mirror of
https://github.com/sd-webui/stable-diffusion-webui.git
synced 2025-01-07 14:18:48 +03:00
010b27ce9a
* repo-merge * cutdown size * Create setup.py * webui.cmd * ldm * Update environment.yaml * Update environment.yaml
86 lines
2.0 KiB
YAML
86 lines
2.0 KiB
YAML
model:
|
|
base_learning_rate: 2.0e-06
|
|
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
|
params:
|
|
linear_start: 0.0015
|
|
linear_end: 0.0195
|
|
num_timesteps_cond: 1
|
|
log_every_t: 200
|
|
timesteps: 1000
|
|
first_stage_key: image
|
|
image_size: 64
|
|
channels: 3
|
|
monitor: val/loss_simple_ema
|
|
|
|
unet_config:
|
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
|
params:
|
|
image_size: 64
|
|
in_channels: 3
|
|
out_channels: 3
|
|
model_channels: 224
|
|
attention_resolutions:
|
|
# note: this isn\t actually the resolution but
|
|
# the downsampling factor, i.e. this corresnponds to
|
|
# attention on spatial resolution 8,16,32, as the
|
|
# spatial reolution of the latents is 64 for f4
|
|
- 8
|
|
- 4
|
|
- 2
|
|
num_res_blocks: 2
|
|
channel_mult:
|
|
- 1
|
|
- 2
|
|
- 3
|
|
- 4
|
|
num_head_channels: 32
|
|
first_stage_config:
|
|
target: ldm.models.autoencoder.VQModelInterface
|
|
params:
|
|
embed_dim: 3
|
|
n_embed: 8192
|
|
ckpt_path: models/first_stage_models/vq-f4/model.ckpt
|
|
ddconfig:
|
|
double_z: false
|
|
z_channels: 3
|
|
resolution: 256
|
|
in_channels: 3
|
|
out_ch: 3
|
|
ch: 128
|
|
ch_mult:
|
|
- 1
|
|
- 2
|
|
- 4
|
|
num_res_blocks: 2
|
|
attn_resolutions: []
|
|
dropout: 0.0
|
|
lossconfig:
|
|
target: torch.nn.Identity
|
|
cond_stage_config: __is_unconditional__
|
|
data:
|
|
target: main.DataModuleFromConfig
|
|
params:
|
|
batch_size: 48
|
|
num_workers: 5
|
|
wrap: false
|
|
train:
|
|
target: taming.data.faceshq.CelebAHQTrain
|
|
params:
|
|
size: 256
|
|
validation:
|
|
target: taming.data.faceshq.CelebAHQValidation
|
|
params:
|
|
size: 256
|
|
|
|
|
|
lightning:
|
|
callbacks:
|
|
image_logger:
|
|
target: main.ImageLogger
|
|
params:
|
|
batch_frequency: 5000
|
|
max_images: 8
|
|
increase_log_steps: False
|
|
|
|
trainer:
|
|
benchmark: True |