jobs) opt.max_jobs += 1 # Leave a free job open for button clicks # should probably be moved to a settings menu in the UI at some point grid_format = [s.lower() for s in opt.grid_format.split(':')] grid_lossless = False grid_quality = 100 if grid_format[0] == 'png': grid_ext = 'png' grid_format = 'png' elif grid_format[0] in ['jpg', 'jpeg']: grid_quality = int(grid_format[1]) if len(grid_format) > 1 else 100 grid_ext = 'jpg' grid_format = 'jpeg' elif grid_format[0] == 'webp': grid_quality = int(grid_format[1]) if len(grid_format) > 1 else 100 grid_ext = 'webp' grid_format = 'webp' if grid_quality < 0: # e.g. webp:-100 for lossless mode grid_lossless = True grid_quality = abs(grid_quality) def chunk(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model.cuda() model.eval() return model def load_sd_from_config(ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] return sd def crash(e, s): global model global device print(s, '\n', e) try: del model del device except: try: del device except: pass pass print('exiting...calling os._exit(0)') t = threading.Timer(0.25, os._exit, args=[0]) t.start() class MemUsageMonitor(threading.Thread): stop_flag = False max_usage = 0 total = -1 def __init__(self, name): threading.Thread.__init__(self) self.name = name def run(self): try: pynvml.nvmlInit() except: print(f"[{self.name}] Unable to initialize NVIDIA management. No memory stats. \n") return print(f"[{self.name}] Recording max memory usage...\n") # check if we're using a scoped-down GPU environment (pynvml does not listen to CUDA_VISIBLE_DEVICES) # so that we can measure memory on the correct GPU try: isinstance(int(os.environ["CUDA_VISIBLE_DEVICES"]), int) handle = pynvml.nvmlDeviceGetHandleByIndex(int(os.environ["CUDA_VISIBLE_DEVICES"])) except (KeyError, ValueError) as pynvmlHandleError: if os.getenv("SD_WEBUI_DEBUG", 'False').lower() in ('true', '1', 'y'): print("[MemMon][WARNING]", pynvmlHandleError) print("[MemMon][INFO]", "defaulting to monitoring memory on the default gpu (set via --gpu flag)") handle = pynvml.nvmlDeviceGetHandleByIndex(opt.gpu) self.total = pynvml.nvmlDeviceGetMemoryInfo(handle).total while not self.stop_flag: m = pynvml.nvmlDeviceGetMemoryInfo(handle) self.max_usage = max(self.max_usage, m.used) # print(self.max_usage) time.sleep(0.1) print(f"[{self.name}] Stopped recording.\n") pynvml.nvmlShutdown() def read(self): return self.max_usage, self.total def stop(self): self.stop_flag = True def read_and_stop(self): self.stop_flag = True return self.max_usage, self.total class CFGMaskedDenoiser(nn.Module): def __init__(self, model): super().__init__() self.inner_model = model def forward(self, x, sigma, uncond, cond, cond_scale, mask, x0, xi): x_in = x x_in = torch.cat([x_in] * 2) sigma_in = torch.cat([sigma] * 2) cond_in = torch.cat([uncond, cond]) uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) denoised = uncond + (cond - uncond) * cond_scale if mask is not None: assert x0 is not None img_orig = x0 mask_inv = 1. - mask denoised = (img_orig * mask_inv) + (mask * denoised) return denoised class CFGDenoiser(nn.Module): def __init__(self, model): super().__init__() self.inner_model = model def forward(self, x, sigma, uncond, cond, cond_scale): x_in = torch.cat([x] * 2) sigma_in = torch.cat([sigma] * 2) cond_in = torch.cat([uncond, cond]) uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) return uncond + (cond - uncond) * cond_scale class KDiffusionSampler: def __init__(self, m, sampler): self.model = m self.model_wrap = K.external.CompVisDenoiser(m) self.schedule = sampler def get_sampler_name(self): return self.schedule def sample(self, S, conditioning, batch_size, shape, verbose, unconditional_guidance_scale, unconditional_conditioning, eta, x_T, img_callback: Callable = None ): sigmas = self.model_wrap.get_sigmas(S) x = x_T * sigmas[0] model_wrap_cfg = CFGDenoiser(self.model_wrap) samples_ddim = K.sampling.__dict__[f'sample_{self.schedule}'](model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale}, disable=False, callback=partial(KDiffusionSampler.img_callback_wrapper, img_callback)) return samples_ddim, None @classmethod def img_callback_wrapper(cls, callback: Callable, *args): ''' Converts a KDiffusion callback to the standard img_callback ''' if callback: arg_dict = args[0] callback(image_sample=arg_dict['denoised'], iter_num=arg_dict['i']) def create_random_tensors(shape, seeds): xs = [] for seed in seeds: torch.manual_seed(seed) # randn results depend on device; gpu and cpu get different results for same seed; # the way I see it, it's better to do this on CPU, so that everyone gets same result; # but the original script had it like this so i do not dare change it for now because # it will break everyone's seeds. xs.append(torch.randn(shape, device=device)) x = torch.stack(xs) return x def torch_gc(): torch.cuda.empty_cache() torch.cuda.ipc_collect() def load_LDSR(checking=False): model_name = 'model' yaml_name = 'project' model_path = os.path.join(LDSR_dir, 'experiments/pretrained_models', model_name + '.ckpt') yaml_path = os.path.join(LDSR_dir, 'experiments/pretrained_models', yaml_name + '.yaml') if not os.path.isfile(model_path): raise Exception("LDSR model not found at path "+model_path) if not os.path.isfile(yaml_path): raise Exception("LDSR model not found at path "+yaml_path) if checking == True: return True sys.path.append(os.path.abspath(LDSR_dir)) from LDSR import LDSR LDSRObject = LDSR(model_path, yaml_path) return LDSRObject def load_GFPGAN(checking=False): model_name = 'GFPGANv1.3' model_path = os.path.join(GFPGAN_dir, 'experiments/pretrained_models', model_name + '.pth') if not os.path.isfile(model_path): raise Exception("GFPGAN model not found at path "+model_path) if checking == True: return True sys.path.append(os.path.abspath(GFPGAN_dir)) from gfpgan import GFPGANer if opt.gfpgan_cpu or opt.extra_models_cpu: instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cpu')) elif opt.extra_models_gpu: instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device(f'cuda:{opt.gfpgan_gpu}')) else: instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device(f'cuda:{opt.gpu}')) return instance def load_RealESRGAN(model_name: str, checking = False): from basicsr.archs.rrdbnet_arch import RRDBNet RealESRGAN_models = { 'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4), 'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) } model_path = os.path.join(RealESRGAN_dir, 'experiments/pretrained_models', model_name + '.pth') if not os.path.isfile(model_path): raise Exception(model_name+".pth not found at path "+model_path) if checking == True: return True sys.path.append(os.path.abspath(RealESRGAN_dir)) from realesrgan import RealESRGANer if opt.esrgan_cpu or opt.extra_models_cpu: instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=False) # cpu does not support half instance.device = torch.device('cpu') instance.model.to('cpu') elif opt.extra_models_gpu: instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=not opt.no_half, gpu_id=opt.esrgan_gpu) else: instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=not opt.no_half) instance.model.name = model_name return instance GFPGAN = None if os.path.exists(GFPGAN_dir): try: GFPGAN = load_GFPGAN(checking=True) print("Found GFPGAN") except Exception: import traceback print("Error loading GFPGAN:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) RealESRGAN = None def try_loading_RealESRGAN(model_name: str,checking=False): global RealESRGAN if os.path.exists(RealESRGAN_dir): try: RealESRGAN = load_RealESRGAN(model_name,checking) # TODO: Should try to load both models before giving up if checking == True: print("Found RealESRGAN") return True print("Loaded RealESRGAN with model "+RealESRGAN.model.name) except Exception: import traceback print("Error loading RealESRGAN:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) try_loading_RealESRGAN('RealESRGAN_x4plus',checking=True) LDSR = None def try_loading_LDSR(model_name: str,checking=False): global LDSR if os.path.exists(LDSR_dir): try: LDSR = load_LDSR(checking=True) # TODO: Should try to load both models before giving up if checking == True: print("Found LDSR") return True print("Latent Diffusion Super Sampling (LDSR) model loaded") except Exception: import traceback print("Error loading LDSR:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) else: print("LDSR not found at path, please make sure you have cloned the LDSR repo to ./src/latent-diffusion/") try_loading_LDSR('model',checking=True) def load_SD_model(): if opt.optimized: sd = load_sd_from_config(opt.ckpt) li, lo = [], [] for key, v_ in sd.items(): sp = key.split('.') if(sp[0]) == 'model': if('input_blocks' in sp): li.append(key) elif('middle_block' in sp): li.append(key) elif('time_embed' in sp): li.append(key) else: lo.append(key) for key in li: sd['model1.' + key[6:]] = sd.pop(key) for key in lo: sd['model2.' + key[6:]] = sd.pop(key) config = OmegaConf.load("optimizedSD/v1-inference.yaml") device = torch.device(f"cuda:{opt.gpu}") if torch.cuda.is_available() else torch.device("cpu") model = instantiate_from_config(config.modelUNet) _, _ = model.load_state_dict(sd, strict=False) model.cuda() model.eval() model.turbo = opt.optimized_turbo modelCS = instantiate_from_config(config.modelCondStage) _, _ = modelCS.load_state_dict(sd, strict=False) modelCS.cond_stage_model.device = device modelCS.eval() modelFS = instantiate_from_config(config.modelFirstStage) _, _ = modelFS.load_state_dict(sd, strict=False) modelFS.eval() del sd if not opt.no_half: model = model.half() modelCS = modelCS.half() modelFS = modelFS.half() return model,modelCS,modelFS,device, config