#@title Setup #!pip3 install ftfy regex tqdm transformers==4.15.0 timm==0.4.12 fairscale==0.4.4 #!pip3 install git+https://github.com/openai/CLIP.git #!git clone https://github.com/pharmapsychotic/clip-interrogator.git #!git clone https://github.com/salesforce/BLIP #%cd /content/BLIP import clip import gc #import numpy as np import os import pandas as pd import requests import torch #import torchvision.transforms as T #import torchvision.transforms.functional as TF from IPython.display import display from PIL import Image #from torch import nn #from torch.nn import functional as F from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from ldm.models.blip import blip_decoder device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') blip_image_eval_size = 384 blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth' blip_model = blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base') blip_model.eval() blip_model = blip_model.to(device) def generate_caption(pil_image): gpu_image = transforms.Compose([ transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ])(image).unsqueeze(0).to(device) with torch.no_grad(): caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5) return caption[0] def load_list(filename): with open(filename, 'r', encoding='utf-8', errors='replace') as f: items = [line.strip() for line in f.readlines()] return items def rank(model, image_features, text_array, top_count=1): top_count = min(top_count, len(text_array)) text_tokens = clip.tokenize([text for text in text_array]).cuda() with torch.no_grad(): text_features = model.encode_text(text_tokens).float() text_features /= text_features.norm(dim=-1, keepdim=True) similarity = torch.zeros((1, len(text_array))).to(device) for i in range(image_features.shape[0]): similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1) similarity /= image_features.shape[0] top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1) return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)] def interrogate(image, models): caption = generate_caption(image) if len(models) == 0: print(f"\n\n{caption}") return table = [] bests = [[('',0)]]*5 for model_name in models: print(f"Interrogating with {model_name}...") model, preprocess = clip.load(model_name) model.cuda().eval() images = preprocess(image).unsqueeze(0).cuda() with torch.no_grad(): image_features = model.encode_image(images).float() image_features /= image_features.norm(dim=-1, keepdim=True) ranks = [ rank(model, image_features, mediums), rank(model, image_features, ["by "+artist for artist in artists]), rank(model, image_features, trending_list), rank(model, image_features, movements), rank(model, image_features, flavors, top_count=3) ] for i in range(len(ranks)): confidence_sum = 0 for ci in range(len(ranks[i])): confidence_sum += ranks[i][ci][1] if confidence_sum > sum(bests[i][t][1] for t in range(len(bests[i]))): bests[i] = ranks[i] row = [model_name] for r in ranks: row.append(', '.join([f"{x[0]} ({x[1]:0.1f}%)" for x in r])) table.append(row) del model gc.collect() display(pd.DataFrame(table, columns=["Model", "Medium", "Artist", "Trending", "Movement", "Flavors"])) flaves = ', '.join([f"{x[0]}" for x in bests[4]]) medium = bests[0][0][0] if caption.startswith(medium): print(f"\n\n{caption} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}") else: print(f"\n\n{caption}, {medium} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}") data_path = "../clip-interrogator/data/" artists = load_list(os.path.join(data_path, 'artists.txt')) flavors = load_list(os.path.join(data_path, 'flavors.txt')) mediums = load_list(os.path.join(data_path, 'mediums.txt')) movements = load_list(os.path.join(data_path, 'movements.txt')) sites = ['Artstation', 'behance', 'cg society', 'cgsociety', 'deviantart', 'dribble', 'flickr', 'instagram', 'pexels', 'pinterest', 'pixabay', 'pixiv', 'polycount', 'reddit', 'shutterstock', 'tumblr', 'unsplash', 'zbrush central'] trending_list = [site for site in sites] trending_list.extend(["trending on "+site for site in sites]) trending_list.extend(["featured on "+site for site in sites]) trending_list.extend([site+" contest winner" for site in sites]) #@title Interrogate! #@markdown #@markdown #####**Image:** image_path_or_url = "https://i.redd.it/e2e8gimigjq91.jpg" #@param {type:"string"} #@markdown #@markdown #####**CLIP models:** #@markdown For [StableDiffusion](https://stability.ai/blog/stable-diffusion-announcement) you can just use ViTL14
#@markdown For [DiscoDiffusion](https://colab.research.google.com/github/alembics/disco-diffusion/blob/main/Disco_Diffusion.ipynb) and #@markdown [JAX](https://colab.research.google.com/github/huemin-art/jax-guided-diffusion/blob/v2.7/Huemin_Jax_Diffusion_2_7.ipynb) enable all the same models here as you intend to use when generating your images ViTB32 = True #@param{type:"boolean"} ViTB16 = True #@param{type:"boolean"} ViTL14 = False #@param{type:"boolean"} ViTL14_336px = False #@param{type:"boolean"} RN101 = False #@param{type:"boolean"} RN50 = True #@param{type:"boolean"} RN50x4 = False #@param{type:"boolean"} RN50x16 = False #@param{type:"boolean"} RN50x64 = False #@param{type:"boolean"} models = [] if ViTB32: models.append('ViT-B/32') if ViTB16: models.append('ViT-B/16') if ViTL14: models.append('ViT-L/14') if ViTL14_336px: models.append('ViT-L/14@336px') if RN101: models.append('RN101') if RN50: models.append('RN50') if RN50x4: models.append('RN50x4') if RN50x16: models.append('RN50x16') if RN50x64: models.append('RN50x64') if str(image_path_or_url).startswith('http://') or str(image_path_or_url).startswith('https://'): image = Image.open(requests.get(image_path_or_url, stream=True).raw).convert('RGB') else: image = Image.open(image_path_or_url).convert('RGB') thumb = image.copy() thumb.thumbnail([blip_image_eval_size, blip_image_eval_size]) display(thumb) interrogate(image, models=models)