# @title Setup #!pip3 install ftfy regex tqdm transformers==4.15.0 timm==0.4.12 fairscale==0.4.4 #!pip3 install git+https://github.com/openai/CLIP.git #!git clone https://github.com/pharmapsychotic/clip-interrogator.git #!git clone https://github.com/salesforce/BLIP # %cd /content/BLIP import clip import gc # import numpy as np import os import pandas as pd import requests import torch # import torchvision.transforms as T # import torchvision.transforms.functional as TF from IPython.display import display from PIL import Image # from torch import nn # from torch.nn import functional as F from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from ldm.models.blip import blip_decoder device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") blip_image_eval_size = 384 blip_model_url = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth" blip_model = blip_decoder( pretrained=blip_model_url, image_size=blip_image_eval_size, vit="base" ) blip_model.eval() blip_model = blip_model.to(device) def generate_caption(pil_image): gpu_image = ( transforms.Compose( [ transforms.Resize( (blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC, ), transforms.ToTensor(), transforms.Normalize( (0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711), ), ] )(image) .unsqueeze(0) .to(device) ) with torch.no_grad(): caption = blip_model.generate( gpu_image, sample=False, num_beams=3, max_length=20, min_length=5 ) return caption[0] def load_list(filename): with open(filename, "r", encoding="utf-8", errors="replace") as f: items = [line.strip() for line in f.readlines()] return items def rank(model, image_features, text_array, top_count=1): top_count = min(top_count, len(text_array)) text_tokens = clip.tokenize([text for text in text_array]).cuda() with torch.no_grad(): text_features = model.encode_text(text_tokens).float() text_features /= text_features.norm(dim=-1, keepdim=True) similarity = torch.zeros((1, len(text_array))).to(device) for i in range(image_features.shape[0]): similarity += ( 100.0 * image_features[i].unsqueeze(0) @ text_features.T ).softmax(dim=-1) similarity /= image_features.shape[0] top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1) return [ (text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy() * 100)) for i in range(top_count) ] def interrogate(image, models): caption = generate_caption(image) if len(models) == 0: print(f"\n\n{caption}") return table = [] bests = [[("", 0)]] * 5 for model_name in models: print(f"Interrogating with {model_name}...") model, preprocess = clip.load(model_name) model.cuda().eval() images = preprocess(image).unsqueeze(0).cuda() with torch.no_grad(): image_features = model.encode_image(images).float() image_features /= image_features.norm(dim=-1, keepdim=True) ranks = [ rank(model, image_features, mediums), rank(model, image_features, ["by " + artist for artist in artists]), rank(model, image_features, trending_list), rank(model, image_features, movements), rank(model, image_features, flavors, top_count=3), ] for i in range(len(ranks)): confidence_sum = 0 for ci in range(len(ranks[i])): confidence_sum += ranks[i][ci][1] if confidence_sum > sum(bests[i][t][1] for t in range(len(bests[i]))): bests[i] = ranks[i] row = [model_name] for r in ranks: row.append(", ".join([f"{x[0]} ({x[1]:0.1f}%)" for x in r])) table.append(row) del model gc.collect() display( pd.DataFrame( table, columns=["Model", "Medium", "Artist", "Trending", "Movement", "Flavors"], ) ) flaves = ", ".join([f"{x[0]}" for x in bests[4]]) medium = bests[0][0][0] if caption.startswith(medium): print( f"\n\n{caption} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}" ) else: print( f"\n\n{caption}, {medium} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}" ) data_path = "../clip-interrogator/data/" artists = load_list(os.path.join(data_path, "artists.txt")) flavors = load_list(os.path.join(data_path, "flavors.txt")) mediums = load_list(os.path.join(data_path, "mediums.txt")) movements = load_list(os.path.join(data_path, "movements.txt")) sites = [ "Artstation", "behance", "cg society", "cgsociety", "deviantart", "dribble", "flickr", "instagram", "pexels", "pinterest", "pixabay", "pixiv", "polycount", "reddit", "shutterstock", "tumblr", "unsplash", "zbrush central", ] trending_list = [site for site in sites] trending_list.extend(["trending on " + site for site in sites]) trending_list.extend(["featured on " + site for site in sites]) trending_list.extend([site + " contest winner" for site in sites]) # @title Interrogate! # @markdown # @markdown #####**Image:** image_path_or_url = "https://i.redd.it/e2e8gimigjq91.jpg" # @param {type:"string"} # @markdown # @markdown #####**CLIP models:** # @markdown For [StableDiffusion](https://stability.ai/blog/stable-diffusion-announcement) you can just use ViTL14
# @markdown For [DiscoDiffusion](https://colab.research.google.com/github/alembics/disco-diffusion/blob/main/Disco_Diffusion.ipynb) and # @markdown [JAX](https://colab.research.google.com/github/huemin-art/jax-guided-diffusion/blob/v2.7/Huemin_Jax_Diffusion_2_7.ipynb) enable all the same models here as you intend to use when generating your images ViTB32 = True # @param{type:"boolean"} ViTB16 = True # @param{type:"boolean"} ViTL14 = False # @param{type:"boolean"} ViTL14_336px = False # @param{type:"boolean"} RN101 = False # @param{type:"boolean"} RN50 = True # @param{type:"boolean"} RN50x4 = False # @param{type:"boolean"} RN50x16 = False # @param{type:"boolean"} RN50x64 = False # @param{type:"boolean"} models = [] if ViTB32: models.append("ViT-B/32") if ViTB16: models.append("ViT-B/16") if ViTL14: models.append("ViT-L/14") if ViTL14_336px: models.append("ViT-L/14@336px") if RN101: models.append("RN101") if RN50: models.append("RN50") if RN50x4: models.append("RN50x4") if RN50x16: models.append("RN50x16") if RN50x64: models.append("RN50x64") if str(image_path_or_url).startswith("http://") or str(image_path_or_url).startswith( "https://" ): image = Image.open(requests.get(image_path_or_url, stream=True).raw).convert("RGB") else: image = Image.open(image_path_or_url).convert("RGB") thumb = image.copy() thumb.thumbnail([blip_image_eval_size, blip_image_eval_size]) display(thumb) interrogate(image, models=models)