else: config = OmegaConf.load(opt.config) model = load_model_from_config(config, opt.ckpt) device = torch.device(f"cuda:{opt.gpu}") if torch.cuda.is_available() else torch.device("cpu") model = (model if opt.no_half else model.half()).to(device) return model, device,config if opt.optimized: model,modelCS,modelFS,device, config = load_SD_model() else: model, device,config = load_SD_model() def load_embeddings(fp): if fp is not None and hasattr(model, "embedding_manager"): model.embedding_manager.load(fp.name) def get_font(fontsize): fonts = ["arial.ttf", "DejaVuSans.ttf"] for font_name in fonts: try: return ImageFont.truetype(font_name, fontsize) except OSError: pass # ImageFont.load_default() is practically unusable as it only supports # latin1, so raise an exception instead if no usable font was found raise Exception(f"No usable font found (tried {', '.join(fonts)})") def image_grid(imgs, batch_size, force_n_rows=None, captions=None): if force_n_rows is not None: rows = force_n_rows elif opt.n_rows > 0: rows = opt.n_rows elif opt.n_rows == 0: rows = batch_size else: rows = math.sqrt(len(imgs)) rows = round(rows) cols = math.ceil(len(imgs) / rows) w, h = imgs[0].size grid = Image.new('RGB', size=(cols * w, rows * h), color='black') fnt = get_font(30) for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) if captions and i= 2**32: n = n >> 32 return n def draw_prompt_matrix(im, width, height, all_prompts): def wrap(text, d, font, line_length): lines = [''] for word in text.split(): line = f'{lines[-1]} {word}'.strip() if d.textlength(line, font=font) <= line_length: lines[-1] = line else: lines.append(word) return '\n'.join(lines) def draw_texts(pos, x, y, texts, sizes): for i, (text, size) in enumerate(zip(texts, sizes)): active = pos & (1 << i) != 0 if not active: text = '\u0336'.join(text) + '\u0336' d.multiline_text((x, y + size[1] / 2), text, font=fnt, fill=color_active if active else color_inactive, anchor="mm", align="center") y += size[1] + line_spacing fontsize = (width + height) // 25 line_spacing = fontsize // 2 fnt = get_font(fontsize) color_active = (0, 0, 0) color_inactive = (153, 153, 153) pad_top = height // 4 pad_left = width * 3 // 4 if len(all_prompts) > 2 else 0 cols = im.width // width rows = im.height // height prompts = all_prompts[1:] result = Image.new("RGB", (im.width + pad_left, im.height + pad_top), "white") result.paste(im, (pad_left, pad_top)) d = ImageDraw.Draw(result) boundary = math.ceil(len(prompts) / 2) prompts_horiz = [wrap(x, d, fnt, width) for x in prompts[:boundary]] prompts_vert = [wrap(x, d, fnt, pad_left) for x in prompts[boundary:]] sizes_hor = [(x[2] - x[0], x[3] - x[1]) for x in [d.multiline_textbbox((0, 0), x, font=fnt) for x in prompts_horiz]] sizes_ver = [(x[2] - x[0], x[3] - x[1]) for x in [d.multiline_textbbox((0, 0), x, font=fnt) for x in prompts_vert]] hor_text_height = sum([x[1] + line_spacing for x in sizes_hor]) - line_spacing ver_text_height = sum([x[1] + line_spacing for x in sizes_ver]) - line_spacing for col in range(cols): x = pad_left + width * col + width / 2 y = pad_top / 2 - hor_text_height / 2 draw_texts(col, x, y, prompts_horiz, sizes_hor) for row in range(rows): x = pad_left / 2 y = pad_top + height * row + height / 2 - ver_text_height / 2 draw_texts(row, x, y, prompts_vert, sizes_ver) return result def check_prompt_length(prompt, comments): """this function tests if prompt is too long, and if so, adds a message to comments""" tokenizer = (model if not opt.optimized else modelCS).cond_stage_model.tokenizer max_length = (model if not opt.optimized else modelCS).cond_stage_model.max_length info = (model if not opt.optimized else modelCS).cond_stage_model.tokenizer([prompt], truncation=True, max_length=max_length, return_overflowing_tokens=True, padding="max_length", return_tensors="pt") ovf = info['overflowing_tokens'][0] overflowing_count = ovf.shape[0] if overflowing_count == 0: return vocab = {v: k for k, v in tokenizer.get_vocab().items()} overflowing_words = [vocab.get(int(x), "") for x in ovf] overflowing_text = tokenizer.convert_tokens_to_string(''.join(overflowing_words)) comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") def save_sample(image, sample_path_i, filename, jpg_sample, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, skip_metadata=False): ''' saves the image according to selected parameters. Expects to find generation parameters on image, set by ImageMetadata.set_on_image() ''' metadata = ImageMetadata.get_from_image(image) if not skip_metadata and metadata is None: print("No metadata passed in to save. Set metadata on the image before calling save_sample using the ImageMetadata.set_on_image() function.") skip_metadata = True filename_i = os.path.join(sample_path_i, filename) if not jpg_sample: if opt.save_metadata and not skip_metadata: image.save(f"{filename_i}.png", pnginfo=metadata.as_png_info()) else: image.save(f"{filename_i}.png") else: image.save(f"{filename_i}.jpg", 'jpeg', quality=100, optimize=True) if write_info_files or write_sample_info_to_log_file: # toggles differ for txt2img vs. img2img: offset = 0 if init_img is None else 2 toggles = [] if prompt_matrix: toggles.append(0) if metadata.normalize_prompt_weights: toggles.append(1) if init_img is not None: if uses_loopback: toggles.append(2) if uses_random_seed_loopback: toggles.append(3) if not skip_save: toggles.append(2 + offset) if not skip_grid: toggles.append(3 + offset) if sort_samples: toggles.append(4 + offset) if write_info_files: toggles.append(5 + offset) if write_sample_info_to_log_file: toggles.append(6+offset) if metadata.GFPGAN: toggles.append(7 + offset) info_dict = dict( target="txt2img" if init_img is None else "img2img", prompt=metadata.prompt, ddim_steps=metadata.steps, toggles=toggles, sampler_name=sampler_name, ddim_eta=ddim_eta, n_iter=n_iter, batch_size=batch_size, cfg_scale=metadata.cfg_scale, seed=metadata.seed, width=metadata.width, height=metadata.height ) if init_img is not None: # Not yet any use for these, but they bloat up the files: #info_dict["init_img"] = init_img #info_dict["init_mask"] = init_mask info_dict["denoising_strength"] = denoising_strength info_dict["resize_mode"] = resize_mode if write_info_files: with open(f"{filename_i}.yaml", "w", encoding="utf8") as f: yaml.dump(info_dict, f, allow_unicode=True, width=10000) if write_sample_info_to_log_file: ignore_list = ["prompt", "target", "toggles", "ddim_eta", "batch_size"] rename_dict = {"ddim_steps": "steps", "n_iter": "number", "sampler_name": "sampler"} #changes the name of parameters to match with dynamic parameters sample_log_path = os.path.join(sample_path_i, "log.yaml") log_dump = info_dict.get("prompt") # making sure the first item that is listed in the txt is the prompt text for key, value in info_dict.items(): if key in ignore_list: continue found_key = rename_dict.get(key) if key == "cfg_scale": #adds zeros to to cfg_scale necessary for dynamic params value = str(value).zfill(2) if found_key: key = found_key log_dump += f" {key} {value}" log_dump = log_dump + " \n" #space at the end for dynamic params to accept the last param with open(sample_log_path, "a", encoding="utf8") as log_file: log_file.write(log_dump) def get_next_sequence_number(path, prefix=''): """ Determines and returns the next sequence number to use when saving an image in the specified directory. If a prefix is given, only consider files whose names start with that prefix, and strip the prefix from filenames before extracting their sequence number. The sequence starts at 0. """ result = -1 for p in Path(path).iterdir(): if p.name.endswith(('.png', '.jpg')) and p.name.startswith(prefix): tmp = p.name[len(prefix):] try: result = max(int(tmp.split('-')[0]), result) except ValueError: pass return result + 1 def oxlamon_matrix(prompt, seed, n_iter, batch_size): pattern = re.compile(r'(,\s){2,}') class PromptItem: def __init__(self, text, parts, item): self.text = text self.parts = parts if item: self.parts.append( item ) def clean(txt): return re.sub(pattern, ', ', txt) def getrowcount( txt ): for data in re.finditer( ".*?\\((.*?)\\).*", txt ): if data: return len(data.group(1).split("|")) break return None def repliter( txt ): for data in re.finditer( ".*?\\((.*?)\\).*", txt ): if data: r = data.span(1) for item in data.group(1).split("|"): yield (clean(txt[:r[0]-1] + item.strip() + txt[r[1]+1:]), item.strip()) break def iterlist( items ): outitems = [] for item in items: for newitem, newpart in repliter(item.text): outitems.append( PromptItem(newitem, item.parts.copy(), newpart) ) return outitems def getmatrix( prompt ): dataitems = [ PromptItem( prompt[1:].strip(), [], None ) ] while True: newdataitems = iterlist( dataitems ) if len( newdataitems ) == 0: return dataitems dataitems = newdataitems def classToArrays( items, seed, n_iter ): texts = [] parts = [] seeds = [] for item in items: itemseed = seed for i in range(n_iter): texts.append( item.text ) parts.append( f"Seed: {itemseed}\n" + "\n".join(item.parts) ) seeds.append( itemseed ) itemseed += 1 return seeds, texts, parts all_seeds, all_prompts, prompt_matrix_parts = classToArrays(getmatrix( prompt ), seed, n_iter) n_iter = math.ceil(len(all_prompts) / batch_size) needrows = getrowcount(prompt) if needrows: xrows = math.sqrt(len(all_prompts)) xrows = round(xrows) # if columns is to much cols = math.ceil(len(all_prompts) / xrows) if cols > needrows*4: needrows *= 2 return all_seeds, n_iter, prompt_matrix_parts, all_prompts, needrows def perform_masked_image_restoration(image, init_img, init_mask, mask_blur_strength, mask_restore, use_RealESRGAN, RealESRGAN): if not mask_restore: return image else: init_mask = init_mask.filter(ImageFilter.GaussianBlur(mask_blur_strength)) init_mask = init_mask.convert('L') init_img = init_img.convert('RGB') image = image.convert('RGB') if use_RealESRGAN and RealESRGAN is not None: output, img_mode = RealESRGAN.enhance(np.array(init_mask, dtype=np.uint8)) init_mask = Image.fromarray(output) init_mask = init_mask.convert('L') output, img_mode = RealESRGAN.enhance(np.array(init_img, dtype=np.uint8)) init_img = Image.fromarray(output) init_img = init_img.convert('RGB') image = Image.composite(init_img, image, init_mask) return image def perform_color_correction(img_rgb, correction_target_lab, do_color_correction): try: from skimage import exposure except: print("Install scikit-image to perform color correction") return img_rgb if not do_color_correction: return img_rgb if correction_target_lab is None: return img_rgb return ( Image.fromarray(cv2.cvtColor(exposure.match_histograms( cv2.cvtColor( np.asarray(img_rgb), cv2.COLOR_RGB2LAB ), correction_target_lab, channel_axis=2 ), cv2.COLOR_LAB2RGB).astype("uint8") ) ) def process_images( outpath, func_init, func_sample, prompt, seed, sampler_name, skip_grid, skip_save, batch_size, n_iter, steps, cfg_scale, width, height, prompt_matrix, filter_nsfw, use_GFPGAN, use_RealESRGAN, realesrgan_model_name, fp, ddim_eta=0.0, do_not_save_grid=False, normalize_prompt_weights=True, init_img=None, init_mask=None, keep_mask=False, mask_blur_strength=3, mask_restore=False, denoising_strength=0.75, resize_mode=None, uses_loopback=False, uses_random_seed_loopback=False, sort_samples=True, write_info_files=True, write_sample_info_to_log_file=False, jpg_sample=False, variant_amount=0.0, variant_seed=None,imgProcessorTask=False, job_info: JobInfo = None, do_color_correction=False, correction_target=None): """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" def numpy_to_pil(images): """ Convert a numpy image or a batch of images to a PIL image. """ if images.ndim == 3: images = images[None, ...] images = (images * 255).round().astype("uint8") pil_images = [Image.fromarray(image) for image in images] return pil_images # load replacement of nsfw content def load_replacement(x): try: hwc = x.shape y = Image.open("images/nsfw.jpeg").convert("RGB").resize((hwc[1], hwc[0])) y = (np.array(y)/255.0).astype(x.dtype) assert y.shape == x.shape return y except Exception: return x # check and replace nsfw content def check_safety(x_image): global safety_feature_extractor, safety_checker if safety_feature_extractor is None: safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id) safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id) safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt") x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values) for i in range(len(has_nsfw_concept)): if has_nsfw_concept[i]: x_checked_image[i] = load_replacement(x_checked_image[i]) return x_checked_image, has_nsfw_concept prompt = prompt or '' torch_gc() # start time after garbage collection (or before?) start_time = time.time() mem_mon = MemUsageMonitor('MemMon') mem_mon.start() if hasattr(model, "embedding_manager"): load_embeddings(fp) os.makedirs(outpath, exist_ok=True) sample_path = os.path.join(outpath, "samples") os.makedirs(sample_path, exist_ok=True) if not ("|" in prompt) and prompt.startswith("@"): prompt = prompt[1:] negprompt = '' if '###' in prompt: prompt, negprompt = prompt.split('###', 1) prompt = prompt.strip() negprompt = negprompt.strip() comments = [] prompt_matrix_parts = [] simple_templating = False add_original_image = True if prompt_matrix: if prompt.startswith("@"): simple_templating = True add_original_image = not (use_RealESRGAN or use_GFPGAN) all_seeds, n_iter, prompt_matrix_parts, all_prompts, frows = oxlamon_matrix(prompt, seed, n_iter, batch_size) else: all_prompts = [] prompt_matrix_parts = prompt.split("|") combination_count = 2 ** (len(prompt_matrix_parts) - 1) for combination_num in range(combination_count): current = prompt_matrix_parts[0] for n, text in enumerate(prompt_matrix_parts[1:]): if combination_num & (2 ** n) > 0: current += ("" if text.strip().startswith(",") else ", ") + text all_prompts.append(current) n_iter = math.ceil(len(all_prompts) / batch_size) all_seeds = len(all_prompts) * [seed] print(f"Prompt matrix will create {len(all_prompts)} images using a total of {n_iter} batches.") else: if not opt.no_verify_input: try: check_prompt_length(prompt, comments) except: import traceback print("Error verifying input:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) all_prompts = batch_size * n_iter * [prompt] all_seeds = [seed + x for x in range(len(all_prompts))] original_seeds = all_seeds.copy() precision_scope = autocast if opt.precision == "autocast" else nullcontext if job_info: output_images = job_info.images else: output_images = [] grid_captions = [] stats = [] with torch.no_grad(), precision_scope("cuda"), (model.ema_scope() if not opt.optimized else nullcontext()): init_data = func_init() tic = time.time() # if variant_amount > 0.0 create noise from base seed base_x = None if variant_amount > 0.0: target_seed_randomizer = seed_to_int('') # random seed torch.manual_seed(seed) # this has to be the single starting seed (not per-iteration) base_x = create_random_tensors([opt_C, height // opt_f, width // opt_f], seeds=[seed]) # we don't want all_seeds to be sequential from starting seed with variants, # since that makes the same variants each time, # so we add target_seed_randomizer as a random offset for si in range(len(all_seeds)): all_seeds[si] += target_seed_randomizer for n in range(n_iter): if job_info and job_info.should_stop.is_set(): print("Early exit requested") break print(f"Iteration: {n+1}/{n_iter}") prompts = all_prompts[n * batch_size:(n + 1) * batch_size] captions = prompt_matrix_parts[n * batch_size:(n + 1) * batch_size] seeds = all_seeds[n * batch_size:(n + 1) * batch_size] current_seeds = original_seeds[n * batch_size:(n + 1) * batch_size] if job_info: job_info.job_status = f"Processing Iteration {n+1}/{n_iter}. Batch size {batch_size}" job_info.rec_steps_imgs.clear() for idx,(p,s) in enumerate(zip(prompts,seeds)): job_info.job_status += f"\nItem {idx}: Seed {s}\nPrompt: {p}" print(f"Current prompt: {p}") if opt.optimized: modelCS.to(device) uc = (model if not opt.optimized else modelCS).get_learned_conditioning(len(prompts) * [negprompt]) if isinstance(prompts, tuple): prompts = list(prompts) # split the prompt if it has : for weighting # TODO for speed it might help to have this occur when all_prompts filled?? weighted_subprompts = split_weighted_subprompts(prompts[0], normalize_prompt_weights) # sub-prompt weighting used if more than 1 if len(weighted_subprompts) > 1: c = torch.zeros_like(uc) # i dont know if this is correct.. but it works for i in range(0, len(weighted_subprompts)): # note if alpha negative, it functions same as torch.sub c = torch.add(c, (model if not opt.optimized else modelCS).get_learned_conditioning(weighted_subprompts[i][0]), alpha=weighted_subprompts[i][1]) else: # just behave like usual c = (model if not opt.optimized else modelCS).get_learned_conditioning(prompts) shape = [opt_C, height // opt_f, width // opt_f] if opt.optimized: mem = torch.cuda.memory_allocated()/1e6 modelCS.to("cpu") while(torch.cuda.memory_allocated()/1e6 >= mem): time.sleep(1) cur_variant_amount = variant_amount if variant_amount == 0.0: # we manually generate all input noises because each one should have a specific seed x = create_random_tensors(shape, seeds=seeds) else: # we are making variants # using variant_seed as sneaky toggle, # when not None or '' use the variant_seed # otherwise use seeds if variant_seed != None and variant_seed != '': specified_variant_seed = seed_to_int(variant_seed) torch.manual_seed(specified_variant_seed) target_x = create_random_tensors(shape, seeds=[specified_variant_seed]) # with a variant seed we would end up with the same variant as the basic seed # does not change. But we can increase the steps to get an interesting result # that shows more and more deviation of the original image and let us adjust # how far we will go (using 10 iterations with variation amount set to 0.02 will # generate an icreasingly variated image which is very interesting for movies) cur_variant_amount += n*variant_amount else: target_x = create_random_tensors(shape, seeds=seeds) # finally, slerp base_x noise to target_x noise for creating a variant x = slerp(device, max(0.0, min(1.0, cur_variant_amount)), base_x, target_x) # If optimized then use first stage for preview and store it on cpu until needed if opt.optimized: step_preview_model = modelFS step_preview_model.cpu() else: step_preview_model = model def sample_iteration_callback(image_sample: torch.Tensor, iter_num: int): ''' Called from the sampler every iteration ''' if job_info: job_info.active_iteration_cnt = iter_num record_periodic_image = job_info.rec_steps_enabled and (0 == iter_num % job_info.rec_steps_intrvl) if record_periodic_image or job_info.refresh_active_image_requested.is_set(): preview_start_time = time.time() if opt.optimized: step_preview_model.to(device) decoded_batch: List[torch.Tensor] = [] # Break up batch to save VRAM for sample in image_sample: sample = sample[None, :] # expands the tensor as if it still had a batch dimension decoded_sample = step_preview_model.decode_first_stage(sample)[0] decoded_sample = torch.clamp((decoded_sample + 1.0) / 2.0, min=0.0, max=1.0) decoded_sample = decoded_sample.cpu() decoded_batch.append(decoded_sample) batch_size = len(decoded_batch) if opt.optimized: step_preview_model.cpu() images: List[Image.Image] = [] # Convert tensor to image (copied from code below) for ddim in decoded_batch: x_sample = 255. * rearrange(ddim.numpy(), 'c h w -> h w c') x_sample = x_sample.astype(np.uint8) image = Image.fromarray(x_sample) images.append(image) caption = f"Iter {iter_num}" grid = image_grid(images, len(images), force_n_rows=1, captions=[caption]*len(images)) # Save the images if recording steps, and append existing saved steps if job_info.rec_steps_enabled: gallery_img_size = tuple(int(0.25*dim) for dim in images[0].size) job_info.rec_steps_imgs.append(grid.resize(gallery_img_size)) # Notify the requester that the image is updated if job_info.refresh_active_image_requested.is_set(): if job_info.rec_steps_enabled: grid_rows = None if batch_size == 1 else len(job_info.rec_steps_imgs) grid = image_grid(imgs=job_info.rec_steps_imgs[::-1], batch_size=1, force_n_rows=grid_rows) job_info.active_image = grid job_info.refresh_active_image_done.set() job_info.refresh_active_image_requested.clear() preview_elapsed_timed = time.time() - preview_start_time if preview_elapsed_timed / job_info.rec_steps_intrvl > 1: print( f"Warning: Preview generation is slowing image generation. It took {preview_elapsed_timed:.2f}s to generate progress images for batch of {batch_size} images!") # Interrupt current iteration? if job_info.stop_cur_iter.is_set(): job_info.stop_cur_iter.clear() raise StopIteration() try: samples_ddim = func_sample(init_data=init_data, x=x, conditioning=c, unconditional_conditioning=uc, sampler_name=sampler_name, img_callback=sample_iteration_callback) except StopIteration: print("Skipping iteration") job_info.job_status = "Skipping iteration" continue if opt.optimized: modelFS.to(device) for i in range(len(samples_ddim)): x_samples_ddim = (model if not opt.optimized else modelFS).decode_first_stage(samples_ddim[i].unsqueeze(0)) x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) if filter_nsfw: x_samples_ddim_numpy = x_sample.cpu().permute(0, 2, 3, 1).numpy() x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim_numpy) x_sample = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2) sanitized_prompt = prompts[i].replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars}) if variant_seed != None and variant_seed != '': if variant_amount == 0.0: seed_used = f"{current_seeds[i]}-{variant_seed}" else: seed_used = f"{seed}-{variant_seed}" else: seed_used = f"{current_seeds[i]}" if sort_samples: sanitized_prompt = sanitized_prompt[:128] #200 is too long sample_path_i = os.path.join(sample_path, sanitized_prompt) os.makedirs(sample_path_i, exist_ok=True) base_count = get_next_sequence_number(sample_path_i) filename = opt.filename_format or "[STEPS]_[SAMPLER]_[SEED]_[VARIANT_AMOUNT]" else: sample_path_i = sample_path base_count = get_next_sequence_number(sample_path_i) filename = opt.filename_format or "[STEPS]_[SAMPLER]_[SEED]_[VARIANT_AMOUNT]_[PROMPT]" #Add new filenames tags here filename = f"{base_count:05}-" + filename filename = filename.replace("[STEPS]", str(steps)) filename = filename.replace("[CFG]", str(cfg_scale)) filename = filename.replace("[PROMPT]", sanitized_prompt[:128]) filename = filename.replace("[PROMPT_SPACES]", prompts[i].translate({ord(x): '' for x in invalid_filename_chars})[:128]) filename = filename.replace("[WIDTH]", str(width)) filename = filename.replace("[HEIGHT]", str(height)) filename = filename.replace("[SAMPLER]", sampler_name) filename = filename.replace("[SEED]", seed_used) filename = filename.replace("[VARIANT_AMOUNT]", f"{cur_variant_amount:.2f}") x_sample = 255. * rearrange(x_sample[0].cpu().numpy(), 'c h w -> h w c') x_sample = x_sample.astype(np.uint8) metadata = ImageMetadata(prompt=prompts[i], seed=seeds[i], height=height, width=width, steps=steps, cfg_scale=cfg_scale, normalize_prompt_weights=normalize_prompt_weights, denoising_strength=denoising_strength, GFPGAN=use_GFPGAN ) image = Image.fromarray(x_sample) image = perform_color_correction(image, correction_target, do_color_correction) ImageMetadata.set_on_image(image, metadata) original_sample = x_sample original_filename = filename if use_GFPGAN and GFPGAN is not None and not use_RealESRGAN: skip_save = True # #287 >_> torch_gc() cropped_faces, restored_faces, restored_img = GFPGAN.enhance(original_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True) gfpgan_sample = restored_img[:,:,::-1] gfpgan_image = Image.fromarray(gfpgan_sample) gfpgan_image = perform_color_correction(gfpgan_image, correction_target, do_color_correction) gfpgan_image = perform_masked_image_restoration( gfpgan_image, init_img, init_mask, mask_blur_strength, mask_restore, use_RealESRGAN = False, RealESRGAN = None ) gfpgan_metadata = copy.copy(metadata) gfpgan_metadata.GFPGAN = True ImageMetadata.set_on_image( gfpgan_image, gfpgan_metadata ) gfpgan_filename = original_filename + '-gfpgan' save_sample(gfpgan_image, sample_path_i, gfpgan_filename, jpg_sample, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, skip_metadata=False) output_images.append(gfpgan_image) #287 #if simple_templating: # grid_captions.append( captions[i] + "\ngfpgan" ) if use_RealESRGAN and RealESRGAN is not None and not use_GFPGAN: skip_save = True # #287 >_> torch_gc() output, img_mode = RealESRGAN.enhance(original_sample[:,:,::-1]) esrgan_filename = original_filename + '-esrgan4x' esrgan_sample = output[:,:,::-1] esrgan_image = Image.fromarray(esrgan_sample) esrgan_image = perform_color_correction(esrgan_image, correction_target, do_color_correction) esrgan_image = perform_masked_image_restoration( esrgan_image, init_img, init_mask, mask_blur_strength, mask_restore, use_RealESRGAN, RealESRGAN ) ImageMetadata.set_on_image( esrgan_image, metadata ) save_sample(esrgan_image, sample_path_i, esrgan_filename, jpg_sample, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, skip_metadata=False) output_images.append(esrgan_image) #287 #if simple_templating: # grid_captions.append( captions[i] + "\nesrgan" ) if use_RealESRGAN and RealESRGAN is not None and use_GFPGAN and GFPGAN is not None: skip_save = True # #287 >_> torch_gc() cropped_faces, restored_faces, restored_img = GFPGAN.enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True) gfpgan_sample = restored_img[:,:,::-1] output, img_mode = RealESRGAN.enhance(gfpgan_sample[:,:,::-1]) gfpgan_esrgan_filename = original_filename + '-gfpgan-esrgan4x' gfpgan_esrgan_sample = output[:,:,::-1] gfpgan_esrgan_image = Image.fromarray(gfpgan_esrgan_sample) gfpgan_esrgan_image = perform_color_correction(gfpgan_esrgan_image, correction_target, do_color_correction) gfpgan_esrgan_image = perform_masked_image_restoration( gfpgan_esrgan_image, init_img, init_mask, mask_blur_strength, mask_restore, use_RealESRGAN, RealESRGAN ) ImageMetadata.set_on_image(gfpgan_esrgan_image, metadata) save_sample(gfpgan_esrgan_image, sample_path_i, gfpgan_esrgan_filename, jpg_sample, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, skip_metadata=False) output_images.append(gfpgan_esrgan_image) #287 #if simple_templating: # grid_captions.append( captions[i] + "\ngfpgan_esrgan" ) # this flag is used for imgProcessorTasks like GoBig, will return the image without saving it if imgProcessorTask == True: output_images.append(image) image = perform_masked_image_restoration( image, init_img, init_mask, mask_blur_strength, mask_restore, # RealESRGAN image already processed in if-case above. use_RealESRGAN = False, RealESRGAN = None ) if not skip_save: save_sample(image, sample_path_i, filename, jpg_sample, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, False) if add_original_image or not simple_templating: output_images.append(image) if simple_templating: grid_captions.append( captions[i] ) # Save the progress images? if job_info: if job_info.rec_steps_enabled and (job_info.rec_steps_to_file or job_info.rec_steps_to_gallery): steps_grid = image_grid(job_info.rec_steps_imgs, 1) if job_info.rec_steps_to_gallery: gallery_img_size = tuple(2*dim for dim in image.size) output_images.append( steps_grid.resize( gallery_img_size ) ) if job_info.rec_steps_to_file: steps_grid_filename = f"{original_filename}_step_grid" save_sample(steps_grid, sample_path_i, steps_grid_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale, normalize_prompt_weights, use_GFPGAN, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save, skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, False) if opt.optimized: mem = torch.cuda.memory_allocated()/1e6 modelFS.to("cpu") while(torch.cuda.memory_allocated()/1e6 >= mem): time.sleep(1) if (prompt_matrix or not skip_grid) and not do_not_save_grid: grid = None if prompt_matrix: if simple_templating: grid = image_grid(output_images, batch_size, force_n_rows=frows, captions=grid_captions) else: grid = image_grid(output_images, batch_size, force_n_rows=1 << ((len(prompt_matrix_parts)-1)//2)) try: grid = draw_prompt_matrix(grid, width, height, prompt_matrix_parts) except: import traceback print("Error creating prompt_matrix text:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) elif len(output_images) > 0 and (batch_size > 1 or n_iter > 1): grid = image_grid(output_images, batch_size) if grid is not None: grid_count = get_next_sequence_number(outpath, 'grid-') grid_file = f"grid-{grid_count:05}-{seed}_{prompts[i].replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]}.{grid_ext}" grid.save(os.path.join(outpath, grid_file), grid_format, quality=grid_quality, lossless=grid_lossless, optimize=True) toc = time.time() mem_max_used, mem_total = mem_mon.read_and_stop() time_diff = time.time()-start_time args_and_names = { "seed": seed, "width": width, "height": height, "steps": steps, "cfg_scale": cfg_scale, "sampler": sampler_name, } full_string = f"{prompt}\n"+ " ".join([f"{k}:" for k,v in args_and_names.items()]) info = { 'text': full_string, 'entities': [{'entity':str(v), 'start': full_string.find(f"{k}:"),'end': full_string.find(f"{k}:") + len(f"{k} ")} for k,v in args_and_names.items()] } # info = f""" # {prompt} --seed {seed} --W {width} --H {height} -s {steps} -C {cfg_scale} --sampler {sampler_name} {', Denoising strength: '+str(denoising_strength) if init_img is not None else ''}{', GFPGAN' if use_GFPGAN and GFPGAN is not None else ''}{', '+realesrgan_model_name if use_RealESRGAN and RealESRGAN is not None else ''}{', Prompt Matrix Mode.' if prompt_matrix else ''}""".strip() stats = f''' Took { round(time_diff, 2) }s total ({ round(time_diff/(len(all_prompts)),2) }s per image) Peak memory usage: { -(mem_max_used // -1_048_576) } MiB / { -(mem_total // -1_048_576) } MiB / { round(mem_max_used/mem_total*100, 3) }%''' for comment in comments: info['text'] += "\n\n" + comment #mem_mon.stop() #del mem_mon torch_gc() return output_images, seed, info, stats def txt2img(prompt: str, ddim_steps: int, sampler_name: str, toggles: List[int], realesrgan_model_name: str, ddim_eta: float, n_iter: int, batch_size: int, cfg_scale: float, seed: Union[int, str, None], height: int, width: int, fp, variant_amount: float = None, variant_seed: int = None, job_info: JobInfo = None): outpath = opt.outdir_txt2img or opt.outdir or "outputs/txt2img-samples" err = False seed = seed_to_int(seed) prompt_matrix = 0 in toggles normalize_prompt_weights = 1 in toggles skip_save = 2 not in toggles skip_grid = 3 not in toggles sort_samples = 4 in toggles write_info_files = 5 in toggles write_to_one_file = 6 in toggles jpg_sample = 7 in toggles filter_nsfw = 8 in toggles use_GFPGAN = 9 in toggles use_RealESRGAN = 10 in toggles do_color_correction = False correction_target = None ModelLoader(['model'],True,False) if use_GFPGAN and not use_RealESRGAN: ModelLoader(['GFPGAN'],True,False) ModelLoader(['RealESRGAN'],False,True) if use_RealESRGAN and not use_GFPGAN: ModelLoader(['GFPGAN'],False,True) ModelLoader(['RealESRGAN'],True,False,realesrgan_model_name) if use_RealESRGAN and use_GFPGAN: ModelLoader(['GFPGAN','RealESRGAN'],True,False,realesrgan_model_name) if sampler_name == 'PLMS': sampler = PLMSSampler(model) elif sampler_name == 'DDIM': sampler = DDIMSampler(model) elif sampler_name == 'k_dpm_2_a': sampler = KDiffusionSampler(model,'dpm_2_ancestral') elif sampler_name == 'k_dpm_2': sampler = KDiffusionSampler(model,'dpm_2') elif sampler_name == 'k_euler_a': sampler = KDiffusionSampler(model,'euler_ancestral') elif sampler_name == 'k_euler': sampler = KDiffusionSampler(model,'euler') elif sampler_name == 'k_heun': sampler = KDiffusionSampler(model,'heun') elif sampler_name == 'k_lms': sampler = KDiffusionSampler(model,'lms') else: raise Exception("Unknown sampler: " + sampler_name) def init(): pass def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name, img_callback: Callable = None): samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=unconditional_conditioning, eta=ddim_eta, x_T=x, img_callback=img_callback) return samples_ddim try: output_images, seed, info, stats = process_images( outpath=outpath, func_init=init, func_sample=sample, prompt=prompt, seed=seed, sampler_name=sampler_name, skip_save=skip_save, skip_grid=skip_grid, batch_size=batch_size, n_iter=n_iter, steps=ddim_steps, cfg_scale=cfg_scale, width=width, height=height, prompt_matrix=prompt_matrix, filter_nsfw=filter_nsfw, use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, realesrgan_model_name=realesrgan_model_name, fp=fp, ddim_eta=ddim_eta, normalize_prompt_weights=normalize_prompt_weights, sort_samples=sort_samples, write_info_files=write_info_files, write_sample_info_to_log_file=write_to_one_file, jpg_sample=jpg_sample, variant_amount=variant_amount, variant_seed=variant_seed, job_info=job_info, do_color_correction=do_color_correction, correction_target=correction_target ) del sampler return output_images, seed, info, stats except RuntimeError as e: err = e err_msg = f'CRASHED:


Please wait while the program restarts.' stats = err_msg return [], seed, 'err', stats finally: if err: crash(err, '!!Runtime error (txt2img)!!') class Flagging(gr.FlaggingCallback): def setup(self, components, flagging_dir: str): pass def flag(self, flag_data, flag_option=None, flag_index=None, username=None): import csv os.makedirs("log/images", exist_ok=True) # those must match the "txt2img" function !! + images, seed, comment, stats !! NOTE: changes to UI output must be reflected here too prompt, ddim_steps, sampler_name, toggles, ddim_eta, n_iter, batch_size, cfg_scale, seed, height, width, fp, variant_amount, variant_seed, images, seed, comment, stats = flag_data filenames = [] with open("log/log.csv", "a", encoding="utf8", newline='') as file: import time import base64 at_start = file.tell() == 0 writer = csv.writer(file) if at_start: writer.writerow(["sep=,"]) writer.writerow(["prompt", "seed", "width", "height", "sampler", "toggles", "n_iter", "n_samples", "cfg_scale", "steps", "filename"]) filename_base = str(int(time.time() * 1000)) for i, filedata in enumerate(images): filename = "log/images/"+filename_base + ("" if len(images) == 1 else "-"+str(i+1)) + ".png" if filedata.startswith("data:image/png;base64,"): filedata = filedata[len("data:image/png;base64,"):] with open(filename, "wb") as imgfile: imgfile.write(base64.decodebytes(filedata.encode('utf-8'))) filenames.append(filename) writer.writerow([prompt, seed, width, height, sampler_name, toggles, n_iter, batch_size, cfg_scale, ddim_steps, filenames[0]]) print("Logged:", filenames[0]) def blurArr(a,r=8): im1=Image.fromarray((a*255).astype(np.int8),"L") im2 = im1.filter(ImageFilter.GaussianBlur(radius = r)) out= np.array(im2)/255 return out def img2img(prompt: str, image_editor_mode: str, mask_mode: str, mask_blur_strength: int, mask_restore: bool, ddim_steps: int, sampler_name: str, toggles: List[int], realesrgan_model_name: str, n_iter: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int, resize_mode: int, init_info: any = None, init_info_mask: any = None, fp = None, job_info: JobInfo = None): # print([prompt, image_editor_mode, init_info, init_info_mask, mask_mode, # mask_blur_strength, ddim_steps, sampler_name, toggles, # realesrgan_model_name, n_iter, cfg_scale, # denoising_strength, seed, height, width, resize_mode, # fp]) outpath = opt.outdir_img2img or opt.outdir or "outputs/img2img-samples" err = False seed = seed_to_int(seed) batch_size = 1 prompt_matrix = 0 in toggles normalize_prompt_weights = 1 in toggles loopback = 2 in toggles random_seed_loopback = 3 in toggles skip_save = 4 not in toggles skip_grid = 5 not in toggles sort_samples = 6 in toggles write_info_files = 7 in toggles write_sample_info_to_log_file = 8 in toggles jpg_sample = 9 in toggles do_color_correction = 10 in toggles filter_nsfw = 11 in toggles use_GFPGAN = 12 in toggles use_RealESRGAN = 13 in toggles ModelLoader(['model'],True,False) if use_GFPGAN and not use_RealESRGAN: ModelLoader(['GFPGAN'],True,False) ModelLoader(['RealESRGAN'],False,True) if use_RealESRGAN and not use_GFPGAN: ModelLoader(['GFPGAN'],False,True) ModelLoader(['RealESRGAN'],True,False,realesrgan_model_name) if use_RealESRGAN and use_GFPGAN: ModelLoader(['GFPGAN','RealESRGAN'],True,False,realesrgan_model_name) if sampler_name == 'DDIM': sampler = DDIMSampler(model) elif sampler_name == 'k_dpm_2_a': sampler = KDiffusionSampler(model,'dpm_2_ancestral') elif sampler_name == 'k_dpm_2': sampler = KDiffusionSampler(model,'dpm_2') elif sampler_name == 'k_euler_a': sampler = KDiffusionSampler(model,'euler_ancestral') elif sampler_name == 'k_euler': sampler = KDiffusionSampler(model,'euler') elif sampler_name == 'k_heun': sampler = KDiffusionSampler(model,'heun') elif sampler_name == 'k_lms': sampler = KDiffusionSampler(model,'lms') else: raise Exception("Unknown sampler: " + sampler_name) if image_editor_mode == 'Mask': init_img = init_info_mask["image"] init_img_transparency = ImageOps.invert(init_img.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1') init_img = init_img.convert("RGB") init_img = resize_image(resize_mode, init_img, width, height) init_img = init_img.convert("RGB") init_mask = init_info_mask["mask"] init_mask = ImageChops.lighter(init_img_transparency, init_mask.convert('L')).convert('RGBA') init_mask = init_mask.convert("RGB") init_mask = resize_image(resize_mode, init_mask, width, height) init_mask = init_mask.convert("RGB") keep_mask = mask_mode == 0 init_mask = init_mask if keep_mask else ImageOps.invert(init_mask) else: init_img = init_info init_mask = None keep_mask = False assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' t_enc = int(denoising_strength * ddim_steps) def init(): image = init_img.convert("RGB") image = resize_image(resize_mode, image, width, height) #image = image.convert("RGB") image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) mask_channel = None if image_editor_mode == "Mask": alpha = init_mask.convert("RGBA") alpha = resize_image(resize_mode, alpha, width // 8, height // 8) mask_channel = alpha.split()[1] mask = None if mask_channel is not None: mask = np.array(mask_channel).astype(np.float32) / 255.0 mask = (1 - mask) mask = np.tile(mask, (4, 1, 1)) mask = mask[None].transpose(0, 1, 2, 3) mask = torch.from_numpy(mask).to(device) if opt.optimized: modelFS.to(device) #let's try and find where init_image is 0's #shape is probably (3,width,height)? if image_editor_mode == "Uncrop": _image=image.numpy()[0] _mask=np.ones((_image.shape[1],_image.shape[2])) #compute bounding box cmax=np.max(_image,axis=0) rowmax=np.max(cmax,axis=0) colmax=np.max(cmax,axis=1) rowwhere=np.where(rowmax>0)[0] colwhere=np.where(colmax>0)[0] rowstart=rowwhere[0] rowend=rowwhere[-1]+1 colstart=colwhere[0] colend=colwhere[-1]+1 print('bounding box: ',rowstart,rowend,colstart,colend) #this is where noise will get added PAD_IMG=16 boundingbox=np.zeros(shape=(height,width)) boundingbox[colstart+PAD_IMG:colend-PAD_IMG,rowstart+PAD_IMG:rowend-PAD_IMG]=1 boundingbox=blurArr(boundingbox,4) #this is the mask for outpainting PAD_MASK=24 boundingbox2=np.zeros(shape=(height,width)) boundingbox2[colstart+PAD_MASK:colend-PAD_MASK,rowstart+PAD_MASK:rowend-PAD_MASK]=1 boundingbox2=blurArr(boundingbox2,4) #noise=np.random.randn(*_image.shape) noise=np.array([perlinNoise(height,width,height/64,width/64) for i in range(3)]) _mask*=1-boundingbox2 #convert 0,1 to -1,1 _image = 2. * _image - 1. #add noise boundingbox=np.tile(boundingbox,(3,1,1)) _image=_image*boundingbox+noise*(1-boundingbox) #resize mask _mask = np.array(resize_image(resize_mode, Image.fromarray(_mask*255), width // 8, height // 8))/255 #convert back to torch tensor init_image=torch.from_numpy(np.expand_dims(_image,axis=0).astype(np.float32)).to(device) mask=torch.from_numpy(_mask.astype(np.float32)).to(device) else: init_image = 2. * image - 1. init_image = init_image.to(device) init_image = repeat(init_image, '1 ... -> b ...', b=batch_size) init_latent = (model if not opt.optimized else modelFS).get_first_stage_encoding((model if not opt.optimized else modelFS).encode_first_stage(init_image)) # move to latent space if opt.optimized: mem = torch.cuda.memory_allocated()/1e6 modelFS.to("cpu") while(torch.cuda.memory_allocated()/1e6 >= mem): time.sleep(1) return init_latent, mask, def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name, img_callback: Callable = None): t_enc_steps = t_enc obliterate = False if ddim_steps == t_enc_steps: t_enc_steps = t_enc_steps - 1 obliterate = True if sampler_name != 'DDIM': x0, z_mask = init_data sigmas = sampler.model_wrap.get_sigmas(ddim_steps) noise = x * sigmas[ddim_steps - t_enc_steps - 1] xi = x0 + noise # Obliterate masked image if z_mask is not None and obliterate: random = torch.randn(z_mask.shape, device=xi.device) xi = (z_mask * noise) + ((1-z_mask) * xi) sigma_sched = sigmas[ddim_steps - t_enc_steps - 1:] model_wrap_cfg = CFGMaskedDenoiser(sampler.model_wrap) samples_ddim = K.sampling.__dict__[f'sample_{sampler.get_sampler_name()}'](model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': cfg_scale, 'mask': z_mask, 'x0': x0, 'xi': xi}, disable=False, callback=partial(KDiffusionSampler.img_callback_wrapper, img_callback)) else: x0, z_mask = init_data sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=0.0, verbose=False) z_enc = sampler.stochastic_encode(x0, torch.tensor([t_enc_steps]*batch_size).to(device)) # Obliterate masked image if z_mask is not None and obliterate: random = torch.randn(z_mask.shape, device=z_enc.device) z_enc = (z_mask * random) + ((1-z_mask) * z_enc) # decode it samples_ddim = sampler.decode(z_enc, conditioning, t_enc_steps, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=unconditional_conditioning, z_mask=z_mask, x0=x0) return samples_ddim correction_target = None if loopback: output_images, info = None, None history = [] initial_seed = None # turn on color correction for loopback to prevent known issue of color drift do_color_correction = True for i in range(n_iter): if do_color_correction and i == 0: correction_target = cv2.cvtColor(np.asarray(init_img.copy()), cv2.COLOR_RGB2LAB) output_images, seed, info, stats = process_images( outpath=outpath, func_init=init, func_sample=sample, prompt=prompt, seed=seed, sampler_name=sampler_name, skip_save=skip_save, skip_grid=skip_grid, batch_size=1, n_iter=1, steps=ddim_steps, cfg_scale=cfg_scale, width=width, height=height, prompt_matrix=prompt_matrix, filter_nsfw=filter_nsfw, use_GFPGAN=use_GFPGAN, use_RealESRGAN=False, # Forcefully disable upscaling when using loopback realesrgan_model_name=realesrgan_model_name, fp=fp, do_not_save_grid=True, normalize_prompt_weights=normalize_prompt_weights, init_img=init_img, init_mask=init_mask, keep_mask=keep_mask, mask_blur_strength=mask_blur_strength, mask_restore=mask_restore, denoising_strength=denoising_strength, resize_mode=resize_mode, uses_loopback=loopback, uses_random_seed_loopback=random_seed_loopback, sort_samples=sort_samples, write_info_files=write_info_files, write_sample_info_to_log_file=write_sample_info_to_log_file, jpg_sample=jpg_sample, job_info=job_info, do_color_correction=do_color_correction, correction_target=correction_target ) if initial_seed is None: initial_seed = seed init_img = output_images[0] if not random_seed_loopback: seed = seed + 1 else: seed = seed_to_int(None) denoising_strength = max(denoising_strength * 0.95, 0.1) history.append(init_img) if not skip_grid: grid_count = get_next_sequence_number(outpath, 'grid-') grid = image_grid(history, batch_size, force_n_rows=1) grid_file = f"grid-{grid_count:05}-{seed}_{prompt.replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]}.{grid_ext}" grid.save(os.path.join(outpath, grid_file), grid_format, quality=grid_quality, lossless=grid_lossless, optimize=True) output_images = history seed = initial_seed else: if do_color_correction: correction_target = cv2.cvtColor(np.asarray(init_img.copy()), cv2.COLOR_RGB2LAB) output_images, seed, info, stats = process_images( outpath=outpath, func_init=init, func_sample=sample, prompt=prompt, seed=seed, sampler_name=sampler_name, skip_save=skip_save, skip_grid=skip_grid, batch_size=batch_size, n_iter=n_iter, steps=ddim_steps, cfg_scale=cfg_scale, width=width, height=height, prompt_matrix=prompt_matrix, filter_nsfw=filter_nsfw, use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, realesrgan_model_name=realesrgan_model_name, fp=fp, normalize_prompt_weights=normalize_prompt_weights, init_img=init_img, init_mask=init_mask, keep_mask=keep_mask, mask_blur_strength=mask_blur_strength, denoising_strength=denoising_strength, mask_restore=mask_restore, resize_mode=resize_mode, uses_loopback=loopback, sort_samples=sort_samples, write_info_files=write_info_files, write_sample_info_to_log_file=write_sample_info_to_log_file, jpg_sample=jpg_sample, job_info=job_info, do_color_correction=do_color_correction, correction_target=correction_target ) del sampler return output_images, seed, info, stats prompt_parser = re.compile(""" (?P # capture group for 'prompt' (?:\\\:|[^:])+ # match one or more non ':' characters or escaped colons '\:' ) # end 'prompt' (?: # non-capture group :+ # match one or more ':' characters (?P # capture group for 'weight' -?\d+(?:\.\d+)? # match positive or negative integer or decimal number )? # end weight capture group, make optional \s* # strip spaces after weight | # OR $ # else, if no ':' then match end of line ) # end non-capture group """, re.VERBOSE) # grabs all text up to the first occurrence of ':' as sub-prompt # takes the value following ':' as weight # if ':' has no value defined, defaults to 1.0 # repeats until no text remaining def split_weighted_subprompts(input_string, normalize=True): parsed_prompts = [(match.group("prompt").replace("\\:", ":"), float(match.group("weight") or 1)) for match in re.finditer(prompt_parser, input_string)] if not normalize: return parsed_prompts weight_sum = sum(map(lambda x: x[1], parsed_prompts)) if weight_sum == 0: print("Warning: Subprompt weights add up to zero. Discarding and using even weights instead.") equal_weight = 1 / (len(parsed_prompts) or 1) return [(x[0], equal_weight) for x in parsed_prompts] return [(x[0], x[1] / weight_sum) for x in parsed_prompts] def slerp(device, t, v0:torch.Tensor, v1:torch.Tensor, DOT_THRESHOLD=0.9995): v0 = v0.detach().cpu().numpy() v1 = v1.detach().cpu().numpy() dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) if np.abs(dot) > DOT_THRESHOLD: v2 = (1 - t) * v0 + t * v1 else: theta_0 = np.arccos(dot) sin_theta_0 = np.sin(theta_0) theta_t = theta_0 * t sin_theta_t = np.sin(theta_t) s0 = np.sin(theta_0 - theta_t) / sin_theta_0 s1 = sin_theta_t / sin_theta_0 v2 = s0 * v0 + s1 * v1 v2 = torch.from_numpy(v2).to(device) return v2 def imgproc(image,image_batch,imgproc_prompt,imgproc_toggles, imgproc_upscale_toggles,imgproc_realesrgan_model_name,imgproc_sampling, imgproc_steps, imgproc_height, imgproc_width, imgproc_cfg, imgproc_denoising, imgproc_seed,imgproc_gfpgan_strength,imgproc_ldsr_steps,imgproc_ldsr_pre_downSample,imgproc_ldsr_post_downSample): outpath = opt.outdir_imglab or opt.outdir or "outputs/imglab-samples" output = [] images = [] def processGFPGAN(image,strength): image = image.convert("RGB") metadata = ImageMetadata.get_from_image(image) cropped_faces, restored_faces, restored_img = GFPGAN.enhance(np.array(image, dtype=np.uint8), has_aligned=False, only_center_face=False, paste_back=True) result = Image.fromarray(restored_img) if metadata: metadata.GFPGAN = True ImageMetadata.set_on_image(image, metadata) if strength < 1.0: result = Image.blend(image, result, strength) return result def processRealESRGAN(image): if 'x2' in imgproc_realesrgan_model_name: # downscale to 1/2 size modelMode = imgproc_realesrgan_model_name.replace('x2','x4') else: modelMode = imgproc_realesrgan_model_name image = image.convert("RGB") metadata = ImageMetadata.get_from_image(image) RealESRGAN = load_RealESRGAN(modelMode) result, res = RealESRGAN.enhance(np.array(image, dtype=np.uint8)) result = Image.fromarray(result) ImageMetadata.set_on_image(result, metadata) if 'x2' in imgproc_realesrgan_model_name: # downscale to 1/2 size result = result.resize((result.width//2, result.height//2), LANCZOS) return result def processGoBig(image): metadata = ImageMetadata.get_from_image(image) result = processRealESRGAN(image,) if 'x4' in imgproc_realesrgan_model_name: #downscale to 1/2 size result = result.resize((result.width//2, result.height//2), LANCZOS) #make sense of parameters n_iter = 1 batch_size = 1 seed = seed_to_int(imgproc_seed) ddim_steps = int(imgproc_steps) resize_mode = 0 #need to add resize mode to form, or infer correct resolution from file name width = int(imgproc_width) height = int(imgproc_height) cfg_scale = float(imgproc_cfg) denoising_strength = float(imgproc_denoising) skip_save = True skip_grid = True prompt = imgproc_prompt t_enc = int(denoising_strength * ddim_steps) sampler_name = imgproc_sampling if sampler_name == 'DDIM': sampler = DDIMSampler(model) elif sampler_name == 'k_dpm_2_a': sampler = KDiffusionSampler(model,'dpm_2_ancestral') elif sampler_name == 'k_dpm_2': sampler = KDiffusionSampler(model,'dpm_2') elif sampler_name == 'k_euler_a': sampler = KDiffusionSampler(model,'euler_ancestral') elif sampler_name == 'k_euler': sampler = KDiffusionSampler(model,'euler') elif sampler_name == 'k_heun': sampler = KDiffusionSampler(model,'heun') elif sampler_name == 'k_lms': sampler = KDiffusionSampler(model,'lms') else: raise Exception("Unknown sampler: " + sampler_name) pass init_img = result init_mask = None keep_mask = False mask_restore = False assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' def init(): image = init_img.convert("RGB") image = resize_image(resize_mode, image, width, height) image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) if opt.optimized: modelFS.to(device) init_image = 2. * image - 1. init_image = init_image.to(device) init_image = repeat(init_image, '1 ... -> b ...', b=batch_size) init_latent = (model if not opt.optimized else modelFS).get_first_stage_encoding((model if not opt.optimized else modelFS).encode_first_stage(init_image)) # move to latent space if opt.optimized: mem = torch.cuda.memory_allocated()/1e6 modelFS.to("cpu") while(torch.cuda.memory_allocated()/1e6 >= mem): time.sleep(1) return init_latent, def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name): if sampler_name != 'DDIM': x0, = init_data sigmas = sampler.model_wrap.get_sigmas(ddim_steps) noise = x * sigmas[ddim_steps - t_enc - 1] xi = x0 + noise sigma_sched = sigmas[ddim_steps - t_enc - 1:] model_wrap_cfg = CFGDenoiser(sampler.model_wrap) samples_ddim = K.sampling.__dict__[f'sample_{sampler.get_sampler_name()}'](model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': cfg_scale}, disable=False) else: x0, = init_data sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=0.0, verbose=False) z_enc = sampler.stochastic_encode(x0, torch.tensor([t_enc]*batch_size).to(device)) # decode it samples_ddim = sampler.decode(z_enc, conditioning, t_enc, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=unconditional_conditioning,) return samples_ddim def split_grid(image, tile_w=512, tile_h=512, overlap=64): Grid = namedtuple("Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"]) w = image.width h = image.height now = tile_w - overlap # non-overlap width noh = tile_h - overlap cols = math.ceil((w - overlap) / now) rows = math.ceil((h - overlap) / noh) grid = Grid([], tile_w, tile_h, w, h, overlap) for row in range(rows): row_images = [] y = row * noh if y + tile_h >= h: y = h - tile_h for col in range(cols): x = col * now if x+tile_w >= w: x = w - tile_w tile = image.crop((x, y, x + tile_w, y + tile_h)) row_images.append([x, tile_w, tile]) grid.tiles.append([y, tile_h, row_images]) return grid def combine_grid(grid): def make_mask_image(r): r = r * 255 / grid.overlap r = r.astype(np.uint8) return Image.fromarray(r, 'L') mask_w = make_mask_image(np.arange(grid.overlap, dtype=np.float).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)) mask_h = make_mask_image(np.arange(grid.overlap, dtype=np.float).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)) combined_image = Image.new("RGB", (grid.image_w, grid.image_h)) for y, h, row in grid.tiles: combined_row = Image.new("RGB", (grid.image_w, h)) for x, w, tile in row: if x == 0: combined_row.paste(tile, (0, 0)) continue combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w) combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0)) if y == 0: combined_image.paste(combined_row, (0, 0)) continue combined_image.paste(combined_row.crop((0, 0, combined_row.width, grid.overlap)), (0, y), mask=mask_h) combined_image.paste(combined_row.crop((0, grid.overlap, combined_row.width, h)), (0, y + grid.overlap)) return combined_image grid = split_grid(result, tile_w=width, tile_h=height, overlap=64) work = [] work_results = [] for y, h, row in grid.tiles: for tiledata in row: work.append(tiledata[2]) batch_count = math.ceil(len(work) / batch_size) print(f"GoBig upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} in a total of {batch_count} batches.") for i in range(batch_count): init_img = work[i*batch_size:(i+1)*batch_size][0] output_images, seed, info, stats = process_images( outpath=outpath, func_init=init, func_sample=sample, prompt=prompt, seed=seed, sampler_name=sampler_name, skip_save=skip_save, skip_grid=skip_grid, batch_size=batch_size, n_iter=n_iter, steps=ddim_steps, cfg_scale=cfg_scale, width=width, height=height, prompt_matrix=None, filter_nsfw=False, use_GFPGAN=None, use_RealESRGAN=None, realesrgan_model_name=None, fp=None, normalize_prompt_weights=False, init_img=init_img, init_mask=None, keep_mask=False, mask_blur_strength=None, denoising_strength=denoising_strength, mask_restore=mask_restore, resize_mode=resize_mode, uses_loopback=False, sort_samples=True, write_info_files=True, write_sample_info_to_log_file=False, jpg_sample=False, imgProcessorTask=True ) #if initial_seed is None: # initial_seed = seed #seed = seed + 1 work_results.append(output_images[0]) image_index = 0 for y, h, row in grid.tiles: for tiledata in row: tiledata[2] = work_results[image_index] image_index += 1 combined_image = combine_grid(grid) grid_count = len(os.listdir(outpath)) - 1 del sampler torch.cuda.empty_cache() ImageMetadata.set_on_image(combined_image, metadata) return combined_image def processLDSR(image): metadata = ImageMetadata.get_from_image(image) result = LDSR.superResolution(image,int(imgproc_ldsr_steps),str(imgproc_ldsr_pre_downSample),str(imgproc_ldsr_post_downSample)) ImageMetadata.set_on_image(result, metadata) return result if image_batch != None: if image != None: print("Batch detected and single image detected, please only use one of the two. Aborting.") return None #convert file to pillow image for img in image_batch: image = Image.fromarray(np.array(Image.open(img))) images.append(image) elif image != None: if image_batch != None: print("Batch detected and single image detected, please only use one of the two. Aborting.") return None else: images.append(image) if len(images) > 0: print("Processing images...") #pre load models not in loop if 0 in imgproc_toggles: ModelLoader(['RealESGAN','LDSR'],False,True) # Unload unused models ModelLoader(['GFPGAN'],True,False) # Load used models if 1 in imgproc_toggles: if imgproc_upscale_toggles == 0: ModelLoader(['GFPGAN','LDSR'],False,True) # Unload unused models ModelLoader(['RealESGAN'],True,False,imgproc_realesrgan_model_name) # Load used models elif imgproc_upscale_toggles == 1: ModelLoader(['GFPGAN','LDSR'],False,True) # Unload unused models ModelLoader(['RealESGAN','model'],True,False) # Load used models elif imgproc_upscale_toggles == 2: ModelLoader(['model','GFPGAN','RealESGAN'],False,True) # Unload unused models ModelLoader(['LDSR'],True,False) # Load used models elif imgproc_upscale_toggles == 3: ModelLoader(['GFPGAN','LDSR'],False,True) # Unload unused models ModelLoader(['RealESGAN','model'],True,False,imgproc_realesrgan_model_name) # Load used models for image in images: metadata = ImageMetadata.get_from_image(image) if 0 in imgproc_toggles: #recheck if GFPGAN is loaded since it's the only model that can be loaded in the loop as well ModelLoader(['GFPGAN'],True,False) # Load used models image = processGFPGAN(image,imgproc_gfpgan_strength) if metadata: metadata.GFPGAN = True ImageMetadata.set_on_image(image, metadata) outpathDir = os.path.join(outpath,'GFPGAN') os.makedirs(outpathDir, exist_ok=True) batchNumber = get_next_sequence_number(outpathDir) outFilename = str(batchNumber)+'-'+'result' if 1 not in imgproc_toggles: output.append(image) save_sample(image, outpathDir, outFilename, False, None, None, None, None, None, False, None, None, None, None, None, None, None, None, None, False) if 1 in imgproc_toggles: if imgproc_upscale_toggles == 0: image = processRealESRGAN(image) ImageMetadata.set_on_image(image, metadata) outpathDir = os.path.join(outpath,'RealESRGAN') os.makedirs(outpathDir, exist_ok=True) batchNumber = get_next_sequence_number(outpathDir) outFilename = str(batchNumber)+'-'+'result' output.append(image) save_sample(image, outpathDir, outFilename, False, None, None, None, None, None, False, None, None, None, None, None, None, None, None, None, False) elif imgproc_upscale_toggles == 1: image = processGoBig(image) ImageMetadata.set_on_image(image, metadata) outpathDir = os.path.join(outpath,'GoBig') os.makedirs(outpathDir, exist_ok=True) batchNumber = get_next_sequence_number(outpathDir) outFilename = str(batchNumber)+'-'+'result' output.append(image) save_sample(image, outpathDir, outFilename, False, None, None, None, None, None, False, None, None, None, None, None, None, None, None, None, False) elif imgproc_upscale_toggles == 2: image = processLDSR(image) ImageMetadata.set_on_image(image, metadata) outpathDir = os.path.join(outpath,'LDSR') os.makedirs(outpathDir, exist_ok=True) batchNumber = get_next_sequence_number(outpathDir) outFilename = str(batchNumber)+'-'+'result' output.append(image) save_sample(image, outpathDir, outFilename, False, None, None, None, None, None, False, None, None, None, None, None, None, None, None, None, False) elif imgproc_upscale_toggles == 3: image = processGoBig(image) ModelLoader(['model','GFPGAN','RealESGAN'],False,True) # Unload unused models ModelLoader(['LDSR'],True,False) # Load used models image = processLDSR(image) ImageMetadata.set_on_image(image, metadata) outpathDir = os.path.join(outpath,'GoLatent') os.makedirs(outpathDir, exist_ok=True) batchNumber = get_next_sequence_number(outpathDir) outFilename = str(batchNumber)+'-'+'result' output.append(image) save_sample(image, outpathDir, outFilename, None, None, None, None, None, None, False, None, None, None, None, None, None, None, None, None, False) #LDSR is always unloaded to avoid memory issues #ModelLoader(['LDSR'],False,True) #print("Reloading default models...") #ModelLoader(['model','RealESGAN','GFPGAN'],True,False) # load back models print("Done.") return output def ModelLoader(models,load=False,unload=False,imgproc_realesrgan_model_name='RealESRGAN_x4plus'): #get global variables global_vars = globals() #check if m is in globals if unload: for m in models: if m in global_vars: #if it is, delete it del global_vars[m] if opt.optimized: if m == 'model': del global_vars[m+'FS'] del global_vars[m+'CS'] if m =='model': m='Stable Diffusion' print('Unloaded ' + m) if load: for m in models: if m not in global_vars or m in global_vars and type(global_vars[m]) == bool: #if it isn't, load it if m == 'GFPGAN': global_vars[m] = load_GFPGAN() elif m == 'model': sdLoader = load_SD_model() global_vars[m] = sdLoader[0] if opt.optimized: global_vars[m+'CS'] = sdLoader[1] global_vars[m+'FS'] = sdLoader[2] elif m == 'RealESRGAN': global_vars[m] = load_RealESRGAN(imgproc_realesrgan_model_name) elif m == 'LDSR': global_vars[m] = load_LDSR() if m =='model': m='Stable Diffusion' print('Loaded ' + m) torch_gc() def run_GFPGAN(image, strength): ModelLoader(['LDSR','RealESRGAN'],False,True) ModelLoader(['GFPGAN'],True,False) metadata = ImageMetadata.get_from_image(image) image = image.convert("RGB") cropped_faces, restored_faces, restored_img = GFPGAN.enhance(np.array(image, dtype=np.uint8), has_aligned=False, only_center_face=False, paste_back=True) res = Image.fromarray(restored_img) metadata.GFPGAN = True ImageMetadata.set_on_image(res, metadata) if strength < 1.0: res = Image.blend(image, res, strength) return res def run_RealESRGAN(image, model_name: str): ModelLoader(['GFPGAN','LDSR'],False,True) ModelLoader(['RealESRGAN'],True,False) if RealESRGAN.model.name != model_name: try_loading_RealESRGAN(model_name) metadata = ImageMetadata.get_from_image(image) image = image.convert("RGB") output, img_mode = RealESRGAN.enhance(np.array(image, dtype=np.uint8)) res = Image.fromarray(output) ImageMetadata.set_on_image(res, metadata) return res if opt.defaults is not None and os.path.isfile(opt.defaults): try: with open(opt.defaults, "r", encoding="utf8") as f: user_defaults = yaml.safe_load(f) except (OSError, yaml.YAMLError) as e: print(f"Error loading defaults file {opt.defaults}:", e, file=sys.stderr) print("Falling back to program defaults.", file=sys.stderr) user_defaults = {} else: user_defaults = {} # make sure these indicies line up at the top of txt2img() txt2img_toggles = [ 'Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', 'Normalize Prompt Weights (ensure sum of weights add up to 1.0)', 'Save individual images', 'Save grid', 'Sort samples by prompt', 'Write sample info files', 'write sample info to log file', 'jpg samples', 'Filter NSFW content', ] if GFPGAN is not None: txt2img_toggles.append('Fix faces using GFPGAN') if RealESRGAN is not None: txt2img_toggles.append('Upscale images using RealESRGAN') txt2img_defaults = { 'prompt': '', 'ddim_steps': 50, 'toggles': [1, 2, 3], 'sampler_name': 'k_lms', 'ddim_eta': 0.0, 'n_iter': 1, 'batch_size': 1, 'cfg_scale': 7.5, 'seed': '', 'height': 512, 'width': 512, 'fp': None, 'variant_amount': 0.0, 'variant_seed': '', 'submit_on_enter': 'Yes', } if 'txt2img' in user_defaults: txt2img_defaults.update(user_defaults['txt2img']) txt2img_toggle_defaults = [txt2img_toggles[i] for i in txt2img_defaults['toggles']] imgproc_defaults = { 'prompt': '', 'ddim_steps': 50, 'sampler_name': 'k_lms', 'cfg_scale': 7.5, 'seed': '', 'height': 512, 'width': 512, 'denoising_strength': 0.30 } imgproc_mode_toggles = [ 'Fix Faces', 'Upscale' ] #sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg" #sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None sample_img2img = None # make sure these indicies line up at the top of img2img() img2img_toggles = [ 'Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', 'Normalize Prompt Weights (ensure sum of weights add up to 1.0)', 'Loopback (use images from previous batch when creating next batch)', 'Random loopback seed', 'Save individual images', 'Save grid', 'Sort samples by prompt', 'Write sample info files', 'Write sample info to one file', 'jpg samples', 'Color correction (always enabled on loopback mode)', 'Filter NSFW content', ] # removed for now becuase of Image Lab implementation if GFPGAN is not None: img2img_toggles.append('Fix faces using GFPGAN') if RealESRGAN is not None: img2img_toggles.append('Upscale images using RealESRGAN') img2img_mask_modes = [ "Keep masked area", "Regenerate only masked area", ] img2img_resize_modes = [ "Just resize", "Crop and resize", "Resize and fill", ] img2img_defaults = { 'prompt': '', 'ddim_steps': 50, 'toggles': [1, 4, 5], 'sampler_name': 'k_lms', 'ddim_eta': 0.0, 'n_iter': 1, 'batch_size': 1, 'cfg_scale': 5.0, 'denoising_strength': 0.75, 'mask_mode': 0, 'mask_restore': False, 'resize_mode': 0, 'seed': '', 'height': 512, 'width': 512, 'fp': None, } if 'img2img' in user_defaults: img2img_defaults.update(user_defaults['img2img']) img2img_toggle_defaults = [img2img_toggles[i] for i in img2img_defaults['toggles']] img2img_image_mode = 'sketch' help_text = """ ## Mask/Crop * The masking/cropping is very temperamental. * It may take some time for the image to show when switching from Crop to Mask. * If the image doesn't appear after switching to Mask, switch back to Crop and then back again to Mask * If the mask appears distorted (the brush is weirdly shaped instead of round), switch back to Crop and then back again to Mask. ## Advanced Editor * For now the button needs to be clicked twice the first time. * Once you have edited your image, you _need_ to click the save button for the next step to work. * Clear the image from the crop editor (click the x) * Click "Get Image from Advanced Editor" to get the image you saved. If it doesn't work, try opening the editor and saving again. If it keeps not working, try switching modes again, switch tabs, clear the image or reload. """ def show_help(): return [gr.update(visible=False), gr.update(visible=True), gr.update(value=help_text)] def hide_help(): return [gr.update(visible=True), gr.update(visible=False), gr.update(value="")] demo = draw_gradio_ui(opt, user_defaults=user_defaults, txt2img=txt2img, img2img=img2img, imgproc=imgproc, txt2img_defaults=txt2img_defaults, txt2img_toggles=txt2img_toggles, txt2img_toggle_defaults=txt2img_toggle_defaults, show_embeddings=hasattr(model, "embedding_manager"), img2img_defaults=img2img_defaults, img2img_toggles=img2img_toggles, img2img_toggle_defaults=img2img_toggle_defaults, img2img_mask_modes=img2img_mask_modes, img2img_resize_modes=img2img_resize_modes, sample_img2img=sample_img2img, imgproc_defaults=imgproc_defaults, imgproc_mode_toggles=imgproc_mode_toggles, RealESRGAN=RealESRGAN, GFPGAN=GFPGAN, LDSR=LDSR, run_GFPGAN=run_GFPGAN, run_RealESRGAN=run_RealESRGAN, job_manager=job_manager ) class ServerLauncher(threading.Thread): def __init__(self, demo): threading.Thread.__init__(self) self.name = 'Gradio Server Thread' self.demo = demo def run(self): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) gradio_params = { 'inbrowser': opt.inbrowser, 'server_name': '0.0.0.0', 'server_port': opt.port, 'share': opt.share, 'show_error': True } if not opt.share: demo.queue(concurrency_count=opt.max_jobs) if opt.share and opt.share_password: gradio_params['auth'] = ('webui', opt.share_password) # Check to see if Port 7860 is open port_status = 1 while port_status != 0: try: self.demo.launch(**gradio_params) except (OSError) as e: print (f'Error: Port: {opt.port} is not open yet. Please wait, this may take upwards of 60 seconds...') time.sleep(10) else: port_status = 0 def stop(self): self.demo.close() # this tends to hang def launch_server(): server_thread = ServerLauncher(demo) server_thread.start() try: while server_thread.is_alive(): time.sleep(60) except (KeyboardInterrupt, OSError) as e: crash(e, 'Shutting down...') def run_headless(): with open(opt.cli, 'r', encoding='utf8') as f: kwargs = yaml.safe_load(f) target = kwargs.pop('target') if target == 'txt2img': target_func = txt2img elif target == 'img2img': target_func = img2img raise NotImplementedError() else: raise ValueError(f'Unknown target: {target}') prompts = kwargs.pop("prompt") prompts = prompts if type(prompts) is list else [prompts] for i, prompt_i in enumerate(prompts): print(f"===== Prompt {i+1}/{len(prompts)}: {prompt_i} =====") output_images, seed, info, stats = target_func(prompt=prompt_i, **kwargs) print(f'Seed: {seed}') print(info) print(stats) print() if __name__ == '__main__': if opt.cli is None: launch_server() else: run_headless()